Data-Centric Systems and Applications-—

Database
Design and
Implementation

Second Edition

@ Springer

Data-Centric Systems and Applications

Series editors

Michael J. Carey
Stefano Ceri

Editorial Board Members

Anastasia Ailamaki
Shivnath Babu

Philip A. Bernstein
Johann-Christoph Freytag
Alon Halevy

Jiawei Han

Donald Kossmann
Gerhard Weikum
Kyu-Young Whang
Jeffrey Xu Yu

More information about this series at http://www.springer.com/series/5258

http://www.springer.com/series/5258

Edward Sciore

Database Design
and Implementation

Second Edition

@ Springer

Edward Sciore
Boston College
Chestnut Hill, MA, USA

ISSN 2197-9723 ISSN 2197-974X (electronic)
Data-Centric Systems and Applications
ISBN 978-3-030-33835-0 ISBN 978-3-030-33836-7 (eBook)

https://doi.org/10.1007/978-3-030-33836-7
The first edition of this book was published by John Wiley & Sons, Inc.

© Springer Nature Switzerland AG 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-33836-7

Preface

A database system is a common, visible tool in the corporate world—employees
frequently interact directly with database systems to submit data or create reports.
Database systems are also common, but invisible, as components of software
systems. For example, consider an e-commerce website that uses a server-side
database to hold customer, product, and sales information. Or consider a GPS
navigation system that uses an embedded database to manage the road maps. In
both of these examples, the presence of the database system is hidden from the user;
the application code performs all of the database interaction.

From the point of view of a software developer, learning to use a database directly
is rather mundane, because modern database systems contain sophisticated front
ends that make the creation of queries and reports straightforward. On the other
hand, the possibility of incorporating database functionality into a software applica-
tion is exciting, because it opens up a wealth of new and unexplored opportunities.

But what does “incorporating database functionality” mean? A database system
provides many things, such as persistence, transactional support, and query
processing. Which of these features are needed, and how should they be integrated
into the software? Suppose, for example, that a programmer is asked to modify an
existing application, say to add the ability to save state, or to increase reliability, or to
improve the efficiency of file access. The programmer is faced with several archi-
tectural options. She could:

* Purchase a full-featured general-purpose database system and then modify the
application to connect to the database as a client

* Obtain a more specialized system that contains only the desired features and
whose code can be embedded directly into the application

e Write the necessary functionality herself

In order to make the proper choice, the programmer needs to understand what
each of these options entail. She needs to know not only what database systems do
but also how they do it and why.

vi Preface

This text examines database systems from the point of view of the software
developer. This perspective allows us to investigate why database systems are the
way they are. It is, of course, important to be able to write queries, but it is equally
important to know how they are processed. We don’t want to just use JDBC, we
want to know why the API contains the classes and methods that it does. We need a
sense of how hard is it to write a disk cache or logging facility. And what exactly is a
database driver, anyway?

Organization of the Text

The first two chapters provide a quick overview of database systems and their use.
Chapter 1 discusses the purpose and features of a database system and introduces
you to the Derby and SimpleDB systems. Chapter 2 explains how to write a database
application using Java. It presents the basics of JDBC, which is the fundamental API
for Java programs that interact with a database.

Chapters 3—11 examine the internals of a typical database engine. Each of its
chapters covers a different database component, starting with the lowest level of
abstraction (the disk and file manager) and ending with the highest (the JDBC client
interface). The chapter for each component explains the issues and considers possi-
ble design decisions. As a result, you can see exactly what services each component
provides and how it interacts with the other components in the system. By the end of
this part, you will have witnessed the gradual development of a simple but
completely functional system.

The remaining four chapters focus on efficient query processing. They examine
the sophisticated techniques and algorithms that can replace the simple design
choices described earlier. Topics include indexing, sorting, intelligent buffer
usage, and query optimization.

Text Prerequisites

This text is intended for upper-level undergraduate or beginning graduate courses in
computer science. It assumes that the reader is comfortable with basic Java pro-
gramming; for example, it uses the classes in java.util extensively, particularly
collections and maps. Advanced Java concepts (such as RMI and JDBC) are fully
explained in the text.

The material in this book is typically studied as a second course in database
systems. However, I have had success teaching it to students with no database
experience. To that end, this book assumes no prior database knowledge other
than a passing acquaintance with SQL. And students without such knowledge of
SQL will find it easy to pick up what they need.

https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_11

Preface vii
The SimpleDB Software

In my experience, it is much easier for students to grasp conceptual ideas (such as
concurrency control, buffer management, and query optimization algorithms) than to
grasp how these ideas interact. Ideally, a student should write an entire database
system as part of his coursework, just as the student would write an entire compiler
in a compiler course. However, a database system is much more complex than a
compiler, so that approach is not practical. My solution was to write a simple but
fully functional database system, called SimpleDB. Students can apply their concep-
tual knowledge by examining SimpleDB code and modifying it.

SimpleDB “looks” like a commercial database system, both in its function and
structure. Functionally, it is a multiuser, transaction-oriented database server that
executes SQL statements and interacts with clients via JDBC. Structurally, it con-
tains the same basic components as a commercial system, with similar APIs. Each
component of SimpleDB has a corresponding chapter in the text, which discusses the
component’s code and the design decisions behind it.

SimpleDB is a useful educational tool because its code is small, easily readable,
and easily modifiable. It omits all unnecessary functionality, implements only a tiny
portion of SQL, and uses only the simplest (and often very impractical) algorithms.
There consequently are numerous opportunities for students to extend the system
with additional features and more efficient algorithms; many of these extensions
appear as end-of-chapter exercises.

SimpleDB can be downloaded from the http://cs.bc.edu/~sciore/simpledb.
Details on installing and using SimpleDB appear on that web page and in Chap. 1.
I welcome suggestions for improving the code, as well as reports of any bugs. You
can email me at sciore@bc.edu.

End-of-Chapter Readings

This text is motivated by two questions: What functionality do database systems
provide? What algorithms and design decisions will best implement this function-
ality? Entire shelves can be filled with books that address different aspects of these
questions. Since there is no way that a single text could hope to be comprehensive, I
have chosen to present only those algorithms and techniques that most clearly
illustrate the issues involved. My overriding goal is to teach the principles behind
a technique, even if it means omitting (or reducing) discussion of the most commer-
cially viable version of it. Instead, the end of each chapter contains a “suggested
readings” section. Those sections discuss interesting ideas and research directions
that went unmentioned in the text and provide references to relevant web pages,
research articles, reference manuals, and books.

http://www.cs.bc.edu/~sciore/simpledb
https://doi.org/10.1007/978-3-030-33836-7_1

viii Preface
End-of-Chapter Exercises

The end of each chapter contains numerous exercises. Some exercises are of the
pencil-and-paper variety, designed to reinforce concepts taught in the chapter. Other
exercises suggest interesting modifications to SimpleDB, and many of them make
excellent programming projects. I have written solutions to most of the exercises. If
you are the instructor of a course using this textbook and would like a copy of the
solution manual, please email me at sciore@bc.edu.

Contents

1 Database Systems. 1
1.1 Why a Database System?. 1
1.2 The Derby Database System. 6
1.3 Database Engines 8
1.4 The SimpleDB Database System 10
1.5 The SimpleDB Versionof SQL. 11
1.6 Chapter SUMMAryt 12
1.7 Suggested Reading 13
1.8 EXEICISeS . . v oottt 13
2 JDBC. .. 15
2.1 BasicIDBC. 15
2.2 Advanced JDBC. 27
2.3 Computing inJavavs. SQL. 41
24 Chapter SUMMAry 44
2.5 Suggested Reading 46
2.6 EXEICiSeso vv i 46
3 Disk and File Management 49
3.1 Persistent Data Storage o .. 49
3.2 The Block-Level Interface to the Disk. 60
33 The File-Level Interface tothe Disk 61
3.4 The Database System andthe OS. 65
3.5 The SimpleDB File Manager. 66
3.6 Chapter SUMMAryot 71
3.7 Suggested Reading 75
3.8 EXEICISeS . . v oottt 75
4 Memory Management, 79
4.1 Two Principles of Database Memory Management. 79
4.2 Managing Log Information. 81

ix

https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2

Contents

4.3 The SimpleDB Log Manager. 83
4.4 Managing UserData. 88
4.5 The SimpleDB Buffer Manager. 93
4.6 Chapter SUMMAryot 98
4.7 Suggested Reading 101
4.8 EXEICISes . . . oottt 102
Transaction Management. 105
5.1 Transactions 105
5.2 Using Transactions in SimpleDB 108
53 Recovery Management. 110
5.4 Concurrency Management.vvuuineeunnn... 123
5.5 Implementing SimpleDB Transactions. 145
5.6 Chapter SUMMArYot 145
5.7 Suggested Reading 150
5.8 EXeICiSes. . . . oot 151
Record Management 159
6.1 Designing a Record Manager. 159
6.2 Implementing a File of Records 165
6.3 SimpleDB Record Pages. 170
6.4 SimpleDB Table Scans. 178
6.5 Chapter SUmMmaryvvt i 184
6.6 Suggested Reading 185
6.7 EXercisesot 186
Metadata Management 189
7.1 The Metadata Manager. 189
7.2 Table Metadata. 190
7.3 View Metadata. 193
7.4 Statistical Metadata. 195
7.5 Index Metadata. 199
7.6 Implementing the Metadata Manager. 205
7.7 Chapter SUMmMAryt 207
7.8 Suggested Reading 210
7.9 EXErCiSeso ov i 211
Query Processing 213
8.1 Relational Algebra. 213
8.2 SCaANS .« o o 217
8.3 Update Scans.o it 220
8.4 Implementing Scans. 221
8.5 Pipelined Query Processing. 226
8.6 Predicates. 228
8.7 Chapter SUMMAryo e 229
8.8 Suggested Reading 233
8.9 EXEICISes . . . oottt 236

https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15

Contents xi

10

11

12

13

Parsing. 239
9.1 Syntax Versus Semantics. 239
9.2 Lexical Analysis. 240
9.3 The SimpleDB Lexical Analyzer. 241
94 GrammarSttt ittt 246
9.5 Recursive-Descent Parsers 249
9.6 Adding Actionstothe Parser. 250
9.7 Chapter Summary 260
9.8 Suggested Reading 262
9.9 EXEICISeS . . . oottt 262
Planning. 267
10.1 Verification. 267
10.2 The Cost of Evaluating a Query Tree. 268
103 Plans.o 274
104 Query Planning. i i i L. 277
10.5 Update Planning., 281
10.6 The SimpleDB Planner. 284
10.7 Chapter Summary ittt 288
10.8 SuggestedReading. 289
109 EXeICiSes. . .. oottt 289
JDBC Interfaces. 295
11.1 The SimpleDB APL. 295
112 Embedded JDBC. 297
11.3 Remote Method Invocation. 300
11.4 Implementing the Remote Interfaces. 305
11.5 Implementing the JDBC Interfaces. 306
11.6 Chapter Summaryottt 309
11.7 SuggestedReading 309
11.8 EXeICISeS. . . .o v v e 310
Indexing. 313
12.1 The Valueof Indexing 313
122 SimpleDB Indexes. 316
123 Static HashIndexes............., 319
12.4 Extendable Hash Indexes 322
125 B-TreeIndexes. 327
12.6 Index-Aware Operator Implementations. 345
12.7 Index Update Planning 353
12.8 Chapter Summaryottt 356
129 Suggested Reading 357
12,10 EXeICISeS. . o oottt e e 358
Materialization and Sorting 363
13.1 The Value of Materialization 363

13.2 Temporary Tables.o o.. 364

https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2

xii Contents
13.3 Materialization. 364
134 SOrting.ttt 369
13.5 Grouping and Aggregation. 379
13.6 0 Merge JOINS . . .« oottt 387
13.7 Chapter SUmmaryo vtii et 389
13.8 SuggestedReading 393
139 EXEICISES. . . oo vttt e 394
14 Effective Buffer Utilization. 397
14.1 Buffer Usagein Query Plans. 397
142 Multibuffer Sorting 398
143 Multibuffer Product. 400
14.4 Determining Buffer Allocation. 402
14.5 Implementing Multibuffer Sorting 403
14.6 Implementing Multibuffer Product. 404
147 HashlJoins., 406
14.8 Comparing the Join Algorithms. 412
149 Chapter SUummaryottt 414
14.10 Suggested Reading. 415
1411 EXeICISeS. . . .ottt et et e 416
15 Query Optimization. 419
15.1 Equivalent Query Trees.uiiinnneon. 419
15.2 The Need for Query Optimization. 426
15.3 The Structure of a Query Optimizer. 430
15.4 Finding the Most Promising Query Tree. 430
15.5 Finding the Most Efficient Plan. 440
15.6 Combining the Two Stages of Optimization. 441
15,7 Merging Query Blocks. 449
15,8 Chapter Summaryttt 450
159 Suggested Reading. 452
15,10 EXeICiSes. . . .o vttt e e e 452
Index 455

https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23

About the Author

Edward Sciore is a recently retired associate professor in the Computer Science
Department at Boston College. He is the author of numerous research articles about
database systems, which span both theory and practice. His favorite activity, how-
ever, is to teach database courses to captive students. These teaching experiences,
accumulated over a 35-year period, are what led to the writing of this text.

xiii

Chapter 1 ®)
Database Systems S

Database systems play an important role in the computer industry. Some database
systems (such as Oracle) are enormously complex and typically run on large, high-
end machines. Others (such as SQLite) are small, streamlined, and intended for the
storage of application-specific data. Despite their wide range of uses, all database
systems have similar features. This chapter examines the issues that a database
system must address and the capabilities it is expected to have. It also introduces
the Derby and SimpleDB database systems, which will be discussed in this book.

1.1 Why a Database System?

A database is a collection of data stored on a computer. The data in a database is
typically organized into records, such as employee records, medical records, sales
records, etc. Figure 1.1 depicts a database that holds information about students in a
university and the courses they have taken. This database will be used as a running
example throughout the book. The database of Fig. 1.1 contains five types of
records:

e There is a STUDENT record for each student that has attended the university.
Each record contains the student’s ID number, name, graduation year, and ID of
the student’s major department.

e There is a DEPT record for each department in the university. Each record
contains the department’s ID number and name.

* There is a COURSE record for each course offered by the university. Each record
contains the course’s ID number, title, and the ID of the department that offers it.

» There is a SECTION record for each section of a course that has ever been given.
Each record contains the section’s ID number, the year the section was offered,
the ID of the course, and the professor teaching that section.

© Springer Nature Switzerland AG 2020 1
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_1

1 Database Systems

STUDENT SId SName GradYear Majorld DEPT DId DName

1 joe 2021 10 10 compsci
2 amy 2020 20 20 math
3 max 2022 10 30 drama
4 sue 2022 20 X
COURSE CId Title Deptld
5 bob 2020 30
6 Kim 2020 20 12 db sy?tems 10
- art 2021 30 22 compilers 10
3 pat 2019 20 32 calculus 20
9 lee 2021 10 42 algebra 20
52 acting 30
ENROLL EId Studentld Sectionld Grade 62 elocution 30
14 ! 13 A SECTION Sectld Courseld Prof YearOffered
21 43 ¢ 13 12 wrng 2018
42 43 B+ 23 12 tring 2016
44 4 33 B 33 32 newton 2017
54 4 53 A 43 32 einstein 2018
64 6 53 A 53 62 brando 2017

Fig. 1.1 Some records for a university database

There is an ENROLL record for each course taken by a student. Each record
contains the enrollment ID number, the ID numbers of the student and the section
of the course taken, and the grade the student received for the course.

Figure 1.1 is just a conceptual picture of some records. It does not indicate

anything about how the records are stored or how they are accessed. There are
many available software products, called database systems, which provide an
extensive set of features for managing records.

What does it mean to “manage” records? What features must a database system

have, and which features are optional? The following five requirements seem
fundamental:

Databases must be persistent. Otherwise, the records would disappear as soon as
the computer is turned off.

Databases can be shared. Many databases, such as our university database, are
intended to be shared by multiple concurrent users.

Databases must be kept accurate. If users cannot trust the contents of a database,
it becomes useless and worthless.

Databases can be very large. The database of Fig. 1.1 contains only 29 records,
which is ridiculously small. It is not unusual for a database to contain millions
(or even billions) of records.

Databases must be usable. If users are not able to easily get at the data they want,
their productivity will suffer, and they will clamor for a different product.

1.1 Why a Database System? 3

1TABlj o efTaB|2 0 2 1[TAB/1 ORET2[TABa m y[TAB2 0 2 O[TaB/2 O[RET3[TABm a x ...

Fig. 1.2 Implementing the STUDENT records in a text file

The following subsections examine the implications of these requirements. Each
requirement forces the database system to contain increasingly more features,
resulting in more complexity than you might have expected.

1.1.1 Record Storage

A common way to make a database persistent is to store its records in files. The
simplest and most straightforward approach is for a database system to store records
in text files, one file per record type; each record could be a line of text, with its
values separated by tabs. Figure 1.2 depicts the beginning of the text file for the
STUDENT records.

This approach has the advantage that a user could examine and modify the files
with a text editor. Unfortunately, the approach is too inefficient to be useful, for two
reasons.

The first reason is that large text files take too long to update. Suppose, for
example, that someone deletes Joe’s record from the STUDENT file. The database
system would have no choice but to rewrite the file beginning at Amy’s record,
moving each succeeding record to the left. Although the time required to rewrite a
small file is negligible, rewriting a 1 gigabyte file could easily take several minutes,
which is unacceptably long. A database system needs to be much more clever about
how it stores records, so that updates to the file require only small, local rewrites.

The second reason is that large text files take too long to read. Consider searching
the STUDENT file for the students in the class of 2019. The only way is to scan the file
sequentially. Sequential scanning can be very inefficient. You probably know several
in-memory data structures, such as trees and hash tables, which enable fast searching.
A database system needs to use analogous data structures to implement its files. For
example, a database system might organize the records in a file using a structure that
facilitates one particular type of search (e.g., on student name, graduation year or
major), or it might create multiple auxiliary files, each facilitating a different type of
search. These auxiliary files are called indexes and are the subject of Chap. 12.

1.1.2 Multi-user Access

When many users share a database, there is a good chance that they will be accessing
some of its data files concurrently. Concurrency is a good thing, because each user
can be served quickly without having to wait for the other users to finish. But too

https://doi.org/10.1007/978-3-030-33836-7_12

4 1 Database Systems

much concurrency is bad, because it can cause the database to become inaccurate.
For example, consider a travel-planning database. Suppose that two users try to
reserve a seat on a flight that has 40 seats remaining. If both users concurrently read
the same flight record, they both will see the 40 available seats. They both then
modify the record so that the flight now has 39 available seats. Oops. Two seats have
been reserved, but only one reservation has been recorded in the database.

A solution to this problem is to limit concurrency. The database system should
allow the first user to read the flight record and see the 40 available seats and then
block the second user until the first user finishes. When the second user resumes, it
will see 39 available seats and modify it to 38, as it should. In general, a database
system must be able to detect when a user is about to perform an action that conflicts
with an action of another user and then (and only then) block that user from
executing until the first user has finished.

Users also may need to undo database updates they have made. For example,
suppose that a user has searched the travel-planning database for a trip to Madrid and
found a date for which there is both an available flight and a hotel with a vacancy.
Now suppose that the user reserves the flight, but while the reservation process is
occurring, all of the hotels for that date fill up. In this case, the user may need to undo
the flight reservation and try for a different date.

An update that is undoable should not be visible to the other users of the database.
Otherwise, another user may see the update, think that the data is “real,” and make a
decision based on it. The database system must therefore provide users with the
ability to specify when their changes are permanent; the user is said to commit the
changes. Once a user commits, the changes become visible and cannot be undone.
Chapter 5 examines these issues.

1.1.3 Dealing with Catastrophe

Suppose that you are running a program that gives a pay raise to all professors, when
the database system unexpectedly crashes. After the system restarts, you realize that
some of the professors have a new salary, but others don’t. What should you do?
You can’t just rerun the program because that would give some professors a double
pay raise. Instead, you need the database system to recover gracefully from the crash,
undoing the updates of all programs that were running when the crash occurred. The
mechanism for doing so is interesting and nontrivial, and is examined in Chap. 5.

1.1.4 Memory Management

Databases need to be stored in persistent memory, such as disk drives or flash drives.
Flash drives are about 100 times faster than disk drives but are also significantly
more expensive. Typical access times are about 6 ms for disk and 60 ps for flash.
However, both of these times are orders of magnitude slower than main memory

https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5

1.1 Why a Database System? 5

(or RAM), which has access times of about 60 ns. That is, RAM is about 1000 times
faster than flash and 100,000 times faster than disk.

To see the effect of this performance difference and the consequent problems
faced by a database system, consider the following analogy. Suppose you crave a
chocolate chip cookie. There are three ways to get one: from your kitchen, at the
neighborhood grocery store, or via mail order. In this analogy, your kitchen corre-
sponds to RAM, the neighborhood store corresponds to a flash drive, and the mail
order company corresponds to a disk. Suppose that it takes 5 seconds to get the
cookie from your kitchen. Getting the cookie from the analogous store would require
5000 seconds, which is over an hour. This means going to the store, waiting in a very
long line, buying the cookie, and returning. And getting the cookie from the
analogous mail order company would require 500,000 seconds, which is over
5 days. That means ordering the cookie online and having it shipped using standard
delivery. From this point of view, flash and disk memory look terribly slow.

Wait! It gets worse. Database support for concurrency and reliability slows things
down even more. If someone else is using the data you want, then you may be forced
to wait until the data is released. In our analogy, this corresponds to arriving at the
grocery store and discovering that the cookies are sold out, forcing you to wait until
they are restocked.

In other words, a database system is faced with the following conundrum: It must
manage more data than main memory systems, using slower devices, with multiple
people fighting over access to the data, and make it completely recoverable, all the
while maintaining a reasonable response time.

A large part of the solution to this conundrum is to use caching. Whenever the
database system needs to process a record, it loads it into RAM and keeps it there for
as long as possible. Main memory will thus contain the portion of the database that is
currently in use. All reading and writing occur in RAM. This strategy has the
advantage that fast main memory is used instead of slow persistent memory but
has the disadvantage that the persistent version of the database can become out of
date. The database system needs to implement techniques for keeping the persistent
version of the database synchronized with the RAM version, even in the face of a
system crash (when the contents of RAM is destroyed). Chapter 4 considers various
caching strategies.

1.1.5 Usability

A database is not very useful if its users cannot easily extract the data they want. For
example, suppose that a user wants to know the names of all students who graduated
in 2019. In the absence of a database system, the user would be forced to write a
program to scan the student file. Figure 1.3 gives the Java code for such a program,
assuming that the file is stored as text. Note that most of the Java code deals with
decoding the file, reading each record and splitting it into an array of values to be
examined. The code to determine the desired student names (in bold) is hidden
within the uninteresting file-manipulation code.

https://doi.org/10.1007/978-3-030-33836-7_4

6 1 Database Systems

public static List<String> getStudents2019() {

List<String> result = new ArrayList<>();
FileReader rdr = new FileReader ("students.txt");
BufferedReader br = new BufferedReader (rdr);
String line = br.readLine();
while (line != null) {

String[] vals = line.split("\t");

String gradyear = vals[2];

if (gradyear.equals("2019"))

result.add(vals[1]);
line = br.readLine();

}

return result;

Fig. 1.3 Retrieving the name of students graduating in 2019

Consequently, most database systems support a query language, so that users can
easily specify their desired data. The standard query language for relational data-
bases is SQL. The code of Fig. 1.3 can be expressed by the single SQL statement:

select SName from STUDENT where GradYear = 2019

This SQL statement is much shorter and clearer than the Java program, primarily
because it specifies the values to be extracted from the file without having to specify
how to retrieve them.

1.2 The Derby Database System

Learning database concepts is much more effective if you can use a database system
to follow along interactively. Although there are a wide variety of available database
systems, I suggest that you use Derby database system because it is Java-based, free,
easy to install, and easy to use. The latest version of Derby can be downloaded from
the downloads tab at the URL db.apache.org/derby. The downloaded
distribution file unpacks to a folder containing several directories. For example,
the docs directory contains reference documentation, the demo directory contains a
sample database, and so on. The full system contains many more features than can be
covered here; the interested reader can peruse the various guides and manuals in the
docs directory.

Derby has many features that are not needed in this book. In fact, you only need to
add four files from Derby’s 1ib directory to your classpath: derby.jar,
derbynet.jar, derbyclient.jar, and derbytools.jar. There are
many ways to change your classpath, depending on your Java platform and operat-
ing system. I will explain how to do it using the Eclipse development platform. If
you are not familiar with Eclipse, you can download its code and documentation

http://db.apache.org/derby

1.2 The Derby Database System 7

from eclipse.org. If you use a different development platform, then you should
be able to adapt my Eclipse directions to fit your environment.

First, create an Eclipse project for Derby. Then configure its build path, as
follows. From the Properties window, select “Java Build Path.” Click on the
“Libraries” tab and then “Add External JARS,” and use the file chooser to select the
four jar files you need. That’s it.

The Derby distribution contains an application, called ij, which enables you to
create and access Derby databases. Because Derby is written completely in Java, 17
is actually the name of a Java class, located in the package org.apache.derby.
tools. You run ij by executing its class. To execute the class from Eclipse, go to
“Run Configurations” in the Run menu. Add a new configuration to your Derby
project; call it “Derby ij.” In the field for the configuration’s main class, enter “org.
apache.derby.tools.ij.” When you run the configuration, ij displays a console
window that asks for input.

Input to ij is a sequence of commands. A command is a string that ends with a
semicolon. Commands can be split over several lines of text; the 1j client will not
execute a command until it encounters a line ending in a semicolon. Any SQL
statement is a legal command. In addition, ij supports commands to connect and
disconnect from a database and to exit the session.

The connect command specifies the database that ij should connect to, and
the disconnect command disconnects from it. A given session can connect and
disconnect multiple times. The exit command ends the session. Figure 1.4 shows
an example 17 session. The session has two parts. In the first part, the user connects
to a new database, creates a table, inserts a record into that table, and disconnects. In
the second part, the user reconnects to that database, retrieves the inserted values,
and disconnects.

The argument to the connect command is called its connection string. The
connection string has three substrings, separated by colons. The first two substrings
are “jdbc” and “derby,” indicating that you want to connect to a Derby database
using the JDBC protocol. (JDBC is the topic of Chap. 2.) The third substring

ij> connect 'jdbc:derby:ijtest;create=true’;
ij> create table T(A int, B varchar(9));

0 rows inserted/updated/deleted

ij> insert into T(A,B) values (3, 'record3');
1 row inserted/updated/deleted

ij> disconnect;

ij> connect 'jdbc:derby:ijtest';

ij> select * from T;

3 | record3
1 row selected
ij> disconnect;

i3> exit;

Fig. 1.4 An example ij session

http://eclipse.org
https://doi.org/10.1007/978-3-030-33836-7_2

8 1 Database Systems

identifies the database. The string “ijtest” is the name of the database; its files will be
in a folder named “ijtest”, located in the directory from which the ij program was
launched. For example, if you ran the program from Eclipse, the database folder will
be in the project directory. The string “create = true” tells Derby to create a new
database; if it is omitted (as in the second connection command), then Derby expects
to find an existing database.

1.3 Database Engines

A database application such as 17 is comprised of two independent parts: the user
interface (or Ul), and the code to access the database. This latter code is called the
database engine. Separating the Ul from the database engine is good system design,
as it simplifies the development of the application. A well-known example of this
separation occurs in the Microsoft Access database system. It has a graphical UI that
allows a user to interact with the database by clicking the mouse and filling in values,
and an engine that handles the data storage. When the UI determines that it needs
information from the database, it constructs a request and sends it to the engine. The
engine then executes the request and sends values back to the UL

This separation also adds flexibility to the system: an application designer can use
the same user interface with different database engines or build different user
interfaces for the same database engine. Microsoft Access provides an example of
each case. A form built using the Access Ul can connect to the Access engine or any
other database engine. And the cells in an Excel spreadsheet can contain formulas
that query the Access engine.

A UI accesses a database by connecting to the desired engine and then calling
methods from the engine’s APIL. As an example, note that the Derby i7j program is
really just a UL Its connect command establishes a connection to the specified
database engine, and each SQL command sends the SQL statement to the engine,
retrieves the results, and displays them.

Database engines typically support multiple standard APIs. When a Java program
connects to an engine, the API of choice is called JDBC. Chapter 2 discusses JDBC
in detail and shows how to write an i j-like application using JDBC.

A connection from a Ul to a database engine can be embedded or server-based. In
an embedded connection, the code for the database engine runs in the same process
as the code for the UlI, which gives the UI exclusive access to the engine. An
application should use an embedded connection only when the database “belongs”
to that application and is stored on the same machine as the application. Other
applications need to use server-based connections.

In a server-based connection, the code for the database engine executes inside a
dedicated server program. This server program is always running, waiting for client
connections, and need not be on the same machine as its clients. After a client
establishes a connection with the server, the client sends JDBC requests to it and
receives responses.

https://doi.org/10.1007/978-3-030-33836-7_2

1.3 Database Engines 9

A server can be connected to multiple clients simultaneously. While the server is
processing one client’s request, other clients can be sending their own requests. The
server contains a scheduler, which queues up requests waiting for service and
determines when they get executed. Each client is unaware of the other clients and
(apart from delays due to scheduling) has the pleasant illusion that the server is
dealing with it exclusively.

The 17 session of Fig. 1.4 used an embedded connection. It created the database
“ijtest” on the machine that was running the session, and no server was involved. To
execute an analogous server-based ij session, two things must change: the Derby
engine must run as a server, and the connect command must be modified so that it
identifies the server.

The code for the Derby server is in the Java class NetworkServerControl,
in the package org.apache.derby.drda. To run the server from Eclipse, go to
“Run Configurations” in the Run menu. Add a new configuration to your Derby
project and call it “Derby Server.” In the field for the main class, enter “org.apache.
derby.drda.NetworkServerControl.” In the Arguments tab, enter the program argu-
ment “start -h localhost.” Each time you run the configuration, a console window
should appear indicating that the Derby server is running.

What is the purpose of the program argument “start -h localhost”? The first word
is the command “start,” which tells the class to start the server. You can stop the
server by executing the same class with the argument “shutdown” (or you can simply
terminate the process from the console window). The string “-h localhost” tells the
server to only accept requests from clients on the same machine. If you replace
“localhost” by a domain name or IP address, then the server will only accept requests
from that machine. Using the IP address “0.0.0.0” tells the server to accept requests
from anywhere.'

A connection string for a server-based connection must specify the network or IP
address of the server machine. In particular, consider the following ij connect
commands:

ij> connect 'jdbc:derby:ijtest’
ij> connect 'jdbc:derby://localhost/ijtest’
ij> connect 'jdbc:derby://cs.bc.edu/ijtest’

The first command establishes an embedded connection to the “ijtest” database.
The second command establishes a server-based connection to “ijtest” using the
server running on the machine “localhost,” that is, on the local machine. The third
command establishes a server-based connection to “ijtest” using the server running
on the machine “cs.bc.edu.”

Note how the connect string completely encapsulates the decision to use an
embedded or server-side connection. For example, consider again Fig. 1.4. You
can modify the session to use server-side connections instead of embedded ones by

'Of course, if you allow clients to connect from anywhere, then you expose the database to hackers
and other unscrupulous users. Typically, you would either place such a server inside of a firewall,
enable Derby’s authentication mechanism, or both.

10 1 Database Systems

simply changing the connect commands. The other commands in the session are
unaffected.

1.4 The SimpleDB Database System

Derby is a sophisticated, full-featured database system. This complexity, however,
means that its source code is not readily understandable or modifiable. I wrote the
SimpleDB database system to be the opposite of Derby—its code is small, easily
readable, and easily modifiable. It omits all unnecessary functionality, implements
only a tiny portion of SQL, and uses only the simplest (and often very impractical)
algorithms. Its purpose is to give you a clear look at each component of a database
engine and how these components interact.

The latest version of SimpleDB can be downloaded from its website at the URL
cs.bc.edu/~sciore/simpledb. The downloaded file unpacks to the folder
SimpleDB_3.x; this folder contains directories simpledb, simpleclient,
and derbyclient. The simpledb folder contains code for the database engine.
Unlike Derby, this code is not packed into a jar file; instead, every file is explicit
within the folder.

To install the SimpleDB engine, you must add the simpledb folder to your
classpath. To do so using Eclipse, first, create a new project; call it “SimpleDB
Engine.” Then from the operating system, copy the subfolder of your
SimpleDB_3.x folder named “simpledb” to the src folder of the project. Finally,
refresh the project from Eclipse, using the refresh command in the File menu.

The derbyclient folder contains example programs that call the Derby
engine. Use the operating system to copy the contents of this folder (not the folder
itself) to the src folder of your Derby project, and refresh it. These client programs
will be discussed in Chap. 2.

The simpleclient folder contains example programs that call the SimpleDB
engine. You should create a new project for them; call it “SimpleDB Clients.” To
ensure that the example programs can find the SimpleDB engine code, you should
add the SimpleDB Engine project to the build path of SimpleDB Clients.
Then use the operating system to copy the contents of simpleclient into the
src directory of SimpleDB Clients.

SimpleDB supports both embedded and server-based connections. One of the
programs in the simpleclient folder is SimpleIJd, which is a simplified
version of the Derby ij program. One difference from 17 is that you can only
connect once, at the beginning of the session. When you execute the program, it asks
you for a connection string. The syntax of the connection string is similar to that in
ij. For example, consider the following SimpleDB connection strings:

jdbc:simpledb:testi]j
jdbc:simpledb://localhost
jdbc:simpledb://cs.bc.edu

http://www.cs.bc.edu/~sciore/simpledb
https://doi.org/10.1007/978-3-030-33836-7_2

1.5 The SimpleDB Version of SQL 11

The first connection string specifies an embedded connection to the “testij”
database. Like Derby, the database will be located in the directory of the executing
program, which is the SimpleDB Clients project. Unlike Derby, SimpleDB will
create the database if it does not exist, so there is no need for an explicit
“create = true” flag.

The second and third connection strings specify a server-based connection to a
SimpleDB server running on the local machine or on c¢s.bc.edu. Unlike Derby,
the connection string does not specify a database. The reason is that the SimpleDB
engine can handle only one database at a time, which is specified when the server is
started.

SimpleId repeatedly prints a prompt asking you to enter a single line of text
containing an SQL statement. Unlike Derby, the line must contain the entire
statement, and no semicolon is needed at the end. The program then executes that
statement. If the statement is a query, then the output table is displayed. If the
statement is an update command, then the number of affected records is printed. If
the statement is ill-formed, then an error message will be printed. SimpleDB
understands a very limited subset of SQL, and SimpleIJ will throw an exception
if given an SQL statement that the engine does not understand. These limitations are
described in the next section.

The SimpleDB engine can be run as a server. The main class is StartServer in the
package simpledb.server. To run the server from Eclipse, go to “Run Configura-
tions” in the Run menu. Add a new configuration to your SimpleDB Engine
project called “SimpleDB Server.” In the field for the main class, enter “simpledb.
server.StartServer.” Use the Arguments tab to enter the name of the desired database.
For convenience, the server will use the database named “studentdb” if you omit the
argument. When you run the configuration, a console window should appear indi-
cating that the SimpleDB server is running.

The SimpleDB server accepts client connections from anywhere, corresponding
to Derby’s “-h 0.0.0.0” command-line option. The only way to shut down the server
is to kill its process from the console window.

1.5 The SimpleDB Version of SQL

Derby implements nearly all of standard SQL. SimpleDB, on the other hand,
implements only a tiny subset of standard SQL and imposes restrictions not present
in the SQL standard. This section briefly indicates these restrictions. Other chapters
of the book explain them in more detail, and many end-of-chapter exercises will ask
you to implement some of the omitted features.

A query in SimpleDB consists only of select-from-where clauses in which the
select clause contains a list of field names (without the AS keyword), and the
from clause contains a list of table names (without range variables).

The terms in the optional where clause can be connected only by the boolean
operator and. Terms can only compare constants and fieldnames for equality.

12 1 Database Systems

Unlike standard SQL, there are no other comparison operators, no other boolean
operators, no arithmetic operators or built-in functions, and no parentheses. Conse-
quently, nested queries, aggregation, and computed values are not supported.

Because there are no range variables and no renaming, all field names in a query
must be disjoint. And because there are no group by or order by clauses,
grouping and sorting are not supported. Other restrictions are:

e The “x” abbreviation in the select clause is not supported.

* There are no null values.

¢ There are no explicit joins or outer joins in the £rom clause.

e The union keyword is not supported.

* An insert statement takes explicit values only. That is, an insertion cannot be
specified by a query.

* An update statement can have only one assignment in the set clause.

1.6 Chapter Summary

* A database is a collection of data stored on a computer. The data in a database is
typically organized into records. A database system is software that manages the
records in a database.

* A database system must be able to handle large shared databases, storing its data
on slow persistent memory. It must provide a high-level interface to its data and
ensure data accuracy in the face of conflicting user updates and system crashes.
Database systems meet these requirements by having the following features:

— The ability to store records in a file, using a format that can be accessed more
efficiently than the file system typically allows

— Complex algorithms for indexing data in files, to support fast access

— The ability to handle concurrent accesses from multiple users over a network,
blocking users when necessary

— Support for committing and rolling back changes

— The ability to cache database records in main memory and to manage the
synchronization between the persistent and main-memory versions of the
database, restoring the database to a reasonable state if the system crashes

— A language compiler/interpreter, for translating user queries on tables to
executable code on files

— Query optimization strategies, for transforming inefficient queries into more
efficient ones

* The database engine is the component of the database system that maintains the
data. A database application is responsible for user input and output; it calls the
database engine to obtain the data it needs.

* A connection to the database engine can be either embedded or server-based. A
program having an embedded connection has exclusive access to the database

1.8 Exercises 13

engine. A program having a server-based connection shares the engine with other
concurrent programs.

e Two Java-based database systems are Derby and SimpleDB. Derby implements
the full SQL standard, whereas SimpleDB implements only a limited subset of
SQL. SimpleDB is useful because its code is easy to understand. The rest of this
book starting in Chap. 3 will examine this code in detail.

1.7 Suggested Reading

Database systems have undergone dramatic changes over the years. A good account
of these changes can be found in Chap. 6 of National Research Council (1999) and in
Haigh (2006). The Wikipedia entry at en.wikipedia.org/wiki/Data
base management system#History is also interesting.

The client-server paradigm is useful in numerous areas of computing, not just
databases. A general overview of the field can be found in Orfali et al. (1999).
Documentation on the various features and configuration options of the Derby server
can be found at the URL db . apache.org/derby/manuals/index.html.

Haigh, T. (2006). “A veritable bucket of facts”. Origins of the data base management
system. ACM SIGMOD Record, 35(2), 33-49.

National Research Council Committee on Innovations in Computing and Commu-
nications. (1999). Funding a revolution. National Academy Press. Available from
www.nap.edu/read/6323/chapter/8#159

Orfali, R., Harkey, D., & Edwards, J. (1999). Client/server survival guide (3rd ed.).
Wiley.

1.8 Exercises

Conceptual Exercises

1.1. Suppose that an organization needs to manage a relatively small number of
shared records (say, 100 or so).

(a) Would it make sense to use a commercial database system to manage these
records?

(b) What features of a database system would not be required?

(c) Would it be reasonable to use a spreadsheet to store these records? What are
the potential problems?

1.2. Suppose you want to store a large amount of personal data in a database. What
features of a database system wouldn’t you need?

1.3. Consider some data that you typically manage without a database system (such
as a shopping list, address book, checking account info, etc.).

https://doi.org/10.1007/978-3-030-33836-7_3
http://en.wikipedia.org/wiki/Database_management_system#History
http://en.wikipedia.org/wiki/Database_management_system#History
http://db.apache.org/derby/manuals/index.html
http://www.nap.edu/read/6323/chapter/8#159

14 1 Database Systems

(a) How large would the data have to get before you would break down and
store it in a database system?

(b) What changes to how you use the data would make it worthwhile to use a
database system?

1.4. If you know how to use a version control system (such as Git or Subversion),
compare its features to those of a database system.

(a) Does a version control system have a concept of a record?

(b) How does check-in/checkout correspond to database concurrency control?

(c) How does a user perform a commit? How does a user undo uncommitted
changes?

(d) Many version control systems save updates in difference files, which are
small files that describe how to transform the previous version of the file
into the new one. If a user needs to see the current version of the file, the
system starts with the original file and applies all of the difference files to
it. How well does this implementation strategy satisfy the needs of a
database system?

Project-Based Exercises

1.5. Investigate whether your school administration or company uses a database
system. If so:

(a) What employees explicitly use the database system in their job?
(As opposed to those employees who run “canned” programs that use the
database without their knowledge.) What do they use it for?

(b) When a user needs to do something new with the data, does the user write
his own query, or does someone else do it?

1.6. Install and run the Derby and SimpleDB servers.

(a) Run the 1j and SimpleIJ programs from the server machine.
(b) If you have access to a second machine, modify the demo clients and run
them remotely from that machine as well.

Chapter 2 ®)
JDBC e

A database application interacts with a database engine by calling the methods of its
API. The API used by Java applications is called JDBC (for Java DataBase Con-
nectivity). The JDBC library consists of five Java packages, most of which implement
advanced features useful only in large commercial applications. This chapter is
interested in the core JDBC functionality found in the package java.sqgl. This
core functionality can be divided into two parts: basic JDBC, which contains the
classes and methods required for rudimentary usage, and advanced JDBC, which
contains optional features that provide added convenience and flexibility.

2.1 Basic JDBC

The basic functionality of JDBC is embodied in five interfaces: Driver, Con-
nection, Statement, ResultSet, and ResultSetMetadata. Moreover,
only a very few methods of these interfaces are essential. Figure 2.1 lists these
methods.

The example programs of this section illustrate the use of these methods. The first
example program is CreateTestDB, which illustrates how a program connects to
and disconnects from a Derby engine. Its code appears in Fig. 2.2, with the JDBC-
related code highlighted in bold. The following subsections examine this code in
detail.

2.1.1 Connecting to a Database Engine

Each database engine will have its own (and possibly proprietary) mechanism for
making connections with clients. Clients, on the other hand, want to be as server
independent as possible. That is, a client doesn’t want to know the nitty-gritty details

© Springer Nature Switzerland AG 2020 15
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_2

16 2 JDBC

Driver
public Connection connect (String url, Properties prop)
throws SQLException;

Connection

public Statement createStatement () throws SQLException;

public void close () throws SQLException;

Statement

public ResultSet executeQuery (String gry) throws SQLException;
public int executeUpdate (String cmd) throws SQLException;
public void close () throws SQLException;
ResultSet

public boolean next () throws SQLException;
public int getInt () throws SQLException;
public String getString () throws SQLException;
public void close () throws SQLException;

public ResultSetMetaData getMetaData () throws SQLException;

ResultSetMetaData

public int getColumnCount () throws SQLException;
public String getColumnName (int column) throws SQLException;
public int getColumnType (int column) throws SQLException;

public int getColumnDisplaySize (int column) throws SQLException;

Fig. 2.1 The APIs for basic JDBC

import java.sql.Driver;
import java.sql.Connection;
import org.apache.derby.jdbc.ClientDriver;

public class CreateTestDB {
public static void main(String[] args) {

String url = "jdbc:derby://localhost/testdb;create=true";
Driver d = new ClientDriver():;
try {

Connection conn = d.connect(url, null);
System.out.println ("Database Created");
conn.close();

}
catch (SQLException e) {
e.printStackTrace () ;

}

Fig. 2.2 The JDBC code for the CreateTestDB client

2.1 Basic JDBC 17

of how to connect to an engine; it simply wants the engine to provide a class for the
client to call. Such a class is called a driver.

JDBC driver classes implement the interface Driver. Derby and SimpleDB
each have two driver classes: one for server-based connections and one for embed-
ded connections. A server-based connection to the Derby engine uses the class
ClientDriver, whereas an embedded connection uses EmbeddedDriver;
both classes are in package org.apache.derby.jdbc. A server-based connec-
tion to the SimpleDB engine uses the class NetworkDriver (in package
simpledb.jdbc.network), whereas an embedded connection uses
EmbeddedDriver (in package simpledb. jdbc.embedded).

A client connects to a database engine by calling a Driver object’s connect
method. For example, the following three lines of Fig. 2.2 make a server-based
connection to a Derby database:

String url = "jdbc:derby://localhost/testdb;create=true";
Driver d = new ClientDriver () ;
Connection conn = d.connect (url, null) ;

The connect method takes two arguments. The first argument to the method is
a URL that identifies the driver, the server (for server-based connections), and the
database. This URL is called the connection string and has the same syntax as the 17
(or SimpleIdJ) server-based connection strings of Chap. 1. The connection string
in Fig. 2.2 consists of four parts:

* The substring “jdbc:derby:” describes the protocol used by the client. Here, the
protocol says that this client is a Derby client that speaks JDBC.

* The substring “//localhost” describes the machine where the server is located.
Instead of localhost, you could substitute any domain name or IP address.

e The substring “/testdb” describes the path to the database on the server. For a
Derby server, the path begins at the current directory of the user that started the
server. The end of the path (here, “testdb”) is the directory where all data files for
this database will be stored.

* The remainder of the connection string consists of property values to be sent to
the engine. Here, the substring is “;create = true”, which tells the engine to create
anew database. In general, several property values can be sent to a Derby engine.
For example, if the engine requires user authentication, then values for the
properties username and password would also be specified. The connection
string for the user “einstein” might look like this:

"jdbc:derby://localhost/testdb;create=true;user=einstein;
password=emc2"

The second argument to connect is an object of type Properties. This
object provides another way to pass property values to the engine. In Fig. 2.2, the
value of this argument is null because all properties are specified in the connection
string. Alternatively, you could have put the property specification into the second
argument, as follows:

https://doi.org/10.1007/978-3-030-33836-7_1

18 2 JDBC

Stringurl = "jdbc:derby://localhost/testdb";
Properties prop = new Properties() ;

prop.put ("create", "true") ;
prop.put ("username", "einstein") ;
prop.put ("password", "emc2") ;

Driver d = new ClientDriver () ;
Connection conn = d.connect (url, prop) ;

Each database engine has its own connection string syntax. A server-based
connection string for SimpleDB differs from Derby in that it contains only a protocol
and machine name. (It doesn’t make sense for the string to contain the name of the
database, because the database is specified when the SimpleDB server is started. And
the connection string doesn’t specify properties because the SimpleDB server
doesn’t support any.) For example, the following three lines of code make a
connection to a SimpleDB server:

String url = "jdbc:simpledb://localhost";
Driver d = new NetworkDriver () ;
conn = d.connect (url, null) ;

Although the driver class and connection string syntax are vendor-specific, the
rest of a JDBC program is completely vendor-neutral. For example, consider the
variables d and conn in Fig. 2.2. Their corresponding JDBC types, Driver and
Connection, are interfaces. You can tell from the code that variable d is assigned
to a ClientDriver object. However, conn is assigned to the Connection
object returned by the method connect, and there is no way to know its actual
class. This situation is true for all JDBC programs. Apart from the name of the driver
class and its connection string, a JDBC program only knows about and cares about
the vendor-neutral JDBC interfaces. Consequently, a basic JDBC client will import
from two packages:

* The built-in package java.sql, to obtain the vendor-neutral JDBC interface
definitions
* The vendor-supplied package that contains the driver class

2.1.2 Disconnecting from a Database Engine

During the time that a client is connected to a database engine, the engine may
allocate resources for the client’s use. For example, a client may request locks from
its server that keep other clients from accessing portions of the database. Even the
ability to connect to an engine can be a resource. A company may have a site license
with a commercial database system that restricts the number of simultaneous con-
nections, which means that holding a connection could deprive another client from
connecting. Because connections hold valuable resources, clients are expected to
disconnect from the engine as soon as the database is no longer needed. A client

2.1 Basic JDBC 19

program disconnects from its engine by calling the c1lose method of its Connec-
tion object. This call to close can be seen in Fig. 2.2.

2.1.3 SQOL Exceptions

The interaction between a client and database engine can generate exceptions for
many reasons. Examples are as follows:

* The client asks the engine to execute a badly formed SQL statement or an SQL
query that accesses a nonexistent table or that compares two incompatible values.

» The engine aborts the client because of a deadlock between it and a concurrent
client.

¢ There is a bug in the engine code.

» The client cannot access the engine (for a server-based connection). Perhaps the
host name is wrong, or the host has become unreachable.

Different database engines have their own internal way of dealing with these
exceptions. SimpleDB, for example, throws a RemoteException on a network
problem, a BadSyntaxException on an SQL statement problem, a
BufferAbortException or LockAbortException on a deadlock, and a
generic Runt imeException on a server problem.

In order to make exception handling vendor independent, JDBC provides its own
exception class, called SQLException. When a database engine encounters an
internal exception, it wraps it in an SQL exception and sends it to the client program.

The message string associated with an SQL exception identifies the internal
exception that caused it. Each database engine is free to provide its own messages.
Derby, for example, has nearly 900 error messages, whereas SimpleDB lumps all of
the possible problems into six messages: “network problem,” “illegal SQL state-
ment,” “server error,” “operation not supported,” and two forms of “transaction
abort.”

Most JDBC methods (and all of the methods in Fig. 2.1) throw an SQL exception.
SQL exceptions are checked, which means that clients must explicitly deal with them
either by catching them or throwing them onward. The two JDBC methods in
Fig. 2.2 are performed inside a try block; if either causes an exception, the code
prints a stack trace and returns.

Note that the code of Fig. 2.2 has a problem, namely, that its connection is not
closed when an exception is thrown. This is an example of a resource leak—the
engine cannot easily reclaim the connection’s resources after the client dies. One
way to fix the problem is to close the connection within the catch block. However,
the close method needs to be called from within a try block, which means the
catch block of Fig. 2.2 really ought to look like this:

20 2 JDBC

catch (SQLException e) {
e.printStackTrace () ;

try {
conn.close() ;

}

catch (SQLException ex) {}

}

This is starting to look ugly. Moreover, what should the client do if the close
method throws an exception? The above code ignores it, but that doesn’t seem quite
right.

A better solution is to let Java close the connection automatically, via its try-with-
resources syntax. To use it, you create the Connection object within parentheses
after the try keyword. When the t ry block ends (either normally or via exception),
Java will implicitly call the object’s close method. The improved try block for
Fig. 2.2 looks like this:

try (Connection conn = d.connect (url, null)) {
System.out .println("Database Created") ;

}

catch (SQLExceptione) {
e.printStackTrace () ;

}

This code handles all exceptions properly, without losing the simplicity of
Fig. 2.2.

2.1.4 Executing SQL Statements

A connection can be thought of as a “session” with the database engine, during
which the engine executes SQL statements for the client. JDBC supports this idea as
follows.

A Connection object has the method createStatement, which returns a
Statement object. The Statement object has two ways to execute SQL state-
ments: the methods executeQuery and executeUpdate. It also has the
method close, for deallocating resources held by the object.

Figure 2.3 shows a client program that calls executeUpdate to modify the
MajorId value of Amy’s STUDENT record. The argument to the method is a
string denoting the SQL update statement; the method returns the number of records
that were updated.

The Statement object, like the Connection object, needs to be closed. The
easiest solution is to autoclose both objects in the try block.

The specification of the SQL command illustrates an interesting point. Since the
command is stored as a Java string, it is encased in double quotes. On the other hand,
strings in SQL use single quotes. This distinction makes your life easy, because you

2.1 Basic JDBC 21

public class ChangeMajor {
public static void main(String[] args) {
String url = "jdbc:derby://localhost/studentdb";
String cmd = "update STUDENT set MajorId=30 where SName='amy'";

Driver d = new ClientDriver();
try (Connection conn = d.connect (url, null);
Statement stmt = conn.createStatement()) {
int howmany = stmt.executeUpdate (cmd) ;
System.out.println (howmany + " records changed.");
}
catch (SQLException e) {
e.printStackTrace () ;

}

}

Fig. 2.3 JDBC code for the ChangeMajor client

don’t have to worry about a quote character having two different meanings—SQL
strings use single quotes, and Java strings use double quotes.

The ChangeMajor code assumes that a database named “studentdb” exists. The
SimpleDB distribution contains the class CreateStudentDB, which creates the
database and populates it with the tables of Fig. 1.1. It should be the first program
called when using the university database. Its code appears in Fig. 2.4. The code
executes SQL statements to create five tables and insert records into them. For
brevity, only the code for STUDENT is shown.

2.1.5 Result Sets

A statement’s executeQuery method executes an SQL query. The argument to
this method is a string denoting an SQL query, and it returns an object of type
ResultSet. A ResultSet object represents the query’s output records. The
client can search through the result set to examine these records.

For an example program that illustrates the use of result sets, consider the class
StudentMajor shown in Fig. 2.5. Its call to executeQuery returns a result set
containing the name and major of each student. The subsequent while loop prints
each record in the result set.

Once a client obtains a result set, it iterates through the output records by calling
the method next. This method moves to the next record, returning true if the
move is successful and false if there are no more records. Typically, a client uses a
loop to move through all the records, processing each one in turn.

A new ResultSet object is always positioned before the first record, and so
you need to call next before you can look at the first record. Because of this
requirement, the typical way to loop through the records looks like this:

https://doi.org/10.1007/978-3-030-33836-7_1

22

public class CreateStudentDB ({
public static void main(String[] args) {

2 JDBC

String url = "jdbc:derby://localhost/studentdb;create=true";

Driver d = new ClientDriver() ;
try (Connection conn = d.connect(url, null);
Statement stmt = conn.createStatement()) ({

String s = "create table STUDENT (SId int,

SName varchar (10), MajorId int, GradYear int)";

stmt.executeUpdate (s) ;
System.out.println ("Table STUDENT created.");

s = "insert into STUDENT (SId, SName,

MajorId, GradYear) values

String[] studvals = {" (1, 'joe', 10, 2021)",
(2, 'amy', 20, 2020)
(3, 'max', 10, 2022)
(4, 'sue', 20, 2022)

"(5, 'bob', 30, 2020)",
(6)
(7)
(8)

"(6, 'kim', 20, 2020
, 'art', 30, 2021
, 'pat', 20, 2019
"(9, 'lee', 10, 2021)"};
for (int i=0; i<studvals.length; i++)
stmt.executeUpdate (s + studvals[i]);

"
’

System.out.println ("STUDENT records inserted.");

}
catch (SQLException e) {
e.printStackTrace();

}

Fig. 2.4 JDBC code for the CreateStudentDB client

String gry = "select ...";
ResultSet rs = stmt.executeQuery (qry) ;
while (rs.next ()) {

... // process the record

}

An example of such a loop appears in Fig. 2.5. During the nth pass through this
loop, variable rs will be positioned at the nth record of the result set. The loop will

end when there are no more records to process.

When processing a record, a client uses the methods get Int and getString
to retrieve the values of its fields. Each of the methods takes a field name as argument
and returns the value of that field. In Fig. 2.5, the code retrieves and prints the values

of fields SName and DName for each record.

2.1 Basic JDBC 23

public class StudentMajor {
public static void main(String[] args) {
String url = "jdbc:derby://localhost/studentdb";
String qry = "select SName, DName from DEPT, STUDENT "
+ "where MajorId = DId";

Driver d = new ClientDriver();
try (Connection conn = d.connect(url, null);
Statement stmt = conn.createStatement () ;
ResultSet rs = stmt.executeQuery(qry)) {
System.out.println ("Name\tMajor") ;
while (rs.next()) {
String sname = rs.getString("SName");
String dname = rs.getString("DName");
System.out.println (sname + "\t" + dname);

}
catch (SQLException e) {
e.printStackTrace () ;

}

}

Fig. 2.5 JDBC code for the StudentMajor client

Result sets tie up valuable resources on the engine. The method close releases
these resources and makes them available for other clients. A client should therefore
strive to be a “good citizen” and close result sets as soon as possible. One option is to
call close explicitly, typically at the end of the above while-loop. Another option,
used in Fig. 2.5, is to use the Java autoclose mechanism.

2.1.6 Using Query Metadata

The schema of a result set is defined to be the name, type, and display size of
each field. This information is made available through the interface
ResultSetMetaData.

When a client executes a query, it usually knows the schema of the output table.
For example, hardcoded into the StudentMajor client is the knowledge that its
result set contains the two string fields SName and DName.

However, suppose that a client program allows users to submit queries as input.
The program can call the method getMetaData on the query’s result set, which
returns an object of type ResultSetMetaData. It can then call the methods of
this object to determine the output table’s schema. For example, the code in Fig. 2.6
uses ResultSetMetaData to print the schema of an argument result set.

24 2 JDBC

void printSchema (ResultSet rs) throws SQLException {
ResultSetMetaData md = rs.getMetaData();
for(int i=1; i<=md.getColumnCount(); i++) {
String name = md.getColumnName (i);
int size md.getColumnDisplaySize (i) ;
int typecode = md.getColumnType (i)’
String type;

if (typecode == Types.INTEGER)
type = "int";

else if (typecode == Types.VARCHAR)
type = "string";

else
type = "other";

System.out.println(name + "\t" + type + "\t" + size);

}

Fig. 2.6 Using ResultSetMetaData to print the schema of a result set

This code illustrates the typical use of a ResultSetMetaData object. It first
calls the method get ColumnCount to return the number of fields in the result set;
it then calls the methods getColumnName, getColumnType, and
getColumnDisplaySize to determine the name, type, and size of the field at
each column. Note that column numbers start at 1, not 0 as you might expect.

The method getColumnType returns an integer that encodes the field type.
These codes are defined as constants in the JDBC class Types. This class contains
codes for 30 different types, which should give you an idea of how extensive the
SQL language is. The actual values for these types are not important, because a
JDBC program should always refer to the codes by name, not value.

A good example of a client that requires metadata knowledge is a command
interpreter. The program SimpleIJ from Chap. 1 is such a program; its code
appears in Fig. 2.7. As this is your first example of a nontrivial JDBC client, you
should examine its code closely.

The main method begins by reading a connection string from the user and using it
to determine the proper driver to use. The code looks for the characters “//” in the
connection string. If those characters appear, then the string must be specifying a
server-based connection, and otherwise an embedded connection. The method then
establishes the connection by passing the connection string into the appropriate
driver’s connect method.

The main method processes one line of text during each iteration of its while
loop. If the text is an SQL statement, the method doQuery or doUpdate is called,
as appropriate. The user can exit the loop by entering “exit,” at which point the
program exits.

https://doi.org/10.1007/978-3-030-33836-7_1

2.1 Basic JDBC

public class SimpleIJ {
public static void main(String[] args) {
Scanner sc = new Scanner (System.in);
System.out.println ("Connect> ");
String s = sc.nextLine();
Driver d = (s.contains("//")) ? new NetworkDriver ()
new EmbeddedDriver () ;

try (Connection conn = d.connect(s, null);
Statement stmt = conn.createStatement()) {
System.out.print ("\nSQL> ");

while (sc.hasNextLine()) {
// process one line of input
String cmd = sc.nextLine () .trim();
if (cmd.startsWith ("exit"))
break;

else if (cmd.startsWith("select")
doQuery (stmt, cmd);
else
doUpdate (stmt, cmd);
System.out.print ("\nSQL> ") ;

}

catch (SQLException e) {
e.printStackTrace () ;

}

sc.close();

private static void doQuery (Statement stmt, String cmd)
try (ResultSet rs = stmt.executeQuery(cmd)) {
ResultSetMetaData md = rs.getMetaData();
int numcols = md.getColumnCount();
int totalwidth = 0;

// print header

for (int i=1; i<=numcols; i++) {
String fldname = md.getColumnName (i) ;
int width = md.getColumnDisplaySize(i);
totalwidth += width;
String fmt = "%" + width + "s"
System.out.format (fmt, fldname);

Fig. 2.7 The JDBC code for the SimpleIJ client

25

26 2 JDBC

System.out.println () ;

for (int 1i=0; i<totalwidth; i++)
System.out.print ("-");

System.out.println();

// print records
while (rs.next()) {
for (int i=1; i<=numcols; i++) {
String fldname = md.getColumnName (i) ;
int fldtype = md.getColumnType (i)
String fmt = "%" + md.getColumnDisplaySize (i)’
if (fldtype == Types.INTEGER) {
int ival = rs.getInt(fldname);
System.out.format (fmt + "d", ival);
}

else {
String sval = rs.getString(fldname);
System.out.format (fmt + "s", sval);

}
System.out.println();

}

catch (SQLException e) {
System.out.println ("SQL Exception: " + e.getMessage());

private static void doUpdate(Statement stmt, String cmd) {

try {
int howmany = stmt.executeUpdate (cmd);
System.out.println (howmany + " records processed");

}
catch (SQLException e) {
System.out.println("SQL Exception: " + e.getMessage());

}
Fig. 2.7 (continued)

The method doQuery executes the query and obtains the result set and metadata
of the output table. Most of the method is concerned with determining proper
spacing for the values. The calls to getColumnDisplaySize return the space
requirements for each field; the code uses these numbers to construct a format
string that will allow the field values to line up properly. The complexity of this
code illustrates the maxim “the devil is in the details.” That is, the conceptually
difficult tasks are easily coded, thanks to the ResultSet and
ResultSetMetaData methods, whereas the trivial task of lining up the data
takes most of the coding effort.

2.2 Advanced JDBC 27

The methods doQuery and doUpdate trap exceptions by printing an error
message and returning. This error-handling strategy allows the main loop to continue
to accept statements until the user enters the “exit” command.

2.2 Advanced JDBC

Basic JDBC is relatively simple to use, but it provides a fairly limited set of ways to
interact with the database engine. This section considers some additional features of
JDBC that give the client more control over how the database is accessed.

2.2.1 Hiding the Driver

In basic JDBC, a client connects to a database engine by obtaining an instance of a
Driver object and calling its connect method. A problem with this strategy is
that it places vendor-specific code into the client program. JDBC contains two
vendor-neutral classes for keeping driver information out of client programs:
DriverManager and DataSource. Let’s consider each in turn.

Using DriverManager

The class DriverManager holds a collection of drivers. It contains static methods
to add a driver to the collection and to search the collection for a driver that can
handle a given connection string. Two of these methods appear in Fig. 2.8.

The idea is that a client repeatedly calls registerDriver to register the driver
for each database that it might use. When the client wants to connect to a database, it
only needs to call the getConnection method and provide it with a connection
string. The driver manager tries the connection string on each driver in its collection
until one of them returns a non-null connection.

For example, consider the code of Fig. 2.9. The first two lines register the server-
based Derby and SimpleDB drivers with the driver manager. The last two lines
establish a connection to the Derby server. The client does not need to specify the
driver when it calls get Connection; it only specifies the connection string. The
driver manager determines which of its registered drivers to use.

static public void registerDriver (Driver driver)
throws SQLException;

static public Connection getConnection (String url, Properties p)
throws SQLException;

Fig. 2.8 Two methods of the DriverManager class

28 2 JDBC

DriverManager.registerDriver (new ClientDriver());
DriverManager.registerDriver (new NetworkDriver());
String url = "jdbc:derby://localhost/studentdb";
Connection c¢ = DriverManager.getConnection (url);

Fig. 2.9 Connecting to a Derby server using DriverManager

The use of DriverManager in Fig. 2.9 is not especially satisfying, because the
driver information hasn’t been hidden—it is right there in the calls to
registerDriver. JDBC resolves this issue by allowing the drivers to be spec-
ified in the Java system-properties file. For example, the Derby and SimpleDB
drivers can be registered by adding the following line to the file:

jdbc.driverss=
org.apache.derby.jdbc.ClientDriver:simpledb.remote.NetworkDriver

Placing the driver information in the properties file is an elegant way to remove
driver specifications from client code. By changing this one file, you can revise the
driver information used by all JDBC clients without having to recompile any code.

Using DataSource

Although the driver manager can hide the drivers from the JDBC clients, it cannot
hide the connection string. In particular, the connection string in the above example
contains “jdbc:derby,” so it is evident which driver is intended. A more recent
addition to JDBC is the interface DataSource in the package javax.sqgl.
This is currently the preferred strategy for managing drivers.

A DataSource object encapsulates both the driver and the connection
string, thereby enabling a client to connect to an engine without knowing any
connection details. To create data sources in Derby, you need the Derby-supplied
classes ClientDataSource (for server-based connections) and
EmbeddedDataSource (for embedded connections), both of which implement
DataSource. The client code might look like this:

ClientDataSource ds = new ClientDataSource () ;
ds.setServerName ("localhost") ;
ds.setDatabaseName ("studentdb") ;
Connection conn = ds.getConnection() ;

Each database vendor supplies its own classes that implement DataSource.
Since these classes are vendor-specific, they can encapsulate the details of its driver,
such as the driver name and the syntax of the connection string. A program that uses
them only needs to specify the requisite values.

The nice thing about using a data source is that the client no longer needs to know
the name of the driver or the syntax of the connection string. Nevertheless, the class
is still vendor-specific, and so client code is still not completely vendor independent.
This problem can be addressed in various ways.

One solution is for the database administrator to save the DataSource object in
a file. The DBA can create the object and use Java serialization to write it to the file.
A client can then obtain the data source by reading the file and de-serializing it back

2.2 Advanced JDBC 29

to aDataSource object. This solution is similar to using a properties file. Once the
DataSource object is saved in the file, it can be used by any JDBC client. And the
DBA can make changes to the data source by simply replacing the contents of
that file.

A second solution is to use a name server (such as a JNDI server) instead of a file.
The DBA places the DataSource object on the name server, and clients then
request the data source from the server. Given that name servers are a common part
of many computing environments, this solution is often easy to implement, although
the details are beyond the scope of this book.

2.2.2 Explicit Transaction Handling

Each JDBC client runs as a series of transactions. Conceptually, a transaction is a
“unit of work,” meaning that all its database interactions are treated as a unit. For
example, if one update in a transaction fails, the engine will ensure that all updates
made by that transaction will fail.

A transaction commits when its current unit of work has completed successfully.
The database engine implements a commit by making all modifications permanent
and releasing any resources (e.g., locks) that were assigned to that transaction. Once
the commit is complete, the engine starts a new transaction.

A transaction rolls back when it cannot commit. The database engine implements
a rollback by undoing all changes made by that transaction, releasing locks, and
starting a new transaction. A transaction that has committed or rolled back is said to
have completed.

Transactions are implicit in basic JDBC. The database engine chooses the
boundaries of each transaction, deciding when a transaction should be committed
and whether it should be rolled back. This situation is called autocommit.

During autocommit, the engine executes each SQL statement in its own transac-
tion. The engine commits the transaction if the statement successfully completes and
rolls back the transaction otherwise. An update command completes as soon as the
executeUpdate method has finished, and a query completes when the query’s
result set is closed.

A transaction accrues locks, which are not released until the transaction has
committed or rolled back. Because these locks can cause other transactions to
wait, shorter transactions enable more concurrency. This principle implies that
clients running in autocommit mode should close their result sets as soon as possible.

Autocommit is a reasonable default mode for JDBC clients. Having one transac-
tion per SQL statement leads to short transactions and often is the right thing to
do. However, there are circumstances when a transaction ought to consist of several
SQL statements.

One situation where autocommit is undesirable is when a client needs to have two
statements active at the same time. For example, consider the code fragment of
Fig. 2.10. This code first executes a query that retrieves all courses. It then loops

30 2 JDBC

DataSource ds =
Connection conn = ds.getConnection();
Statement stmtl = conn.createStatement();
Statement stmt2 = conn.createStatement () ;
ResultSet rs = stmtl.executeQuery("select * from COURSE");
while (rs.next()) {
String title = rs.getString("Title");
boolean goodCourse = getUserDecision(title);
if (!'goodCourse) {
int id = rs.getInt ("CId");
stmt2.executeUpdate ("delete from COURSE where CId =" + id);

}
rs.close();

Fig. 2.10 Code that could behave incorrectly in autocommit mode

DataSource ds =

Connection conn = ds.getConnection () ;

Statement stmt = conn.createStatement();

String cmdl = "update SECTION set Prof= 'brando' where SectId = 43";
String cmd2 = "update SECTION set Prof= 'einstein' where SectId = 53";
stmt.executeUpdate (cmdl) ;

// suppose that the engine crashes at this point
stmt.executeUpdate (cmd2) ;

Fig. 2.11 More code that could behave incorrectly in autocommit mode

through the result set, asking the user whether each course should be deleted. If so, it
executes an SQL deletion statement to do so.

The problem with this code is that the deletion statement will be executed while
the record set is still open. Because a connection supports only one transaction at a
time, it must preemptively commit the query’s transaction before it can create a new
transaction to execute the deletion. And since the query’s transaction has committed,
it doesn’t really make sense to access the remainder of the record set. The code will
either throw an exception or have unpredictable behavior.'

Autocommit is also undesirable when multiple modifications to the database need
to happen together. The code fragment of Fig. 2.11 provides an example. The intent
of the code is to swap the professors teaching sections 43 and 53. However, the
database will become incorrect if the engine crashes after the first call to
executeUpdate but before the second one. This code needs both SQL statements

'The actual behavior of this code depends on the holdability of the result set, whose default value is
engine dependent. If the holdability is CLOSE_CURSORS_AT COMMIT, then the result set will
become invalid, and an exception will be thrown. If the holdability is
HOLD_CURSORS_OVER_COMMIT, then the result set will stay open, but its locks will be released.
The behavior of such a result set is unpredictable and similar to the read-uncommitted isolation
mode to be discussed in Sect. 2.2.3.

2.2 Advanced JDBC 31

public void setAutoCommit (boolean ac) throws SQLException;
public void commit () throws SQLException;
public void rollback() throws SQLException;

Fig. 2.12 The Connection methods for explicit transaction handling

to occur in the same transaction, so that they are either committed together or rolled
back together.

Autocommit mode can also be inconvenient. Suppose that your program is
performing multiple insertions, say by loading data from a text file. If the engine
crashes while the program is running, then some of the records will be inserted and
some will not. It could be tedious and time-consuming to determine where the
program failed and to rewrite it to insert only the missing records. A better alternative
is to place all the insertion commands in the same transaction. Then all of them
would get rolled back after a system crash, and it would be possible to simply rerun
the client.

The Connection interface contains three methods that allow the client to handle
its transactions explicitly. Figure 2.12 gives their APIL. A client turns off autocommit
by calling setAutoCommit (false). The client completes the current transaction
and starts a new one by calling commit or rollback, as desired.

When a client turns off autocommit, it takes on the responsibility for rolling back
failed SQL statements. In particular, if an exception gets thrown during a transaction,
then the client must roll back that transaction inside its exception-handling code.

For an example, consider again the incorrect code fragment of Fig. 2.10. A
corrected version appears in Fig. 2.13. The code calls setAutoCommit immedi-
ately after the connection is created and calls commit immediately after the
statements have completed. The catch block contains the call to rollback.
This call needs to be placed inside its own try block, in case it throws an exception.

At first glance, an exception during rollback seems like it could corrupt the
database, as in Fig. 2.11. Fortunately, database rollback algorithms are designed to
handle such possibilities; Chap. 5 contains the remarkable details. Thus, the code in
Fig. 2.13 can legitimately ignore a failed rollback, knowing that the database engine
will make things right.

2.2.3 Transaction Isolation Levels

A database server typically has several clients active at the same time, each running
their own transaction. By executing these transactions concurrently, the server can
improve their throughput and response time. Thus, concurrency is a good thing.
However, uncontrolled concurrency can cause problems, because a transaction can
interfere with another transaction by modifying the data used by that other transac-
tion in unexpected ways. Here are three examples that demonstrate the kinds of
problems that can occur.

https://doi.org/10.1007/978-3-030-33836-7_5

32 2 JDBC

DataSource ds = ...
try (Connection conn = ds.getConnection()) {
conn.setAutoCommit (false) ;
Statement stmt = conn.createStatement () ;
ResultSet rs = stmt.executeQuery("select * from COURSE");
while (rs.next()) {
String title = rs.getString("Title");
boolean goodCourse = getUserDecision(title);
if (!'goodCourse) ({
int id = rs.getInt ("CId");
stmt.executeUpdate ("delete from COURSE where CId =" + id);

}

rs.close();
stmt.close () ;
conn.commit () ;

}
catch (SQLException e) {
e.printStackTrace();
try {
if (conn != null)
conn.rollback() ;

}
catch (SQLException e2) {}

Fig. 2.13 A revision of Fig. 2.10 that handles transactions explicitly

Example 1: Reading Uncommitted Data
Consider again the code for Fig. 2.11 that swaps the professors of two sections and
assume that it runs as a single transaction (i.e., with autocommit turned off). Call this
transaction T1. Suppose also that the university has decided to give bonuses to its
professors, based on the number of sections taught; it therefore executes a transac-
tion T2 that counts the sections taught by each professor. Furthermore, suppose that
these two transactions happen to run concurrently—in particular, suppose that T2
begins and executes to completion immediately after the first update statement of T1.
The result is that Professors Brando and Einstein will get credited, respectively, with
one extra and one fewer course than they deserve, which will affect their bonuses.
‘What went wrong? Each of the transactions is correct in isolation, but together they
cause the university to give out the wrong bonuses. The problem is that T2 incorrectly
assumed that the records it read were consistent, that is, that they made sense together.
However, data written by an uncommitted transaction may not always be consistent.
In the case of T1, the inconsistency occurred at the point where only one of the two
modifications was made. When T2 read the uncommitted modified records at that
point, the inconsistency caused it to make incorrect calculations.

Example 2: Unexpected Changes to an Existing Record
For this example, assume that the STUDENT table contains a field MealPlanBal,
which denotes how much money the student has for buying food in the cafeteria.

2.2 Advanced JDBC 33

DataSource ds =

Connection conn = ds.getConnection();

conn.setAutoCommit (false) ;

Statement stmt = conn.createStatement ()

ResultSet rs = stmt.executeQuery("select MealPlanBal from STUDENT "
+ "where SId = 1");

rs.next ();

int balance = rs.getInt ("MealPlanBal");

rs.close () ;

int newbalance = balance - 10;
if (newbalance < 0)
throw new NoFoodAllowedException ("You cannot afford this meal");

stmt.executeUpdate ("update STUDENT "
+ "set MealPlanBal = " + newbalance
+ " where SId = 1");

conn.commit () ;

(a)

DataSource ds =

Connection conn = ds.getConnection();

conn.setAutoComnmit (false);

Statement stmt = conn.createStatement();

stmt.executeUpdate ("update STUDENT "
+ "set MealPlanBal = MealPlanBal + 1000 "
+ "where SId = 1");

conn.commit () ;

(b)

Fig. 2.14 Two concurrent transactions that can manage to “lose” an update. (a) Transaction T1
decrements the meal plan balance, (b) Transaction T2 increments the meal plan balance

Consider the two transactions of Fig. 2.14. Transaction T1 executed when Joe
bought a $10 lunch. The transaction runs a query to find out his current balance,
verifies that the balance is sufficient, and decrements his balance appropriately.
Transaction T2 executed when Joe’s parents sent in a check for $1000 to be added
to his meal plan balance. That transaction simply runs an SQL update statement to
increment Joe’s balance.

Now suppose that these two transactions happen to run concurrently at a time
when Joe has a $50 balance. In particular, suppose that T2 begins and executes to
completion immediately after T1 calls rs.close. Then T2, which commits first,
will modify the balance to $1050. However, T1 is unaware of this change and still
thinks that the balance is $50. It thus modifies the balance to $40 and commits. The
result is that the $1000 deposit is not credited to his balance, that is, the update got
“lost.”

34 2 JDBC

The problem here is that transaction T1 incorrectly assumed that the value of the
meal plan balance would not change between the time that T1 read the value and the
time that T1 modified the value. Formally, this assumption is called repeatable read,
because the transaction assumes that repeatedly reading an item from the database
will always return the same value.

Example 3: Unexpected Changes to the Number of Records

Suppose that the university dining services made a profit of $100,000 last year. The
university feels bad that it overcharged its students, so it decides to divide the profit
equally among them. That is, if there are 1000 current students, then the university
will add $100 to each meal plan balance. The code appears in Fig. 2.15.

The problem with this transaction is that it assumes that the number of current
students will not change between the calculation of the rebate amount and the
updating of the STUDENT records. But suppose that several new STUDENT
records got inserted into the database between the closing of the record set and the
execution of the update statement. These new records will incorrectly get the
precalculated rebate, and the university will wind up spending more than $100,000
on rebates. These new records are known as phantom records, because they myste-
riously appear after the transaction has started.

These examples illustrate the kind of problems that can arise when two trans-
actions interact. The only way to guarantee that an arbitrary transaction will not have
problems is to execute it in complete isolation from the other transactions. This form
of isolation is called serializability and is discussed in considerable detail in Chap. 5.

Unfortunately, serializable transactions can run very slowly, because they require
the database engine to significantly reduce the amount of concurrency it allows.
JDBC therefore defines four isolation levels, which allow clients to specify how
much isolation a transaction should have:

DataSource ds = ...
Connection conn = ds.getConnection();
conn.setAutoCommit (false) ;
Statement stmt = conn.createStatement () ;
String gry = "select count(SId) as HowMany from STUDENT "
+ "where GradYear >= extract(year, current date)"
ResultSet rs = stmt.executeQuery(qry);
rs.next ();
int count = rs.getInt ("HowMany");
rs.close();

int rebate = 100000 / count;
String cmd = "update STUDENT "
+ "set MealPlanBalance = MealPlanBalance + " + rebate
+ " where GradYear >= extract(year, current date)";
stmt.executeUpdate (cmd) ;
conn.commit () ;

Fig. 2.15 A transaction that could give out more rebates than expected

https://doi.org/10.1007/978-3-030-33836-7_5

2.2 Advanced JDBC 35

* Read-Uncommitted isolation means no isolation at all. Such a transaction could
suffer any of the problems from the above three examples.

* Read-Committed isolation forbids a transaction from accessing uncommitted
values. Problems related to nonrepeatable reads and phantoms are still possible.

* Repeatable-Read isolation extends read-committed so that reads are always
repeatable. The only possible problems are due to phantoms.

o Serializable isolation guarantees that no problems will ever occur.

A JDBC client specifies the isolation level it wants by calling the Connection
method setTransactionIsolation. For example, the following code frag-
ment sets the isolation level to serializable:

DataSourceds = . ..
Connection conn = ds.getConnection() ;
conn.setAutoCommit (false) ;
conn.setTransactionIsolation (
Connection. TRANSACTION_ SERIALI ZABLE) ;

These four isolation levels exhibit a trade-off between execution speed and
potential problems. That is, the faster you want your transaction to run, the greater
the risk you must accept that the transaction might run incorrectly. This risk can be
mitigated by a careful analysis of the client.

For example, you might be able to convince yourself that phantoms and
nonrepeatable reads will not be a problem. This would be the case, for example, if
your transaction performs only insertions, or if it deletes specific existing records
(as in “delete from STUDENT where SId = 17). In this case, an isolation level of
read-committed will be fast and correct.

For another example, you might convince yourself that any potential problems
are uninteresting. Suppose that your transaction calculates, for each year, the average
grade given during that year. You decide that even though grade changes can occur
during the execution of the transaction, those changes are not likely to affect the
resulting statistics significantly. In this case, you could reasonably choose the
isolation level of read-committed or even read-uncommitted.

The default isolation level for many database servers (including Derby, Oracle,
and Sybase) is read-committed. This level is appropriate for the simple queries posed
by naive users in autocommit mode. However, if your client programs perform
critical tasks, then it is equally critical that you carefully determine the most
appropriate isolation level. A programmer that turns off autocommit mode must be
very careful to choose the proper isolation level of each transaction.

2.2.4 Prepared Statements

Many JDBC client programs are parameterized, in the sense that they accept an
argument value from the user and execute an SQL statement based on that argument.
An example of such a client is the demo client FindMajors, whose code appears
in Fig. 2.16.

36 2 JDBC

public class FindMajors {
public static void main(String[] args) {
System.out.print ("Enter a department name: ");
Scanner sc = new Scanner (System.in);

String major = sc.next();

sc.close();

String gry = "select sname, gradyear from student, dept "
+ "where did = majorid and dname = '" + major + "'";

ClientDataSource ds = new ClientDataSource();

ds.setServerName ("localhost") ;

ds.setDatabaseName ("studentdb") ;

try (Connection conn = ds.getConnection();
Statement stmt = conn.createStatement () ;
ResultSet rs = stmt.executeQuery(qry)) {

System.out.println("Here are the " + major + " majors");

("
System.out.println ("Name\tGradYear") ;
while (rs.next()) {

String sname = rs.getString("sname");

int gradyear = rs.getInt("gradyear");

System.out.println (sname + "\t" + gradyear);

}
catch (Exception e) {
e.printStackTrace () ;

}

Fig. 2.16 The JDBC code for the FindMajors client

This client begins by asking the user for a department name. It then incorporates
this name into the SQL query that it executes. For example, suppose that the user
entered the value “math.” Then the generated SQL query would be as follows:

select SName, GradYear from STUDENT, DEPT
where DId = MajorId and DName = 'math'

Note how the code explicitly adds the single quotes surrounding the department
name when it generates the query. Instead of generating an SQL statement dynam-
ically this way, the client can use a parameterized SQL statement. A parameterized
statement is an SQL statement in which ‘?” characters denote missing parameter
values. A statement can have several parameters, all denoted by ‘?°. Each parameter
has an index value that corresponds to its position in the string. For example, the
following parameterized statement deletes all students having a yet-unspecified
graduation year and major. The value for GradYear is assigned index 1, and the
value for MajorId is assigned index 2.

2.2 Advanced JDBC 37

public class PreparedFindMajors {

}

public static void main(String([] args) {

System.out.print ("Enter a department name: ");

Scanner sc = new Scanner (System.in);

String major = sc.next();

sc.close();

String qry = "select sname, gradyear from student, dept "
+ "where did = majorid and dname = ?";

ClientDataSource ds = new ClientDataSource();

ds.setServerName ("localhost");
ds.setDatabaseName ("studentdb") ;
try (Connection conn = ds.getConnection();
PreparedStatement pstmt = conn.prepareStatement(qry)) {
pstmt.setString(l, major);
ResultSet rs = pstmt.executeQuery();
System.out.println ("Here are the " + major + " majors");
System.out.println ("Name\tGradYear") ;
while (rs.next()) {
String sname = rs.getString("sname");
int gradyear = rs.getInt ("gradyear");
System.out.println(sname + "\t" + gradyear);
}
rs.close();
}
catch (Exception e) {
e.printStackTrace();

Fig. 2.17 Revising the FindMajors client to use prepared statements

delete from STUDENT where GradYear = ? and MajorId = ?

The JDBC class PreparedStatement handles parameterized statements. A

client processes a prepared statement in three steps:

It creates a PreparedStatement object for a specified parameterized SQL
statement.

It assigns values to the parameters.

It executes the prepared statement.

For example, Fig. 2.17 revises the FindMajors client to use prepared state-

ments. Changes are in bold. The last three statements in bold correspond to the above
three bullet points. First, the client creates the PreparedStatement object by
calling the method prepareStatement and passing the parameterized SQL
statement as an argument. Second, the client calls the set St ring method to assign
a value to the first (and only) parameter. Third, the method calls executeQuery to
execute the statement.

38 2 JDBC

public ResultSet executeQuery () throws SQLException;
public int executeUpdate () throws SQLException;
public void setInt(int index, int wval) throws SQLException;

public void setString(int index, String val) throws SQLException;

Fig. 2.18 Part of the API for PreparedStatement

// Prepare the query

String gry = "select SName, GradYear from STUDENT, DEPT "
+ "where DId = MajorId and DName = ?";

PreparedStatement pstmt = conn.prepareStatement (qry);

// Repeatedly get parameters and execute the query
String major = getUserInput();
while (major != null) {
pstmt.setString(1l, major);
ResultSet rs = pstmt.executeQuery();
displayResultSet (rs);
major = getUserInput();

}

Fig. 2.19 Using a prepared statement in a loop

Figure 2.18 gives the API for the most common PreparedStatement
methods. The methods executeQuery and executeUpdate are similar to the
corresponding methods in Statement; the difference is that they do not require
any arguments. The methods setInt and setString assign values to parame-
ters. In Fig. 2.17, the call to setString assigned a department name to the first
index parameter. Note that the set St ring method automatically inserts the single
quotes around its value, so that the client doesn’t have to.

Most people find it more convenient to use prepared statements than to create the
SQL statements explicitly. Prepared statements are also the more efficient option
when statements are generated in a loop, as shown in Fig. 2.19. The reason is that the
database engine is able to compile a prepared statement without knowing its
parameter values. It compiles the statement once and then executes it repeatedly
inside of the loop without further recompilation.

2.2.5 Scrollable and Updatable Result Sets

Result sets in basic JDBC are forward-only and non-updatable. Full JDBC also
allows result sets to be scrollable and updatable. Clients can position such result sets
at arbitrary records, update the current record, and insert new records. Figure 2.20
gives the API for these additional methods.

The method beforeFirst positions the result set before the first record, and
the method afterLast positions the result set after the last record. The method
absolute positions the result set at exactly the specified record and returns false

2.2 Advanced JDBC 39

Methods used by scrollable result sets

public void beforeFirst () throws SQLException;
public void afterLast () throws SQLException;
public boolean previous () throws SQLException;
public boolean next () throws SQLException;
public boolean absolute (int pos) throws SQLException;

public boolean relative (int offset) throws SQLException;

Methods used by updatable result sets
public void updatelInt (String fldname, int val) throws SQLException;
public void updateString(String fldname, String wval)
throws SQLException;

public void updateRow () throws SQLException;
public void deleteRow () throws SQLException;
public void moveToInsertRow () throws SQLException;
public void moveToCurrentRow () throws SQLException;

Fig. 2.20 Part of the API for ResultSet

if there is no such record. The method relative positions the result set a relative
number of rows. In particular, relative (1) is identical to next, and
relative (-1) is identical to previous.

The methods updateInt and updateString modify the specified field of
the current record on the client. However, the modification is not sent to the database
until updateRow is called. The need to call updateRow is somewhat awkward,
but it allows JDBC to batch updates to several fields of a record into a single call to
the engine.

Insertions are handled by the concept of an insert row. This row does not exist in
the table (e.g., you cannot scroll to it). Its purpose is to serve as a staging area for new
records. The client calls moveToInsertRow to position the result set at the insert
row, then the updateXXX methods to set the values of its fields, then updateRow
to insert the record into the database, and finally moveToCurrentRow to reposi-
tion the record set to where it was before the insertion.

By default, record sets are forward-only and non-updatable. If a client wants a
more powerful record set, it specifies so in the createStatement method of
Connection. In addition to the no-arg createStatement method of basic
JDBC, there is also a two-arg method in which the client specifies scrollability and
updatability. For example, consider the following statement:

Statement stmt =
conn.createStatement (ResultSet.TYPE SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE) ;

All result sets generated from this statement will be scrollable and updatable. The
constant TYPE_FORWARD_ONLY specifies a non-scrollable result set, and
CONCUR_READ_ONLY specifies a non-updatable result set. These constants
can be mixed and matched to obtain the desired scrollability and updatability.

For an example, recall the code of Fig. 2.10, which allowed a user to iterate
through the COURSE table, deleting desired records. Figure 2.21 revises that code to

40 2 JDBC

DataSource ds = ...
Connection conn = ds.getConnection();
conn.setAutocommit (false) ;

Statement stmt = conn.createStatement (ResultSet.TYPE FORWARD ONLY,
ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("select * from COURSE") ;
while (rs.next()) {

String title = rs.getString("Title");

boolean goodCourse = getUserDecision(title);

if (!goodCourse)

rs.deleteRow () ;

}
rs.close();

stmt.close () ;
conn.commit () ;

Fig. 2.21 Revising the code of Fig. 2.10

use updatable result sets. Note that a deleted row remains current until the call to
next.

A scrollable result set has limited use, because most of the time the client
knows what it wants to do with the output records and doesn’t need to examine
them twice. A client would typically need a scrollable result set only if it allowed
users to interact with the result of a query. For example, consider a client that
wants to display the output of a query as a Swing JTable object. The JTable
will display a scrollbar when there are too many output records to fit on the
screen and allow the user to move back and forth through the records by clicking
on the scrollbar. This situation requires the client to supply a scrollable result set
to the JTable object, so that it can retrieve previous records when the user
scrolls back.

2.2.6 Additional Data Types

In addition to integer and string values, JDBC also contains methods to manipulate
numerous other types. For example, consider the interface ResultSet. In addition
to the methods getInt and getString, there are also methods getFloat,
getDouble, getShort, getTime, getDate, and several others. Each of these
methods will read the value from the specified field of the current record and convert
it (if possible) to the indicated Java type. In general, of course, it makes most sense to
use numeric JDBC methods (such as getInt, getFloat, etc.) on numeric SQL
fields and so on. But JDBC will attempt to convert any SQL value to the Java type
indicated by the method. In particular, it is always possible to convert any SQL value
to a Java string.

2.3 Computing in Java vs. SQL 41
2.3 Computing in Java vs. SQL

Whenever a programmer writes a JDBC client, an important decision must be made:
What part of the computation should be performed by the database engine, and what
part should be performed by the Java client? This section examines these questions.

Consider again the StudentMajor demo client of Fig. 2.5. In that program, the
engine performs all of the computation, by executing an SQL query to compute the
join of the STUDENT and DEPT tables. The client’s only responsibility is to retrieve
the query output and print it.

In contrast, you could have written the client so that it does all of the computation,
as shown in Fig. 2.22. In that code, the engine’s only responsibility is to create result
sets for the STUDENT and DEPT tables. The client does all the rest of the work,
computing the join and printing the result.

Which of these two versions is better? Clearly, the original version is more
elegant. Not only does it have less code, but the code is easier to read. But what
about efficiency? As a rule of thumb, it is always more efficient to do as little as
possible in the client. There are two main reasons:

» There is usually less data to transfer from engine to client, which is especially
important if they are on different machines.

e The engine contains detailed specialized knowledge about how each table is
implemented and the possible ways to compute complex queries (such as
joins). It is highly unlikely that a client can compute a query as efficiently as
the engine.

For example, the code of Fig. 2.22 computes the join by using two nested loops.
The outer loop iterates through the STUDENT records. For each student, the inner
loop searches for the DEPT record matching that student’s major. Although this is a
reasonable join algorithm, it is not particularly efficient. Chapters 13 and 14 discuss
several techniques that lead to much more efficient execution.

Figures 2.5 and 2.22 exemplify the extremes of really good and really bad JDBC
code, and so comparing them was pretty easy. But sometimes, the comparison is
more difficult. For example, consider again the PreparedFindMajors demo client of
Fig. 2.17, which returns the students having a specified major department. That code
asks the engine to execute an SQL query that joins STUDENT and MAJOR.
Suppose that you know that executing a join can be time-consuming. After some
serious thought, you realize that you can get the data you need without using a join.
The idea is to use two single-table queries. The first query scans through the DEPT
table looking for the record having the specified major name and returning its DId-
value. The second query then uses that value to search the MajorID values of
STUDENT records. The code for this algorithm appears in Fig. 2.23.

This algorithm is simple, elegant, and efficient. All it requires is a sequential scan
through each of two tables and ought to be much faster than a join. You can be proud
of your effort.

Unfortunately, your effort is wasted. The new algorithm isn’t really new but just
a clever implementation of a join—in particular, it is a multibuffer product of

https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_14

42 2 JDBC

public class BadStudentMajor {
public static void main(String[] args) {
ClientDataSource ds = new ClientDataSource();
ds.setServerName ("localhost") ;
ds.setDatabaseName ("studentdb") ;
Connection conn = null;
try {
conn = ds.getConnection();
conn.setAutoCommit (false) ;
try (Statement stmtl = conn.createStatement (),
Statement stmt2 = conn.createStatement (
ResultSet.TYPE SCROLL INSENSITIVE,
ResultSet.CONCUR READ ONLY) ;

ResultSet rsl = stmtl.executeQuery(

"select * from STUDENT");
ResultSet rs2 = stmt2.executeQuery (

"select * from DEPT")) {

System.out.println ("Name\tMajor") ;
while (rsl.next()) {
// get the next student
String sname = rsl.getString("SName");
String dname = null;
rs2.beforeFirst () ;
while (rs2.next())
// search for the major department of that student
if (rs2.getInt ("DId") == rsl.getInt("MajorId")) {
dname = rs2.getString("DName") ;
break;
}

System.out.println(sname + "\t" + dname);

}
conn.commit () ;
conn.close () ;
}
catch (SQLException e) {
e.printStackTrace();
try f{
if (conn != null) {
conn.rollback() ;
conn.close () ;

}

catch (SQLException e2) {}

}

Fig. 2.22 An alternative (but bad) way to code the StudentMajor client

2.3 Computing in Java vs. SQL

public class CleverFindMajors {
public static void main(String[] args) {
String major = args[0];

String qryl = "select DId from DEPT where DName =
String qry2 = "select * from STUDENT where MajorId = ?";
ClientDataSource ds = new ClientDataSource();

ds.setServerName ("localhost") ;
ds.setDatabaseName ("studentdb") ;
try (Connection conn = ds.getConnection()) {

PreparedStatement stmtl = conn.prepareStatement (qryl) ;

stmtl.setString (1, major);
ResultSet rsl = stmtl.executeQuery() ;
rsl.next () ;

int deptid = rsl.getInt("DI4d"); // get the major’s ID

rsl.close();
stmtl.close();

PreparedStatement stmt2 = conn.prepareStatement (qry2) ;

stmt2.setInt (1, deptid);
ResultSet rs2 = stmt2.executeQuery() ;

System.out.println ("Here are the " + major + " majors");

System.out.println ("Name\tGradYear") ;
while (rs2.next()) {
String sname = rs2.getString("sname");
int gradyear = rs2.getlInt ("gradyear");
System.out.println (sname + "\t" + gradyear);
}
rs2.close();
stmt2.close () ;
}
catch (Exception e) {
e.printStackTrace () ;

}

Fig. 2.23 A clever way to implement the FindMajors client

43

Chap. 14 with a materialized inner table. A well-written database engine would
know about this algorithm (among several others) and would use it to compute the
join if it turned out to be most efficient. All of your cleverness has thus been
preempted by the database engine. The moral is the same as with the
StudentMajor client: Letting the engine do the work tends to be the most

efficient strategy (as well as the easiest one to code).

One of the mistakes that beginning JDBC programmers make is that they try to do
too much in the client. The programmer might think that he or she knows a really
clever way to implement a query in Java. Or the programmer might not be sure how
to express a query in SQL and feels more comfortable coding the query in Java. In

https://doi.org/10.1007/978-3-030-33836-7_14

44

2 JDBC

each of these cases, the decision to code the query in Java is almost always wrong.
The programmer must trust that the database engine will do its job.”

2.4 Chapter Summary

The JDBC methods manage the transfer of data between a Java client and a
database engine.

Basic JDBC consists of five interfaces: Driver, Connection, Statement,
ResultSet, and ResultSetMetaData.

A Driver object encapsulates the low-level details for connecting with the
engine. If a client wants to connect to an engine, it must obtain a copy of the
appropriate driver class. The driver class and its connection string are the only
vendor-specific code in a JDBC program. Everything else refers to vendor-neutral
JDBC interfaces.

Result sets and connections hold resources that other clients might need. A JDBC
client should always close them as soon as it can.

Every JDBC method can throw an SQLException. A client is obligated to
check for these exceptions.

The methods of ResultSetMetaData provide information about the schema
of the output table, that is, the name, type, and display size of each field. This
information is useful when the client accepts queries directly from the user, as in
an SQL interpreter.

A basic JDBC client calls the driver class directly. Full JDBC provides the class
DriverManager and the interface DataSource to simplify the connection
process and make it more vendor-neutral.

The class DriverManager holds a collection of drivers. A client registers its
drivers with the driver manager, either explicitly or (preferably) via a system
properties file. When the client wants to connect to a database, it provides a
connection string to the driver manager, and it makes the connection for the
client.

A DataSource object is even more vendor-neutral, because it encapsulates
both the driver and the connection string. A client can therefore connect to a
database engine without knowing any of the connection details. The database
administrator can create various DataSource objects and place them on a
server for clients to use.

A basic JDBC client ignores the existence of transactions. The database engine
executes these clients in autocommit mode, which means that each SQL statement
is its own transaction.

2At least, you should start by trusting that the engine will be efficient. If you discover that your
application is running slowly because the engine is not executing the join efficiently, then you can
recode the program as in Fig. 2.23. But it is always best to avoid premature cleverness.

2.4 Chapter Summary 45

» All of the database interactions in a transaction are treated as a unit. A transaction
commits when its current unit of work has completed successfully. A transaction
rolls back when it cannot commit. The database engine implements a rollback by
undoing all changes made by that transaction.

e Autocommit is a reasonable default mode for simple, unimportant JDBC
clients. If a client performs critical tasks, then its programmer should carefully
analyze its transactional needs. A client turns off autocommit by calling
setAutoCommit (false). This call causes the engine to start a new transac-
tion. The client then calls commit or rollback when it needs to complete the
current transaction and begin a new one. When a client turns off autocommit, it
must handle failed SQL statements by rolling back the associated transaction.

* A client can also use the method setTransactionIsolation to specify its
isolation level. JDBC defines four isolation levels:

— Read-Uncommitted isolation means no isolation at all. The transaction could
have problems resulting from reading uncommitted data, nonrepeatable reads,
or phantom records.

— Read-Committed isolation forbids a transaction from accessing uncommitted
values. Problems related to nonrepeatable reads and phantoms are still
possible.

— Repeatable-Read isolation extends read-committed so that reads are always
repeatable. The only possible problems are due to phantoms.

— Serializable isolation guarantees that no problems will ever occur.

» Serializable isolation is clearly to be preferred, but its implementation tends to
cause transactions to run slowly. The programmer must analyze the risk of
possible concurrency errors with the client and choose a less restrictive isolation
level only if the risk seems tolerable.

* A prepared statement has an associated SQL statement, which can have place-
holders for parameters. The client can then assign values to the parameters at a
later time and then execute the statement. Prepared statements are a convenient
way to handle dynamically generated SQL statements. Moreover, a prepared
statement can be compiled before its parameters are assigned, which means that
executing a prepared statement multiple times (such as in a loop) will be very
efficient.

* Full JDBC allows result sets to be scrollable and updatable. By default, record
sets are forward-only and non-updatable. If a client wants a more powerful record
set, it specifies so in the createStatement method of Connection.

* The rule of thumb when writing a JDBC client is to let the engine do as much work
as possible. Database engines are remarkably sophisticated and usually know the
most efficient way to obtain the desired data. It is almost always a good idea for the
client to determine an SQL statement that retrieves exactly the desired data and
submiit it to the engine. In short, the programmer must trust the engine to do its job.

46 2 JDBC
2.5 Suggested Reading

A comprehensive and well-written book on JDBC is Fisher et al. (2003), part of
which exists as an online tutorial at docs.oracle.com/javase/tutorial/
jdbc. In addition, every database vendor supplies documentation explaining the use
of its drivers, as well as other vendor-specific issues. If you intend to write clients for
a specific engine, then it is imperative to be familiar with the documentation.

Fisher, M., Ellis, J., & Bruce, J. (2003). JDBC API tutorial and reference (3rd ed.).
Addison Wesley.

2.6 Exercises

Conceptual Exercises

2.1. The Derby documentation recommends that you turn off autocommit when
executing a sequence of inserts. Explain why you think it makes this
recommendation.

Programming Exercises

2.2. Write some SQL queries for the university database. For each query, write a
program using Derby that executes that query and prints its output table.

2.3. The SimpleIJ program requires each SQL statement to be a single line of
text. Revise it so that a statement can comprise multiple lines and terminate with
a semicolon, similar to Derby’s ij program.

2.4. Write a class NetworkDataSource for SimpleDB that works similarly to
the Derby class ClientDataSource. Add this class to the package
simpledb.jdbc.network. Your code need not implement all of the
methods of the interface javax.sqgl.DataSource (and its superclasses);
in fact, the only one of those methods that it needs to implement is the no-arg
method getConnection(). What vendor-specific methods should
NetworkDataSource have?

2.5. It is often useful to be able to create a text file that contains SQL commands.
These commands can then be executed in batch by a JDBC program. Write a
JDBC program that reads commands from a specified text file and executes
them. Assume that each line of the file is a separate command.

2.6. Investigate how a result set can be used to populate a Java JTable object.
(Hint: You will need to extend the class AbstractTableModel.) Then
revise the demo client FindMajors to have a GUI interface that displays its
output in a JTable.

2.7. Write JDBC code for the following tasks:

(a) Import data from a text file into an existing table. The text file should have
one record per line, with each field separated by tabs. The first line of the file

http://docs.oracle.com/javase/tutorial/jdbc
http://docs.oracle.com/javase/tutorial/jdbc

2.6

2.8.

Exercises 47

should be the names of the fields. The client should take the name of the file
and the name of the table as input, and insert the records into the table.

(b) Export data to a text file. The client should take the name of the file and the
name of the table as input, and write the contents of each record into the file.
The first line of the file should be the names of the fields.

This chapter has ignored the possibility of null values in a result set. To check
for null values, you use the method wasNull in ResultSet. Suppose you
call getInt or getString to retrieve a field value. If you call wasNull
immediately afterward, it will return true if the retrieved value was null. For
example, the following loop prints out graduation years, assuming that some of
them might be null:

while (rs.next ()) {
int gradyr = rs.getInt ("gradyear") ;
if (rs.wasNull())
System.out.println("null") ;
else
System.out.println(gradyr) ;
}

(a) Rewrite the code for the StudentMajor demo client under the assump-
tion that student names might be null.

(b) Modify the SimpleIJ demo client so that it connects to Derby (instead of
SimpleDB). Then rewrite the code under the assumption that any field value
might be null.

Chapter 3)
Disk and File Management S

Database engines keep their data on persistent storage devices such as disks and flash
drives. This chapter investigates the properties of these devices and considers tech-
niques (such as RAID) that can improve their speed and reliability. It also examines the
two interfaces that the operating system provides for interacting with these devices—a
block-level interface and a file-level interface—and proposes a combination of the two
interfaces that is most appropriate for a database system. Finally, it considers the
SimpleDB file manager in detail, studying its API and its implementation.

3.1 Persistent Data Storage

The contents of a database must be kept persistent, so that the data will not be lost if
the database system or the computer goes down. This section examines two partic-
ularly useful hardware technologies: disk drives and flash drives. Flash drives are not
yet as widespread as disk drives, although their importance will increase as their
technology matures. Let’s begin with disk drives.

3.1.1 Disk Drives

A disk drive contains one or more rotating platters. A platter has concentric tracks,
and each track consists of a sequence of bytes. Bytes are read from (and written to)
the platter by means of a movable arm with a read/write head. The arm is positioned
at the desired track, and the head can read (or write) the bytes as they rotate under
it. Figure 3.1 depicts the top view of a one-platter disk drive. Of course, this figure is
not drawn to scale, because a typical platter has many thousands of tracks.

Modern disk drives typically have multiple platters. For space efficiency, pairs of
platters are usually joined back-to-back, creating what looks like a two-sided platter;

© Springer Nature Switzerland AG 2020 49
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_3

50 3 Disk and File Management

Fig. 3.1 The top view of a one-platter disk drive

- I
[
|
Actuator
N .
[
L
I e
[Platters
- -~ —
Arm with read/write head /4
Spindle

Fig. 3.2 The side view of a multi-platter disk drive

but conceptually, each side is still a separate platter. Each platter has its own read/
write head. These heads do not move independently; instead, they are all connected
to a single actuator, which moves them simultaneously to the same track on each
platter. Moreover, only one read/write head can be active at a time, because there is
only one datapath to the computer. Figure 3.2 depicts the side view of a multi-platter
disk drive.

The general performance of a disk drive can be measured by four values: its
capacity, rotation speed, transfer rate, and seek time.

The capacity of a drive is the number of bytes that can be stored. This value
depends on the number of platters, the number of tracks per platter, and the number
of bytes per track. Given that the platters tend to come in more or less standard sizes,
manufacturers increase capacity primarily by increasing the density of a platter, that
is, by squeezing more tracks per platter and more bytes per track. Platter capacities of
over 40 GB are now common.

3.1 Persistent Data Storage 51

The rotation speed is the rate at which the platters spin and is usually given as
revolutions per minute. Typical speeds range from 5400 rpm to 15,000 rpm.

The transfer rate is the speed at which bytes pass by the disk head, to be
transferred to/from memory. For example, an entire track’s worth of bytes can be
transferred in the time it takes for the platter to make a single revolution. The transfer
rate is thus determined by both the rotation speed and the number of bytes per track.
Rates of 100 MB/s are common.

The seek time is the time it takes for the actuator to move the disk head from its
current location to a requested track. This value depends on how many tracks need to
be traversed. It can be as low as O (if the destination track is the same as the starting
track) and as high as 15-20 ms (if the destination and starting tracks are at different
ends of the platter). The average seek time usually provides a reasonable estimate of
actuator speed. Average seek times on modern disks are about 5 ms.

Consider the following example. Suppose that a four-platter disk drive spins at
10,000 rpm with an average seek time of 5 ms. Each platter contains 10,000 tracks,
with each track containing 500,000 bytes. Here are some calculated values':

The capacity of the drive:
500,000 bytes/track x 10,000 tracks/platter x 4 platters/drive
=20,000,000,000 bytes, or approximately 20GB

The transfer rate:
500,000 bytes/revolutionx 10,000 revolutions/60 seconds
= 83,333,333 bytes/second, or approximately 83MB/s

3.1.2 Accessing a Disk Drive

A disk access is a request to read some bytes from the disk drive into memory or to
write some bytes from memory to disk. These bytes must be on a contiguous portion
of a track on some platter. The disk drive executes a disk access in three stages:

» It moves the disk head to the specified track. This time is called the seek time.

It waits for the platter to rotate until the first desired byte is beneath the disk head.
This time is called the rotational delay.

* As the platter continues to rotate, it reads each byte (or writes each byte) that
appears under the disk head, until the last desired byte appears. This time is called
the transfer time.

The time required to execute a disk access is the sum of the seek time, rotational
delay, and transfer time. Each of these times is constrained by the mechanical

lTechnically, 1 KB = 1024 bytes, 1 MB = 1,048,576 bytes, and 1 GB = 1,073,741,824 bytes. For
convenience, I round them down to one thousand, one million, and one billion bytes, respectively.

52 3 Disk and File Management

movement of the disk. Mechanical movement is significantly slower than electrical
movement, which is why disk drives are so much slower than RAM. The seek time
and rotational delay are especially annoying. These two times are nothing but
overhead that every disk operation is forced to wait for.

Calculating the exact seek time and rotational delay of a disk access is imprac-
tical, because it requires knowing the previous state of the disk. Instead, you can
estimate these times by using their average. You already know about the average
seek time. The average rotational delay is easily calculated. The rotational delay can
be as low as O (if the first byte just happens to be under the head) and as high as the
time for a complete rotation (if the first byte just passed by the head). On the average,
you will have to wait %2 rotation until the platter is positioned where you want
it. Thus the average rotational delay is half of the rotation time.

The transfer time is also easily calculated from the transfer rate. In particular, if
the transfer rate is r bytes/second and you are transferring b bytes, then the transfer
time is b/ r seconds.

For an example, consider the disk drive spinning at 10,000 rpm, having an
average seek time of 5 ms and a transfer rate of 83 MB/s. Here are some calculated
costs:

Average rotational delay:
60 seconds/minute x 1 minute/10, 000 revolutions x % revolution
=0.003 seconds or 3 ms

Transfer time for 1 byte:
1 byte x 1 second/83,000,000 bytes
=0.000000012 seconds or 0.000012 ms

Transfer time for 1000 bytes:
1,000 bytes x 1 second/83,000, 000 bytes
=0.000012 seconds or 0.012 ms

Estimated time to access 1 byte:
5ms (seek) + 3 ms (rotational delay) + 0.000012 ms (transfer)
=8.000012 ms

Estimated time to access 1000 bytes:
5ms (seek) + 3 ms (rotational delay) + 0.012 ms (transfer)
=8.012ms

Note that the estimated access time for 1000 bytes is essentially the same as for
1 byte. In other words, it makes no sense to access a few bytes from disk. In fact, you
couldn’t even if you wanted to. Modern disks are built so that each track is divided
into fixed-length sectors; a disk read (or write) must operate on an entire sector at a
time. The size of a sector may be determined by the disk manufacturer, or it may be
chosen when the disk is formatted. A typical sector size is 512 bytes.

3.1 Persistent Data Storage 53
3.1.3 Improving Disk Access Time

Because disk drives are so slow, several techniques have been developed to help
improve access times. This section considers three techniques: disk caches, cylin-
ders, and disk striping.

Disk Caches

A disk cache is memory that is bundled with the disk drive and is usually large
enough to store the contents of thousands of sectors. Whenever the disk drive reads a
sector from disk, it saves the contents of that sector in its cache; if the cache is full,
the new sector replaces an old sector. When a sector is requested, the disk drive
checks the cache. If the sector happens to be in the cache, it can be returned
immediately to the computer without an actual disk access.

Suppose that an application requests the same sector more than once in a
relatively short period. The first request will bring the sector into the cache and
subsequent requests will retrieve it from the cache, thereby saving on disk accesses.
However, this feature is not particularly useful for a database engine, because it is
already doing its own caching (as you shall see in Chap. 4). If a sector is requested
multiple times, the engine will find the sector in its own cache and not even bother to
go to the disk.

The real value of a disk cache is its ability to pre-fetch sectors. Instead of reading
just a requested sector, the disk drive can read the entire track containing that sector
into the cache, in the hope that other sectors of the track will be requested later. The
point is that reading an entire track is not that much more time-consuming than
reading a single sector. In particular, there is no rotational delay, because the disk can
read the track starting from whatever sector happens to be under the read/write head
and continue reading throughout the rotation. Compare the access times:

Time to read a sector = seek time + %2 rotation time + sector rotation time
Time to read a track = seek time + rotation time

That is, the difference between reading a single sector and a track full of sectors is
less than half the disk rotation time. If the database engine happens to request just
one other sector on the track, then reading the entire track into the cache will have
saved time.

Cylinders

The database system can improve disk access time by storing related information in
nearby sectors. For example, the ideal way to store a file is to place its contents on the
same track of a platter. This strategy is clearly best if the disk does track-based
caching, because the entire file will be read in a single disk access. But the strategy is
good even without caching, because it eliminates seek time—each time another
sector is read, the disk head will already be located at the proper track.”

A file whose contents are wildly scattered across different tracks of the disk is said to be
fragmented. Many operating systems provide a defragmentation utility that improves access time
by relocating each file so that its sectors are as contiguous as possible.

https://doi.org/10.1007/978-3-030-33836-7_4

54 3 Disk and File Management

Suppose that a file occupies more than one track. A good idea is to store its
contents in nearby tracks of the platter so that the seek time between tracks is as small
as possible. An even better idea, however, is to store its contents on the same track of
other platters. Since the read/write heads of each platter all move together, all of the
tracks having the same track number can be accessed without any additional
seek time.

The set of tracks having the same track number is called a cylinder, because if you
look at those tracks from the top of the disk, they describe the outside of a cylinder.
Practically speaking, a cylinder can be treated as if it were a very large track, because
all its sectors can be accessed with zero additional seeks.

Disk Striping

Another way to improve disk access time is to use multiple disk drives. Two small
drives are faster than one large drive because they contain two independent actuators
and thus can respond to two different sector requests simultaneously. For example,
two 20 GB disks, working continuously, will be about twice as fast as a single 40 GB
disk. This speedup scales well: in general, N disks will be about N times as fast as a
single disk. (Of course, several smaller drives are also more expensive than a single
large drive, so the added efficiency comes at a cost.)

However, the efficiency of multiple small disks will be lost if they cannot be kept
busy. Suppose, for example, that one disk contains the frequently used files, while
the other disks contain the little-used, archived files. Then the first disk would be
doing all of the work, with the other disks standing idle most of the time. This setup
would have about the same efficiency as a single disk.

So the problem is how to balance the workload among the multiple disks. The
database administrator could try to analyze file usage in order to best distribute the
files on each disk, but that approach is not practical: It is difficult to do, hard to
guarantee, and would have to be continually reevaluated and revised over time.
Fortunately, there is a much better approach, known as disk striping.

The disk striping strategy uses a controller to hide the smaller disks from the
operating system, giving it the illusion of a single large disk. The controller maps
sector requests on the virtual disk to sector requests on the actual disks. The mapping
works as follows. Suppose there are N small disks, each having k sectors. The virtual
disk will have Nxk sectors; these sectors are assigned to sectors of the real disks in an
alternating pattern. Disk O will contain virtual sectors 0, N, 2N, etc. Disk 1 will
contain virtual sectors 1, N+1, 2N+1, etc., and so on. The term disk striping comes
from the following imagery: If you imagine that each small disk is painted in a
different color, then the virtual disk looks like it has stripes, with its sectors painted
in alternating colors.® See Fig. 3.3.

3Most controllers allow a user to define a stripe to be of any size, not just a sector. For example, a
track makes a good stripe if the disk drives are also performing track-based disk caching. The
optimal stripe size depends on many factors and is often determined by trial and error.

3.1 Persistent Data Storage 55

Virtual Disk Physical Disks

Fig. 3.3 Disk striping

Disk striping is effective because it distributes the database equally among the
small disks. If a request arrives for a random sector, then that request will be sent to
one of the small disks with equal probability. And if several requests arrive for
contiguous sectors, they will be sent to different disks. Thus the disks are guaranteed
to be working as uniformly as possible.

3.1.4 Improving Disk Reliability by Mirroring

Users of a database expect that their data will remain safe on disk and will not get lost
or become corrupted. Unfortunately, disk drives are not completely reliable. The
magnetic material on a platter can degenerate, causing sectors to become unreadable.
Or a piece of dust or a jarring movement could cause a read/write head to scrape
against a platter, ruining the affected sectors (a “head crash”).

The most obvious way to guard against disk failure is to keep a copy of the disk’s
contents. For example, you could make nightly backups of the disk; when a disk
fails, you simply buy a new disk and copy the backup onto it. The problem with this
strategy is that you lose all of the changes to the disk that occurred between the time
that the disk was backed up and the time when it failed. The only way around this
problem is to replicate every change to the disk at the moment it occurs. In other
words, you need to keep two identical versions of the disk; these versions are said to
be mirrors of each other.

As with striping, a controller is needed to manage the two mirrored disks. When
the database system requests a disk read, the controller can access the specified
sector of either disk. When a disk write is requested, the controller performs the same
write to both disks. In theory, these two disk writes could be performed in parallel,
which would require no additional time. In practice, however, it is important to write
the mirrors sequentially to guard against a system crash. The problem is that if the
system crashes in the middle of a disk write, the contents of that sector are lost. So if
both mirrors are written in parallel, both copies of the sector could be lost, whereas if

56 3 Disk and File Management

Virtual Disk Mirrored Physical Disks
0
0 1
1 2
2
3
4 0
s 1
2

Fig. 3.4 Disk striping with mirrors

the mirrors are written sequentially, then at least one of the mirrors will be
uncorrupted.

Suppose that one disk from a mirrored pair fails. The database administrator can
recover the system by performing the following procedure:

. Shut down the system.

. Replace the failed disk with a new disk.

. Copy the data from the good disk onto the new disk.
. Restart the system.

AW N~

Unfortunately, this procedure is not fool-proof. Data can still get lost if the good
disk fails while it is in the middle of copying to the new disk. The chance of both
disks failing within a couple of hours of each other is small (it is about 1 in 60,000
with today’s disks), but if the database is important, this small risk might be
unacceptable. You can reduce the risk by using three mirrored disks instead of
two. In this case, the data would be lost only if all three disks failed within the
same couple of hours; such a possibility, while nonzero, is so remote that it can
comfortably be ignored.

Mirroring can coexist with disk striping. A common strategy is to mirror the
striped disks. For example, one could store 40 GB of data on four 20 GB drives: Two
of the drives would be striped, and the other two would be mirrors of the striped
drives. Such a configuration is both fast and reliable. See Fig. 3.4.

3.1.5 [Improving Disk Reliability by Storing Parity

The drawback to mirroring is that it requires twice as many disks to store the same
amount of data. This burden is particularly noticeable when disk striping is used—if
you want to store 300 GB of data using 15 20 GB drives, then you will need to buy
another 15 drives to be their mirrors. It is not unusual for large database installations
to create a huge virtual disk by striping many small disks, and the prospect of buying

3.1 Persistent Data Storage 57

an equal number of disks just to be mirrors is unappealing. It would be nice to be able
to recover from a failed disk without using so many mirror disks.

In fact, there is a clever way to use a single disk to back up any number of other
disks. The strategy works by storing parity information on the backup disk. Parity is
defined for a set S of bits as follows:

e The parity of S is 1 if it contains an odd number of 1s.
* The parity of S is O if it contains an even number of Is.

In other words, if you add the parity bit to S, you will always have an even
number of 1s.

Parity has the following interesting and important property: The value of any bit
can be determined from the value of the other bits, as long as you also know the
parity. For example, suppose that S = {1, 0, 1}. The parity of S is 0 because it has an
even number of 1s. Suppose you lose the value of the first bit. Because the parity is
0, the set {?, 0, 1} must have had an even number of 1s; thus, you can infer that the
missing bit must be a 1. Similar deductions can be made for each of the other bits
(including the parity bit).

This use of parity extends to disks. Suppose you have N + 1 identically sized
disks. You choose one of the disks to be the parity disk and let the other N disks hold
the striped data. Each bit of the parity disk is computed by finding the parity of the
corresponding bit of all the other disks. If any disk fails (including the parity disk),
the contents of that disk can be reconstructed by looking, bit by bit, at the contents of
the other disks. See Fig. 3.5.

The disks are managed by a controller. Read and write requests are handled
basically the same as with striping—the controller determines which disk holds the
requested sector and performs that read/write operation. The difference is that write
requests must also update the corresponding sector of the parity disk. The controller
can calculate the updated parity by determining which bits of the modified sector
changed; the rule is that if a bit changes, then the corresponding parity bit must also
change. Thus, the controller requires four disk accesses to implement a sector-write

Virtual Disk Striped Physical Disks

Parity Disk

Fig. 3.5 Disk striping with parity

58 3 Disk and File Management

operation: it must read the sector and the corresponding parity sector (in order to
calculate the new parity bits), and it must write the new contents of both sectors.

This use of parity information is somewhat magical, in the sense that one disk is
able to reliably back up any number of other disks. However, this magic is accom-
panied by two drawbacks.

The first drawback to using parity is that a sector-write operation is more time-
consuming, as it requires both a read and a write from two disks. Experience
indicates that using parity reduces the efficiency of striping by a factor of about 20%.

The second drawback to parity is that the database is more vulnerable to a
non-recoverable multi-disk failure. Consider what happens when a disk fails—all
of the other disks are needed to reconstruct the failed disk, and the failure of any one
of them is disastrous. If the database is comprised of many small disks (say, around
100), then the possibility of a second failure becomes very real. Contrast this
situation with mirroring, in which a recovery from a failed disk only requires that
its mirror not fail, which is much less likely.

3.1.6 RAID

The previous sections considered three ways to use multiple disks: striping to speed
up disk access time, and mirroring and parity to guard against disk failure. These
strategies use a controller to hide the existence of the multiple disks from the
operating system and provide the illusion of a single, virtual disk. The controller
maps each virtual read/write operation to one or more operations on the underlying
disks. The controller can be implemented in software or hardware, although hard-
ware controllers are more widespread.

These strategies are part of a larger collection of strategies known as RAID, which
stands for Redundant Array of Inexpensive Disks. There are seven RAID levels.

e RAID-0 is striping, without any guard against disk failure. If one of the striped
disks fails, then the entire database is potentially ruined.

e RAID-1 is mirrored striping.

* RAID-2 uses bit striping instead of sector striping and a redundancy mechanism
based on error-correcting codes instead of parity. This strategy has proven to be
difficult to implement and has poor performance. It is no longer used.

e RAID-3 and RAID-4 use striping and parity. Their difference is that RAID-3 uses
byte striping, whereas RAID-4 uses sector striping. In general, sector striping
tends to be more efficient because it corresponds to the unit of disk access.

* RAID-5 is similar to RAID-4, except that instead of storing all the parity infor-
mation on a separate disk, the parity information is distributed among the data
disks. That is, if there are N data disks, then every Nth sector of each disk holds
parity information. This strategy is more efficient than RAID-4 because there is
no longer a single parity disk to become a bottleneck. See Exercise 3.5.

3.1 Persistent Data Storage 59

* RAID-6 is similar to RAID-5, except that it keeps two kinds of parity information.
This strategy is therefore able to handle two concurrent disk failures but needs
another disk to hold the additional parity information.

The two most popular RAID levels are RAID-1 and RAID-5. The choice between
them is really one of mirroring vs. parity. Mirroring tends to be the more solid choice
in a database installation, first because of its speed and robustness and second
because the cost of the additional disk drives has become so low.

3.1.7 Flash Drives

Disk drives are commonplace in current database systems, but they have an insur-
mountable drawback—their operation depends entirely on the mechanical activity of
spinning platters and moving actuators. This drawback makes disk drives inherently
slow compared to electronic memory and also susceptible to damage from falling,
vibration, and other shocks.

Flash memory is a more recent technology that has the potential to replace disk
drives. It uses semiconductor technology, similar to RAM, but does not require an
uninterrupted power supply. Because its activity is entirely electrical, it can access
data much more quickly than disk drives and has no moving parts to get damaged.

Flash drives currently have a seek time of around 50 microseconds, which is
about 100 times faster than disk drives. The transfer rate of current flash drives
depends on the bus interface is it connected to. Flash drives connected by fast
internal buses are comparable to those of disk drives; however, external USB flash
drives are slower than disk drives.

Flash memory wears out. Each byte can be rewritten a fixed number of times;
attempting to write to a byte that has hit its limit will cause the flash drive to fail.
Currently, this maximum is in the millions, which is reasonably high for most
database applications. High-end drives employ “wear-leveling” techniques that
automatically move frequently written bytes to less-written locations; this technique
allows the drive to operate until all bytes on the drive reach their rewrite limit.

A flash drive presents a sector-based interface to the operating system, which
makes the flash drive look like a disk drive. It is possible to employ RAID techniques
with flash drives, although striping is less important because the seek time of a flash
drive is so low.

The main impediment to flash drive adoption is its price. Prices are currently
about 100 times the price of a comparable disk drive. Although the price of both
flash and disk technology will continue to decrease, eventually flash drives will be
cheap enough to be treated as mainstream. At that point, disk drives may be relegated
to archival storage and the storage of extremely large databases.

Flash memory can also be used to enhance a disk drive by serving as a persistent
front end. If the database fits entirely in the flash memory, then the disk drive will

60 3 Disk and File Management

never get used. But as the database gets larger, the less frequently used sectors will
migrate to disk.

As far as the database engine is concerned, a flash drive has the same properties as
a disk drive: it is persistent, slow, and accessed in sectors. (It just happens to be less
slow than a disk drive.) Consequently, I shall conform to current terminology and
refer to persistent memory as “the disk” throughout the rest of this book.

3.2 The Block-Level Interface to the Disk

Disks may have different hardware characteristics—for example, they need not have
the same sector size, and their sectors may be addressed in different ways. The
operating system is responsible for hiding these (and other) details, providing its
applications with a simple interface for accessing disks.

The notion of a block is central to this interface. A block is similar to a sector
except that its size is determined by the OS. Each block has the same fixed size for all
disks. The OS maintains the mapping between blocks and sectors. The OS also
assigns a block number to each block of a disk; given a block number, the OS
determines the actual sector addresses.

The contents of a block cannot be accessed directly from the disk. Instead, the
sectors comprising the block must first be read into a memory page and accessed
from there. To modify the contents of a block, a client must read the block into a
page, modify the bytes in the page, and then write the page back to the block on disk.

An OS typically provides several methods to access disk blocks, such as:

e readblock(n,p) reads the bytes at block n of the disk into page p of
memory.

e writeblock (n,p) writes the bytes in page p of memory to block n of
the disk.

* allocate(k,n) finds k contiguous unused blocks on disk, marks them as
used, and returns the block number of the first one. The new blocks should be
located as close to block n as possible.

e deallocate (k,n) marks the k contiguous blocks starting with block n as
unused.

The OS keeps track of which blocks on disk are available for allocation and which
are not. There are two basic strategies that it can adopt: a disk map or a free list.

A disk map is a sequence of bits, one bit for each block on the disk. A bit value of
1 means the block is free, and a 0 means that the block is already allocated. The disk
map is stored on the disk, usually in its first several blocks. The OS can deallocate
block n by simply changing bit n of the disk map to 1. It can allocate k contiguous
blocks by searching the disk map for k bits in a row having the value 1 and then
setting those bits to 0.

A free list is a chain of chunks, where a chunk is a contiguous sequence of
unallocated blocks. The first block of each chunk stores two values: the length of the

3.3 The File-Level Interface to the Disk 61

0 1 2 3
00100111001111... |[abcabeabe|| |[defdefdef | ...
(a)
0 il 2 3 4 5
[2 |labcabcabd]|l 5 |ldgefdefdef|lghighighil[p 10 |
6

| |[H;‘gkljkljkl”imonmonmolﬁl 1| |

Fig. 3.6 Two ways to keep track of free blocks. (a) A disk map, (b) A free list

chunk and the block number of the next chunk on the chain.* The first block of the
disk contains a pointer to the first chunk on the chain. When the OS is asked to
allocate k contiguous blocks, it searches the free list for a sufficiently large chunk. It
then has the choice of removing the entire chunk from the free list and allocating it or
of splitting off a piece of length k and allocating only those blocks. When asked to
deallocate a chunk of blocks, the OS simply inserts it into the free list.

Figure 3.6 illustrates these two techniques for a disk that has blocks 0, 1, 3, 4, 8, and
9 allocated. Part (a) shows the disk map stored in block 0 of the disk; a bit value of
0 indicates an allocated block. Part (b) shows the corresponding free list. Block
0 contains the value 2, meaning that the first chunk of the free list begins at block
2. Block 2 contains the two values 1 and 5, indicating that the chunk contains 1 block
and that the next chunk begins at block 5. Similarly, the contents of block 5 indicate
that its chunk is 3 blocks long, and the next chunk is at block 10. The value of —1 in
block 10 indicates that it is the last chunk, which contains all remaining blocks.

The free list technique requires minimal extra space; all you need is to store an
integer in block O to point to the first block in the list. On the other hand, the disk map
technique requires space to hold the map. Figure 3.6a assumes that the map can fit
into a single block. In general, however, several blocks may be required; see
Exercise 3.7. The advantage of a disk map is that it gives the OS a better picture
of where the “holes” in the disk are. For example, disk maps are often the strategy of
choice if the OS needs to support the allocation of multiple blocks at a time.

3.3 The File-Level Interface to the Disk

The OS provides another, higher-level interface to the disk, called the file system. A
client views a file as a named sequence of bytes. There is no notion of block at this
level. Instead, a client can read (or write) any number of bytes starting at any position
in the file.

“Since the block is unallocated, its contents can be used by the OS for any purpose whatsoever. In
this case, it is a simple matter to use the first 8 bytes of the block to store these two integers.

62 3 Disk and File Management

The Java class RandomAccessFile provides a typical API to the file system.
Each RandomAccessFile object holds a file pointer that indicates the byte at
which the next read or write operation will occur. This file pointer can be set
explicitly by a call to seek. A call to the method readInt (or writeInt) will
also move the file pointer past the integer it read (or wrote).

An example is the code fragment in Fig. 3.7, which increments the integer stored
at bytes 7992-7995 of the file “junk”. The call to readInt reads the integer at byte
7992 and moves the file pointer past it, to byte 7996. The subsequent call to seek
sets the file pointer back to byte 7992, so that the integer at that location can be
overwritten.

Note that the calls to readInt and writeInt act as if the disk were being
accessed directly, hiding the fact that disk blocks must be accessed through pages.
An OS typically reserves several pages of memory for its own use; these pages are
called I/O buffers. When a file is opened, the OS assigns an I/O buffer to the file,
unbeknownst to the client.

The file-level interface enables a file to be thought of as a sequence of blocks. For
example, if blocks are 4096 bytes long (i.e., 4K bytes), then byte 7992 is in block
1 of the file (i.e., its second block). Block references like “block 1 of the file” are
called logical block references, because they tell us where the block is with respect to
the file, but not where the block is on disk.

Given a particular file location, the seek method determines the actual disk
block that holds that location. In particular, seek performs two conversions:

» It converts the specified byte position to a logical block reference.
» It converts the logical block reference to a physical block reference.

The first conversion is easy—the logical block number is just the byte position
divided by the block size. For example, assuming 4K-byte blocks, byte 7992 is in
block 1 because 7992/4096 = 1 (integer division).

The second conversion is harder and depends on how a file system is
implemented. The remainder of this section considers three file implementation
strategies: contiguous allocation, extent-based allocation, and indexed allocation.
Each of these three strategies stores its information about file locations on disk, in a
file system directory. The seek method accesses the blocks of this directory when it
converts logical block references to physical block references. You can think of
these disk accesses as a hidden “overhead” imposed by the file system. Operating
systems try to minimize this overhead, but they cannot eliminate it.

RandomAccessFile f = new RandomAccessFile ("junk", "rws");
f.seek (7992);

int n = f.readInt();

f.seek (7992);

f.writeInt (n+1);

f.close();

Fig. 3.7 Using the file-system interface to the disk

3.3 The File-Level Interface to the Disk 63

Continuous Allocation

Contiguous allocation is the simplest strategy, storing each file as a sequence of
contiguous blocks. To implement contiguous allocation, the file system directory
holds the length of each file and the location of its first block. Mapping logical to
physical block references is easy—if the file begins at disk block b, then block N of
the file is in disk block b + N. Figure 3.8 depicts the directory for a file system
containing two files: a 48-block long file named “junk” that begins at block 32 and a
16-block long file named “temp” that begins at block 80.

Contiguous allocation has two problems. The first problem is that a file cannot be
extended if there is another file immediately following it. The file “junk” in Fig. 3.8
is an example of such a file. Thus, clients must create their files with the maximum
number of blocks they might need, which leads to wasted space when the file is not
full. This problem is known as internal fragmentation. The second problem is that as
the disk gets full, it may have lots of small-sized chunks of unallocated blocks, but
no large chunks. Thus, it may not be possible to create a large file, even though the
disk contains plenty of free space. This problem is known as external fragmentation.
In other words:

* Internal fragmentation is the wasted space inside a file.
« External fragmentation is the wasted space is outside all the files.

Extent-Based Allocation

The extent-based allocation strategy is a variation of contiguous allocation that
reduces both internal and external fragmentation. Here, the OS stores a file as a
sequence of fixed-length extents, where each extent is a contiguous chunk of blocks.
A file is extended one extent at a time. The file system directory for this strategy
contains, for each file, a list of the first blocks of each extent of the file.

For example, suppose that the OS stores files in 8-block extents. Figure 3.9
depicts the file system directory for the two files “junk” and “temp.” These files
have the same size as before but are now split into extents. The file “junk” has six
extents, and the file “temp” has two extents.

To find the disk block that holds block N of the file, the seek method searches the
file system directory for the extent list for that file; it then searches the extent list to

Name First Block Length
junk 32 48
temp 80 16

Fig. 3.8 A file system directory for contiguous allocation

Name Extents
junk 32, 480, 696, 72, 528, 336
temp 64, 8

Fig. 3.9 A file system directory for extent-based allocation

64 3 Disk and File Management

determine the extent that contains block N, from which it can calculate the location of
the block. For example, consider the file directory of Fig. 3.9. The location of block
21 of the file “junk” can be calculated as follows:

. Block 21 is in extent 2 of the file, because 21/8 = 2 (integer division).
. Extent 2 begins at logical block 28 = 16 of the file.

. So block 21 is in block 21-16 = 5 of that extent.

. The file’s extent list says that extent 2 begins at physical block 696.

. Thus the location of block 21 is 696 + 5 = 701.

N A Wi =

Extent-based allocation reduces internal fragmentation because a file can waste
no more than an extent’s worth of space. And external fragmentation is eliminated
because all extents are the same size.

Indexed Allocation

Indexed allocation takes a different approach—it doesn’t even try to allocate files in
contiguous chunks. Instead, each block of the file is allocated individually (in one-
block-long extents, if you will). The OS implements this strategy by allocating a
special index block with each file, which keeps track of the disk blocks allocated to
that file. That is, an index block ib can be thought of as an array of integers, where
the value of ib[N] is the disk block that holds logical block N of the file.
Calculating the location of any logical block is thus trivial—you just look it up in
the index block.

Figure 3.10a depicts the file system directory for the two files “junk” and “temp.”
The index block for “junk” is block 34. Figure 3.10b gives the first few integers in
that block. From this figure, it is easy to see that block 1 of file “junk” is at block
103 of the disk.

This approach has the advantage that blocks are allocated one at a time, so there is
no fragmentation. Its main problem is that files will have a maximum size, because
they can have only as many blocks as there are values in an index block. The UNIX
file system addresses this problem by supporting multiple levels of index block,
thereby allowing the maximum file size to be very large. See Exercises 3.12 and
3.13.

Name Index Block Block 34:
junk 34 [32 103 16 17 98
temp 439

(a) (b)

Fig. 3.10 A file system directory for indexed allocation. (a) The directory table, (b) The contents of
index block 34

3.4 The Database System and the OS 65
3.4 The Database System and the OS

The OS provides two levels of support for disk access: block-level support and file-
level support. Which level should the implementers of a database engine choose?

Choosing to use block-level support has the advantage of giving the engine
complete control over which disk blocks are used for what purposes. For example,
frequently used blocks can be stored in the middle of the disk, where the seek time
will be less. Similarly, blocks that tend to be accessed together can be stored near
each other. Another advantage is that the database engine is not constrained by OS
limitations on files, allowing it to support tables that are larger than the OS limit or
span multiple disk drives.

On the other hand, the use of the block-level interface has several disadvantages:
such a strategy is complex to implement; it requires that the disk be formatted and
mounted as a Fawdisk, that is, a disk whose blocks are not part of the file system; and
it requires that the database administrator have extensive knowledge about block
access patterns in order to fine-tune the system.

The other extreme is for the database engine to use the OS file system as much as
possible. For example, every table could be stored in a separate file, and the engine
would access records using file-level operations. This strategy is much easier to
implement, and it allows the OS to hide the actual disk accesses from the database
system. This situation is unacceptable for two reasons. First, the database system
needs to know where the block boundaries are, so that it can organize and retrieve
data efficiently. And second, the database system needs to manage its own pages,
because the OS way of managing I/O buffers is inappropriate for database queries.
You shall encounter these issues in later chapters.

A compromise strategy is for the database system to store all of its data in one or
more OS files, but to treat the files as if they were raw disks. That is, the'database
System accesses its “disk” using logical file"blocks. The OS is responsible for
mapping each logical block reference to its corresponding physical block, via the
seek method. Because seek may incur disk accesses when it examines the file
system directory, the database system will not be in complete control of the disk.
However, these additional blocks are usually insignificant compared with the large
number of blocks accessed by the database system. Thus the database system is able
to use the high-level interface to the OS while maintaining significant control over
disk accesses.

This compromise strategy is used in many database systems. Microsoft Access
keeps everything in a single .mdb file, whereas Oracle, Derby, and SimpleDB use
multiple files.

Chao Yang

Chao Yang

66 3 Disk and File Management
3.5 The SimpleDB File Manager

The portion of the database engine that interacts with the operating system is called
the file manager. This section examines the file manager for SimpleDB.
Section 3.5.1 examines how clients use the file manager; Sect. 3.5.2 examines its
implementation.

3.5.1 Using the File Manager

A SimpleDB database is stored in several files. There is a file for each table and each
index, as well as a log file and several catalog files. The SimpleDB file manager
provides block-level access to these files, via the package simpledb.file. This
package exposes three classes: BlockId, Page, and FileMgr. Their API appears
in Fig. 3.11.

A BlockId object identifies a specific block by its file name and logical block
number. For example, the statement,

BlockId blk = new BlockId ("student.tbl", 23)

Blockld
public BlockId(String filename, int blknum);
public String filename () ;
public int number () ;

Page
public Page (int blocksize);

public Page (byte[] b);

public int getInt (int offset);

public byte[] getBytes(int offset);

public String getString(int offset);

public void setInt (int offset, int wval);
public void setBytes (int offset, byte[] wval);
public void setString(int offset, String wval);

public int maxLength (int strlen);

FileMgr
public FileMgr (String dbDirectory, int blocksize);
public void read (BlockId blk, Page p);

public void write (BlockId blk, Page p);
public BlockId append(String filename) ;
public boolean isNew() ;

public int length (String filename) ;
public int blockSize () ;

Fig. 3.11 The API for the SimpleDB file manager

3.5 The SimpleDB File Manager 67

creates a reference to block 23 of the file student.tbl. The methods
filename and number return its file name and block number.

A Page object holds the contents of a disk block. Its first constructor creates a
page that gets its memory from an operating system I/O buffer; this constructor is
used by the buffer manager. Its second constructor creates a page that gets its
memory from a Java array; this constructor is used primarily by the log manager.
The various get and set methods enable clients to store or access values at
specified locations of the page. A page can hold three value types: ints, strings,
and “blobs” (i.e., arbitrary arrays of bytes). Corresponding methods for additional
types can be added if desired; see Exercise 3.17. A client can store a value at any
offset of the page but is responsible for knowing what values have been stored where.
An attempt to get a value from the wrong offset will have unpredictable results.

The FileMgr class handles the actual interaction with the OS file system. Its
constructor takes two arguments: a string denoting the name of the database and an
integer denoting the size of each block. The database name is used as the name of the
folder that contains the files for the database; this folder is located in the engine’s
current directory. If no such folder exists, then a folder is created for a new database.
The method isNew returns true in this case and false otherwise. This method is
needed for the proper initialization of a new database.

The read method reads the contents of the specified block into the specified
page. The write method performs the inverse operation, writing the contents of a
page to the specified block. The 1ength method returns the number of blocks in the
specified file.

The engine has one FileMgr object, which is created during system startup. The
class SimpleDB (in package simpledb.server) creates the object, and its
method fileMgr returns the created object.

The class FileTest in Fig. 3.12 illustrates the use of these methods. This code
has three sections. The first section initializes the SimpleDB object; the three
arguments specify that the engine should use the database named “studentdb,”
using 400-byte blocks and a pool of 8 buffers. The 400-byte block size is the default
for SimpleDB. It is artificially small so that you can easily create demo databases
having a lot of blocks. In a commercial database system, this value would be set to
the block size defined by the operating system; a typical block size is 4K bytes. The
buffer pool will be discussed in Chap. 4.

The second section of Fig. 3.12 writes the string “abcdefghijklm” locations 88 of
the second block of the file “testfile.” It then calls the maxLength method to
determine the maximum length of the string, so it can determine the location
following the string. It then writes the integer 345 to that location.

The third section reads this block into another page and extracts the two values
from it.

https://doi.org/10.1007/978-3-030-33836-7_4

68 3 Disk and File Management

public class FileTest {
public static void main(String[] args) throws IOException {
SimpleDB db = new SimpleDB("filetest", 400, 8);
FileMgr fm = db.fileMgr () ;

BlockId blk = new BlockId("testfile", 2);

Page pl = new Page(fm.blockSize());

int posl = 88;

pl.setString (posl, "abcdefghijklm");

int size = Page.maxLength ("abcdefghijklm".length());
int pos2 = posl + size;

pl.setInt (pos2, 345);

fm.write (blk, pl);

Page p2 = new Page(fm.blockSize());
fm.read(blk, p2);
System.out.println("offset " + pos2 +
" contains " + p2.getlInt (pos2));

System.out.println ("offset " + posl +

contains + p2.getString(posl));

}

Fig. 3.12 Testing the SimpleDB file manager

3.5.2 Implementing the File Manager

This subsection examines the implementation of the three file manager classes.

The class BlockId

The code for class BlockId appears in Fig. 3.13. In addition to straightforward
implementations of the methods fileName and number, the class also implements
equals, hashCode, and toString.

The class Page

The code to implement class Page appears in Fig. 3.14. Each page is implemented
using a Java ByteBuf fer object. A ByteBuf fer object wraps a byte array with
methods to read and write values at arbitrary locations of the array. These values can
be primitive values (such as integers) as well as smaller byte arrays. For example,
Page’s setInt method saves an integer in the page by calling the
ByteBuffer’s putInt method. Page’s setBytes method saves a blob as
two values: first the number of bytes in the specified blob and then the bytes
themselves. It calls ByteBuffer’s put Int method to write the integer and the
method put to write the bytes.

The ByteBuffer class does not have methods to read and write strings, so
Page chooses to write string values as blobs. The Java String class has a method
getBytes, which converts a string into a byte array; it also has a constructor that
converts the byte array back to a string. Thus, Page’s setString method calls

3.5 The SimpleDB File Manager 69

public class BlockId {
private String filename;
private int blknum;

public BlockId(String filename, int blknum) {
this.filename = filename;
this.blknum = blknum;

public String fileName () {
return filename;

}

public int number () {
return blknum;

}

public boolean equals (Object obj) {
BlockId blk = (BlockId) obj;:
return filename.equals (blk.filename) && blknum == blk.blknum;

public String toString() {
return "[file " + filename + ", block " + blknum + "]";

public int hashCode () {
return toString() .hashCode();

}

Fig. 3.13 The code for the SimpleDB class BlockId

getBytes to convert the string to bytes and then writes those bytes as a blob.
Similarly, Page’s get St ring method reads a blob from the byte buffer and then
converts the bytes to a string.

The conversion between a string and its byte representation is determined by a
character encoding. Several standard encodings exist, such as ASCII and Unicode-
16. The Java Charset class contains objects that implement many of these
encodings. The constructor for String and its getBytes method take a
Charset argument. In Fig. 3.14 you can see that Page uses the ASCII encoding,
but you can change the CHARSET constant to get an encoding of your preference.

A charset chooses how many bytes each character encodes to. ASCII uses one
byte per character, whereas Unicode-16 uses between 2 bytes and 4 bytes per
character. Consequently, a database engine may not know exactly how many bytes
a given string will encode to. Page’s maxLength method calculates the maximum
size of the blob for a string having a specified number of characters. It does so by
multiplying the number of characters by the max number of bytes per character and
adding 4 bytes for the integer that is written with the bytes.

70 3 Disk and File Management

public class Page {
private ByteBuffer bb;
public static final Charset CHARSET = StandardCharsets.US_ASCII;

// A constructor for creating data buffers
public Page (int blocksize) {

bb = ByteBuffer.allocateDirect (blocksize);
}

// A constructor for creating log pages
public Page (byte[] b) {

bb = ByteBuffer.wrap (b);
}

public int getInt (int offset) {
return bb.getlInt (offset);
}

public void setInt (int offset, int n) {
bb.putInt (offset, n);
}

public byte[] getBytes (int offset) {
bb.position (offset);
int length = bb.getInt();
byte[] b = new byte[length];
bb.get (b) ;
return b;
}
public void setBytes (int offset, byte[] b) {
bb.position (offset);
bb.putInt (b.length);
bb.put (b) ;
}
public String getString(int offset) {
byte[] b = getBytes(offset);
return new String (b, CHARSET);
}
public void setString(int offset, String s) {
byte[] b = s.getBytes (CHARSET) ;
setBytes (offset, b);
}
public static int maxLength (int strlen) {
float bytesPerChar = CHARSET.newEncoder () .maxBytesPerChar () ;
return Integer.BYTES + (strlen * (int)bytesPerChar);
}
// a package private method, needed by FileMgr
ByteBuffer contents () {
bb.position(0) ;
return bb;

Fig. 3.14 The code for the SimpleDB class Page

3.6 Chapter Summary 71

The byte array that underlies a ByteBuf fer object can come either from a Java
array or from the operating system’s I/O buffers. The Page class has two construc-
tors, each corresponding to a different kind of underlying byte array. Since I/O
buffers are a valuable resource, the use of the first constructor is carefully controlled
by the buffer manager and will be discussed in the next chapter. Other components
of the database engine (such as the log manager) use the other constructor.

The class FileMgr

The code for class FileMgr appears in Fig. 3.15. Its primary job is to implement
methods that read and write pages to disk blocks. Its read method seeks to the
appropriate position in the specified file and reads the contents of that block to the
byte buffer of the specified page. The write method is similar. The append
method seeks to the end of the file and writes an empty array of bytes to it, which
causes the OS to automatically extend the file. Note how the file manager always
reads or writes a block-sized number of bytes from a file and always at a block
boundary. In doing so, the file manager ensures that each call to read, write, or
append will incur exactly one disk access.

Each RandomAccessFile object in the map openFiles corresponds to an
open file. Note that files are opened in “rws” mode. The “rw” portion specifies that
the file is open for reading and writing. The “s” portion specifies that the operating
system should not delay disk I/O in order to optimize disk performance; instead,
every write operation must be written immediately to the disk. This feature
ensures that the database engine knows exactly when disk writes occur, which will
be especially important for implementing the data recovery algorithms of Chap. 5.

The methods read, write, and append are synchronized, which means that
only one thread can be executing them at a time. Synchronization is needed to
maintain consistency when methods share updateable objects, such as the
RandomAccessFile objects. For example, the following scenario could occur if
read were not synchronized: Suppose that two JDBC clients, each running in their
own thread, are trying to read different blocks from the same file. Thread A runs first.
It starts to execute read but gets interrupted right after the call to £ . seek, that is, it
has set the file position but has not yet read from it. Thread B runs next and executes
read to completion. When thread A resumes, the file position will have changed, but
the thread will not notice it; thus, it will incorrectly read from the wrong block.

There is only one FileMgr object in SimpleDB, which is created by the
SimpleDB constructor in package simpledb.server. The FileMgr construc-
tor determines if the specified database folder exists and creates it if necessary. The
constructor also removes any temporary files that might have been created by the
materialized operators of Chap. 13.

3.6 Chapter Summary

* A disk drive contains one or more rotating platters. A platter has concentric
tracks, and each track consists of sectors. The size of a sector is determined by the
disk manufacturer; a common sector size is 512 bytes.

https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_13

72 3 Disk and File Management

public class FileMgr ({
private File dbDirectory;
private int blocksize;
private boolean isNew;
private Map<String,RandomAccessFile> openFiles = new HashMap<>();

public FileMgr (File dbDirectory, int blocksize) {
this.dbDirectory = dbDirectory;
this.blocksize = blocksize;
isNew = !dbDirectory.exists();

// create the directory if the database is new
if (isNew)
dbDirectory.mkdirs () ;

// remove any leftover temporary tables
for (String filename : dbDirectory.list())
if (filename.startsWith ("temp"))
new File(dbDirectory, filename).delete();
}

public synchronized void read(BlockId blk, Page p) {

try {
RandomAccessFile f = getFile(blk.fileName());
f.seek (blk.number () * blocksize);
f.getChannel () .read (p.contents());

}
catch (IOException e) {
throw new RuntimeException ("cannot read block " + blk);

}

public synchronized void write (BlockId blk, Page p) {

try {
RandomAccessFile f = getFile(blk.fileName());
f.seek (blk.number () * blocksize);
f.getChannel () .write (p.contents());

}

catch (IOException e) {
throw new RuntimeException ("cannot write block" + blk);

}

public synchronized BlockId append(String filename) {
int newblknum = size (filename);
BlockId blk = new BlockId(filename, newblknum) ;
byte[] b = new byte[blocksize];

try {
RandomAccessFile f = getFile(blk.fileName());
f.seek(blk.number () * blocksize);
f.write(b);

Fig. 3.15 The code for the SimpleDB class FileMgr

3.6 Chapter Summary 73

catch (IOException e) {
throw new RuntimeException ("cannot append block" + blk);

}
return blk;

public int length(String filename) {
try {
RandomAccessFile f = getFile(filename);
return (int) (f.length() / blocksize);

}
catch (IOException e) {
throw new RuntimeException("cannot access " + filename);

public boolean isNew () {
return isNew;

public int blockSize () {
return blocksize;

}
private RandomAccessFile getFile (String filename)
throws IOException {

RandomAccessFile f = openFiles.get (filename) ;

if (£ == null) {
File dbTable = new File(dbDirectory, filename);
f = new RandomAccessFile (dbTable, "rws");
openFiles.put (filename, f);

}

return £f;

Fig. 3.15 (continued)

» Each platter has its own read/write head. These heads do not move independently;
instead, they are all connected to a single actuator, which moves them simulta-
neously to the same track on each platter.

e A disk drive executes a disk access in three stages:

— The actuator moves the disk head to the specified track. This time is called the
seek time.

— The drive waits for the platter to rotate until the first desired byte is beneath the
disk head. This time is called the rotational delay.

— The bytes rotating under the disk head are read (or written). This time is called
the transfer time.

* Disk drives are slow because their activity is mechanical. Access times can be
improved by using disk caches, cylinders, and disk striping. A disk cache allows

3 Disk and File Management

the disk to pre-fetch sectors by reading an entire track at a time. A cylinder
consists of the tracks on each platter having the same track number. Blocks on the
same cylinder can be accessed with no additional seek time. Disk striping
distributes the contents of a virtual disk among several small disks. Speedup
occurs because the small disks can operate simultaneously.

RAID techniques can be used to improve disk reliability. The basic RAID levels
are:

— RAID-0 is striping, with no additional reliability. If a disk fails, the entire
database is effectively ruined.

— RAID-1 adds mirroring to the striped disks. Each disk has an identical mirror
disk. If a disk fails, its mirror can be used to reconstruct it.

— RAID-4 uses striping with an additional disk to hold redundant parity infor-
mation. If a disk fails, its contents can be reconstructed by combining the
information on the other disks with the parity disk.

The RAID techniques require a controller to hide the existence of the multiple
disks from the operating system and provide the illusion of a single, virtual disk.
The controller maps each virtual read/write operation to one or more operations
on the underlying disks.

Disk technology is being challenged by flash memory. Flash memory is persistent
but faster than disk because it is completely electronic. However, since flash is
still significantly slower than RAM, the operating system treats a flash drive the
same as a disk drive.

The operating system hides the physical details of disk and flash drives from its
clients by providing a block-based interface to them. A block is similar to a sector,
except that its size is OS-defined. A client accesses the contents of a device by
block number. The OS keeps track of which blocks on disk are available for
allocation, by using either a disk map or a free list.

A page is a block-sized area of memory. A client modifies a block by reading its
contents into a page, modifying the page, and then writing the page back to the
block.

The operating system also provides a file-level interface to the disk. A client
views a file as a named sequence of bytes.

An operating system can implement files using contiguous allocation, extent-
based allocation, or indexed allocation. Contiguous allocation stores each file as
a sequence of contiguous blocks. Extent-based allocation stores a file a sequence
of extents, where each extent is a contiguous chunk of blocks. Indexed allocation
allocates each block of the file individually. A special index block is kept with
each file, to keep track of the disk blocks allocated to that file.

A database system can choose to use either the block-level or the file-level
interface to the disk. A good compromise is to store the data in files but to access
the files at the block level.

3.8 Exercises 75
3.7 Suggested Reading

The article Chen et al. (1994) provides a detailed survey of the various RAID
strategies and their performance characteristics. A good book that discusses
UNIX-based file systems is von Hagen (2002), and one that discusses Windows
NTEFS is Nagar (1997). Brief overviews of various file system implementations can
be found in many operating systems textbooks, such as Silberschatz et al. (2004).

Flash memory has the property that overwriting an existing value is significantly
slower than writing a completely new value. Consequently, there has been a lot of
research aimed at flash-based file systems that do not overwrite values. Such file
systems store updates in a log, similar to the log of Chap. 4. The articles Wu and Kuo
(2006) and Lee and Moon (2007) examine these issues.

Chen, P., Lee, E., Gibson, G., & Patterson, D. (1994) RAID: High-performance,
reliable secondary storage. ACM Computing Surveys, 26(2), 145-185.

Lee, S., & Moon, B. (2007) Design of flash-based DBMS: An in-page logging
approach. Proceedings of the ACM-SIGMOD Conference, pp. 55—66.

Nagar, R. (1997) Windows NT file system internals. O’Reilly.

Silberschatz, A., Gagne, G., & Galvin, P. (2004) Operating system concepts.
Addison Wesley.

von Hagen, W. (2002) Linux filesystems. Sams Publishing.

Wu, C., & Kuo, T. (2006) The design of efficient initialization and crash recovery for
log-based file systems over flash memory. ACM Transactions on Storage, 2(4),
449-467.

3.8 Exercises

Conceptual Exercises

3.1. Consider a single-platter disk containing 50,000 tracks and spinning at
7200 rpm. Each track holds 500 sectors, and each sector contains 512 bytes.

(a) What is the capacity of the platter?
(b) What is the average rotational delay?
(c) What is the maximum transfer rate?

3.2. Consider an 80 GB disk drive spinning at 7200 rpm with a transfer rate of
100 MB/s. Assume that each track contains the same number of bytes.

(a) How many bytes does each track contain? How many tracks does the disk
contain?
(b) If the disk were spinning at 10,000 rpm, what would the transfer rate be?

3.3. Suppose that you have 10 20 GB disk drives, each of which has 500 sectors
per track. Suppose that you want to create a virtual 200 GB drive by striping

https://doi.org/10.1007/978-3-030-33836-7_4

76

34.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

3 Disk and File Management

the small disks, with the size of each stripe being an entire track instead of just
a single sector.

(a) Suppose that the controller receives a request for virtual sector M. Give the
formula that computes the corresponding actual drive and sector number.

(b) Give a reason why track-sized stripes might be more efficient than sector-
sized stripes.

(c) Give a reason why track-sized stripes might be less efficient than sector-
sized stripes.

All of the failure-recovery procedures discussed in this chapter require the
system to be shut down while the failed disk is replaced. Many systems cannot
tolerate downtime of any amount, and yet they also don’t want to lose data.

(a) Consider the basic mirroring strategy. Give an algorithm for restoring a
failed mirror without any downtime. Does your algorithm increase the risk
of a second disk failure? What should be done to reduce this risk?

(b) Modify the parity strategy to similarly eliminate downtime. How do you
deal with the risk of a second disk failure?

One consequence of the RAID-4 parity strategy is that the parity disk gets
accessed for every disk write operation. One suggested improvement is to omit
the parity disk and instead “stripe” the data disks with the parity information.
For example, sectors 0, N, 2N, etc. of disk O will contain parity information, as
will sectors 1, N + 1, 2N + 1, etc. of disk 1, and so on. This improvement is
called RAID-5.

(a) Suppose a disk fails. Explain how it will get recovered.

(b) Show that with this improvement, disk reads and writes still require the
same number of disk accesses as RAID-4.

(c) Explain why this improvement nevertheless leads to more efficient disk
accesses.

Consider Fig. 3.5, and suppose that one of the striped disks fails. Show how to
reconstruct its contents using the parity disk.
Consider a 1 GB database, stored in a file whose block size is 4K bytes.

(a) How many blocks will the file contain?
(b) Suppose that the database system uses a disk map to manage its free
blocks. How many additional blocks are needed to hold the disk map?

Consider Fig. 3.6. Draw a picture of the disk map and the free list after the
following operations have been executed:

allocate(1,4); allocate(4,10); allocate(5,12);

Figure 3.16 depicts a RAID-4 system in which one of the disks has failed. Use
the parity disk to reconstruct its values.

The free list allocation strategy can wind up with two contiguous chunks on
the free list.

3.8 Exercises 77

Virtual Disk Striped Physical Disks

Parity Disk

Fig. 3.16 A failed physical disk in a RAID-4 system

(a) Explain how to modify the free-list technique so that contiguous chunks
can be merged.

(b) Explain why merging unallocated chunks is a good idea when files are
allocated contiguously.

(c) Explain why merging is not important for extent-based or indexed file
allocation.

3.11. Suppose that the OS uses extent-based file allocation using extents of size
12, and suppose that the extent list for a file is [240, 132, 60, 252, 12, 24].

(a) What is the size of the file?
(b) Calculate the physical disk block of logical blocks 2, 12, 23, 34, and 55 of
the file.

3.12. Consider a file implementation that uses indexed file allocation. Assuming that
the block size is 4K bytes, what is the size of the largest possible file?

3.13. In UNIX, the directory entry for a file points to a block called an inode. In one
implementation of an inode, the beginning of the block holds various header
information, and its last 60 bytes contains 15 integers. The first 12 of these
integers are the physical locations of the first 12 data blocks in the file. The
next two integers are the location of two index blocks, and the last integer is the
location of a double-index block. An index block consists entirely of block
numbers of the next data blocks in the file; a double-index block consists
entirely of block numbers of index blocks (whose contents point to data
blocks).

(a) Assuming again that the block size is 4K bytes, how many data blocks
does an index block refer to?

(b) Ignoring the double-index block, what is the largest possible UNIX file
size?

(c) How many data blocks does a double-index block refer to?

(d) What is the largest possible UNIX file size?

78

3.14.

3 Disk and File Management

(e) How many block accesses are required to read the last data block of a
1 GB file?
(f) Give an algorithm to implement the seek function for a UNIX file.

The movie and song title “On a clear day you can see forever” is occasionally
misquoted as “On a clear disk you can seek forever.” Comment on the
cleverness and accuracy of the pun.

Programming Exercises

3.15.

3.16.

3.17.

3.18.

A database system often contains diagnostic routines.

(a) Modify the class FileMgr so that it keeps useful statistics, such as the
number of blocks read/written. Add new method(s) to the class that will
return these statistics.

(b) Modify the methods commit and rollback of the class
RemoteConnectionImpl (in the simpledb.jdbc.network
package) so that they print these statistics. Do the same for the class
EmbeddedConnection (in the simpledb. jdbc.embedded pack-
age). The result will be that the engine prints the statistics for each SQL
statement it executes.

The methods setInt, setBytes, and setString of class Page do not
check that the new value fits in the page.

(a) Modify the code to perform the checks. What should you do if the check
fails?
(b) Give a reason why it is reasonable to not perform the checks.

The class Page has methods to get/set integers, blobs, and strings. Modify the
class to handle other types, such as short integers, booleans, and dates.

The class Page implements a string by creating a blob from the string’s
characters. Another way to implement a string is to write each character
individually, appending a delimiter character at the end. A reasonable delim-
iter character in Java is \O’. Modify the class accordingly.

Chapter 4)
Memory Management oo

This chapter studies two components of the database engine: the log manager and
the buffer manager. Each of these components is responsible for certain files: The
log manager is responsible for the log file, and the buffer manager is responsible for
the data files.

Both components face the problem of how to efficiently manage the reading and
writing of disk blocks with main memory. The contents of a database is typically
much larger than main memory, and so these components may need to shuttle blocks
in and out of memory. This chapter examines their memory needs and the memory-
management algorithms they use. The log manager supports only sequential access
to the log file and has a simple, optimal memory-management algorithm. On the
other hand, the buffer manager must support arbitrary access to user files, which is a
much more difficult challenge.

4.1 Two Principles of Database Memory Management

Recall that the only way that aidatabaserenginercanireadrardiskivaluerisitorreadithe
blockicontainingritintorapagerof memory, and the only way to write a disk value is
to write the modified page back to its block. Database engines follow two important
principles when they move data between the disk and memory: minimize disk
accesses, and don'’t rely on virtual memory.

Principle 1: Minimize Disk Accesses

Consider an application that reads data from the disk, searches through the data,
performs various computations, makes some changes, and writes the data back. How
can you estimate the amount of time this will take? Recall that RAM operations are
over 1000 times faster than flash and 100,000 times faster than disk. This means that
in most practical situations, the time it takes to read/write the block from disk is at

© Springer Nature Switzerland AG 2020 79
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_4
Chao Yang

80 4 Memory Management

least as large as the time it takes to process the block in RAM. Consequently, the
single most important thing a database engine can do is minimize block accesses.

One way to minimize block accesses is to avoid accessing a disk block multiple
times. This kind of problem occurs in many areas of computing and has a standard
solution known as caching. For example, a CPU has a local hardware cache of
previously executed instructions; if the next instruction is in the cache, the CPU does
not have to load it from RAM. For another example, a browser keeps a cache of
previously accessed web pages; if a user requests a page that happens to be in the
cache (say, by hitting the browser’s Back button), the browser can avoid retrieving it
from the network.

A database engine uses memory pages to cache disk blocks. By kecping track of

which pages contain the contents of which blocks, the engine may be able to satisfy a
client request by using an existing page and thereby avoid a disk read. Similarly, the
engine writes pages to disk only when necessary, in the hope that multiple changes to
a page can be made via a single disk write.

The need to minimize disk accesses is so important that it pervades the entire
implementation of the database engine. For example, the retrieval algorithms used
by the engine are chosen specifically because of the frugal way that they access the
disk. And when an SQL query has several possible retrieval strategies, the planner
will choose the strategy that it thinks will require the fewest number of disk accesses.

Principle 2: Don’t Rely on Virtual Memory

Modern operating systems support virtual memory. The operating system gives each
process the illusion that it has a very large amount of memory in which to store its
code and data. A process can allocate objects arbitrarily in its virtual memory space;
the operating system maps each virtual page to an actual page of physical memory.

The virtual memory space supported by an operating system is usually far larger
than a computer’s physical memory. Since not all virtual pages fit in physical
memory, the OS must store some of them on disk. When a process accesses a virtual
page not in memory, a page swap occurs. The OS chooses a physical page, writes the
contents of that page to disk (if it had been modified), and reads the saved contents of
the virtual page from disk to that page.

The most straightforward way for the database engine to manage disk blocks is to
give each block its own virtual page. For example, it could keep an array of pages for
each file, having one slot for each block of the file. These arrays would be huge, but
they would fit in virtual memory. As the database system accessed these pages, the
virtual memory mechanism would swap them between disk and physical memory, as
needed. This is a simple, easily implemented strategy. Unfortunately, it has a serious
problem, which is that the operating system, not the database engine, controls when
pages get written to disk. Two issues arise.

The first issue is that the operating system’s page-swapping strategy can impair
the database engine’s ability to recover after a system crash. The reason, as you shall
see in Chap. 5, is that a modified page will have some associated log records, and
these log records must be written to disk before the page. (Otherwise, the log records
will not be available to help the database recover after a system crash.) Since the OS

https://doi.org/10.1007/978-3-030-33836-7_5
Chao Yang

Chao Yang

4.2 Managing Log Information 81

does not know about the log, it may swap out a modified page without writing its log
records and thereby subvert the recovery mechanism.'

The second issue is that the operating system has no idea which pages are
currently in use and which pages the database engine no longer cares about. The
OS can make an educated guess, such as choosing to swap the page that was least
recently accessed. But if the OS guesses incorrectly, it will swap out a page that will
be needed again, causing two unnecessary disk accesses. The database engine, on the
other hand, has a much better idea of what pages are needed and can make much
more intelligent guesses.

Therefore, a database engine must manage its own pages. It does so by allocating
a relatively small number of pages that it knows will fit in physical memory; these
pages are known as'the database’s bujffer pool. The engine keeps track of which
pages are available for swapping. When a block needs to be read into a page, the
database engine (and not the operating system) chooses an available page from the
buffer pool, writes its contents (and its log record) to disk if necessary, and only then
reads in the specified block.

4.2 Managing Log Information

Whenever a user changes the database, the database engine must keep track of that
change in case it needs to be undone. The values describing a change are keptin alog
record, and the log records are stored in a log file. New log records are appended to
the end of the log.

The log manager is the database engine component responsible for writing log
records to the log file. The log manager does not understand the contents of the log
records—that responsibility belongs to the recovery manager of Chap. 5. Instead, the
log manager treats the log as just an ever-increasing sequence of log records.

This section examines how the log manager can manage memory as it writes log
records to the log file. Consider the algorithm of Fig. 4.1, which is the most
straightforward way to append a record to the log.

This algorithm requires a disk read and a disk write for every appended log
record. It is simple but very inefficient. Figure 4.2 illustrates the operation of the log

1. Allocate a page in memory.
2. Read the last block of the log file into that page.
3a. If there is room, place the log record after the other records on the page,

and write the page back to disk.
3b. If there is no room, then allocate a new, empty page, place the log record in that page,

and append the page to a new block at the end of the log file.

Fig. 4.1 A simple (but inefficient) algorithm for appending a new record to the log

! Actually, there do exist operating systems that address this issue, but they are not commonplace.

https://doi.org/10.1007/978-3-030-33836-7_5
Chao Yang

82 4 Memory Management

n| r2 (3| 4 5 6 7 - V////////////ﬂ

Fig. 4.2 Adding a new log record 9

manager halfway through step 3a of the algorithm. The log file contains three blocks
that hold eight records, labeled rl through r8. Log records can have varying sizes,
which is why four records fit into block 0 but only three fit into block 1. Block 2 is
not yet full and contains just one record. The memory page contains the contents of
block 2. In addition to record r8, a new log record (record 19) has just been placed in
the page.

Suppose now that the log manager completes the algorithm by writing the page
back to block 2 of the file. When the log manager is eventually asked to add another
log record to the file, it will perform steps 1 and 2 of the algorithm and read block
2 into a page. But note that this disk read is completely unnecessary, because the
existing log page already contains the contents of block 2! Consequently, steps 1 and
2 of the algorithm are unnecessary. The log manager just needs to permanently
allocate a page to contain the contents of the last log block. As a result, all of the disk
reads are eliminated.

It is also possible to reduce the disk writes. In the above algorithm, the log
manager writes its page to disk every time a new record is added to the page.
Looking at Fig. 4.2, you can see that there is no need to write record r9 immediately
to the disk. Each new log record can be simply added to the page as long as the page
has room. When the page becomes full, the log manager can write the page to disk,
clear its contents, and start anew. This new algorithm would result in exactly one
disk write for each log block, which is clearly optimum.

This algorithm has one glitch: A log page may need to be written to the disk
before it is full, due to circumstances beyond the control of the log manager. The
issue is that the buffer manager cannot write a modified data page to disk until that
page’s associated log records have also been written to disk. If one of those log
records happen to be in the log page but not yet on disk, then the log manager must
write its page to disk, regardless of whether the page is full. This issue will be
addressed in Chap. 5.

Figure 4.3 gives the resulting log management algorithm. This algorithm has two
places where a memory page gets written to disk: when a log record needs to be
forced to disk and when the page is full. Consequently, a memory page might get
written to the same log block multiple times. But since these disk writes are
absolutely necessary and cannot be avoided, you can conclude that the algorithm
is optimal.

https://doi.org/10.1007/978-3-030-33836-7_5

4.3 The SimpleDB Log Manager 83

1. Permanently allocate one memory page to hold the contents of the last block of the log file.
Call this page P.
2. When a new log record is submitted:
a) If there is no room in P, then:
Write P to disk and clear its contents.
b) Append the new log record to P.
3. When the database system requests that a particular log record be written to disk:
a) Determine if that log record is in P.
b) If so, then write P to disk.

Fig. 4.3 The optimal log management algorithm

4.3 The SimpleDB Log Manager

This section examines the log manager of the SimpleDB database system.
Section 4.3.1 illustrates the use of the log manager. Section 4.3.2 examines its
implementation.

4.3.1 The API for the Log Manager

The SimpleDB log manager implementation is in the package simpledb.log. This
package exposes the class LogMgr, whose API appears in Fig. 4.4.

The database engine has one LogMgr object, which is created during system
startup. The arguments to the constructor are a reference to the file manager and the
name of the log file.

The method append adds a record to the log and returns an integer. As far as the
log manager is concerned, a log record is an arbitrarily sized byte array; it saves the
array in the log file but has no idea what its contents denote. The only constraint is
that the array must fit inside a page. The return value from append identifies the
new log record; this identifier is called its log sequence number (or LSN).

Appending a record to the log does not guarantee that the record will get written
to disk; instead, the log manager chooses when to write log records to disk, as in the
algorithm of Fig. 4.3. A client can force a specific log record to disk by calling the
method flush. The argument to flush is the LSN of a log record; the method
ensures that this log record (and all previous log records) is written to disk.

A client calls the method iterator to read the records in the log; this method
returns a Java iterator for the log records. Each call to the iterator’s next method

LogMgr
public LogMgr (FileMgr fm, String logfile);
public int append(byte[] rec);
public void flush(int 1sn);
public Iterator<byte[]> iterator();

Fig. 4.4 The API for the SimpleDB log manager

84 4 Memory Management

will return a byte array denoting the next record in the log. The records returned by
the iterator method are in reverse order, starting at the most recent record and
moving backwards through the log file. The records are returned in this order
because that is how the recovery manager wants to see them.

The class LogTest in Fig. 4.5 provides an example of how to use the log
manager API. The code creates 70 log records, each consisting of a string and an
integer. The integer is the record number N, and the string is the value “recordN.”
The code prints the records once after the first 35 have been created and then again
after all 70 have been created.

If you run the code, you will discover that only 20 records are printed after the
first call to printLogRecords. The reason is those records filled the first log
block and were flushed to disk when the 21st log record was created. The other
15 log records remained in the in-memory log page and were not flushed. The second
call to createRecords creates records 36 through 70. The call to flush tells the
log manager to ensure that record 65 is on disk. But since records 66—70 are in the
same page as record 65, they are also written to disk. Consequently, the second call
to printLogRecords will print all 70 records, in reverse order.

Note how the method createLogRecord allocates a byte array to be the log
record. It creates a Page object to wrap that array, so that it can use the page’s
setInt and setString methods to place the string and integer at appropriate
offsets in the log record. The code then returns the byte array. Similarly, the method
printLogRecords creates a Page object to wrap the log record, so that it can
extract the string and integer from the record.

4.3.2 Implementing the Log Manager

The code for LogMgr appears in Fig. 4.6. Its constructor uses the provided string as
the name of the log file. If the log file is empty, the constructor appends a new empty
block to it. The constructor also allocates a single page (called 1logpage) and
initializes it to contain the contents of the last log block in the file.

Recall that a log sequence number (or LSN) identifies a log record. The method
append assigns LSNs sequentially, starting from 1, using the variable
latestLSN. The log manager keeps track of the next available LSN and the
LSN of the most recent log record written to disk. The method flush compares
the most recent LSN against the specified LSN. If the specified LSN is smaller, then
the desired log record must have already been written to disk; otherwise, Logpage
is written to disk, and the latest LSN becomes the most recent one.

The append method calculates the size of the log record to determine if it will fit
in the current page. If not, it writes the current page to disk and calls
appendNewBlock to clear the page and append the now-empty page to the log
file. This strategy is slightly different from the algorithm of Fig. 4.3; namely, the log
manager extends the log file by appending an empty page to it, instead of extending
the file by appending a full page. This strategy is simpler to implement because it
allows flush to assume that the block is already on disk.

4.3 The SimpleDB Log Manager 85

public class LogTest {
private static LogMgr 1lm;

public static void main(String[] args) {
SimpleDB db = new SimpleDB("logtest", 400, 8);
1lm = db.logMgr();
createRecords (1, 35);
printLogRecords ("The log file now has these records:");
createRecords (36, 70);
1m.flush(65);
printLogRecords ("The log file now has these records:");

}

private static void printLogRecords (String msg) {
System.out.println (msqg) ;
Iterator<byte[]> iter = lm.iterator();
while (iter.hasNext()) {
byte[] rec = iter.next();
Page p = new Page(rec);
String s = p.getString(0);
int npos = Page.maxLength (s.length());
int val = p.getlInt (npos);
System.out.println("[" + s + ", " + val + "1");
}
System.out.println();

private static void createRecords (int start, int end) {
System.out.print ("Creating records: ");
for (int i=start; i<=end; i++) {

byte[] rec = createlLogRecord("record"+i, 1+100);
int lsn = lm.append(rec);
System.out.print (lsn + " ");

}
System.out.println();

private static byte[] createlLogRecord(String s, int n) {
int npos = Page.maxLength(s.length());
byte[] b = new byte[npos + Integer.BYTES];
Page p = new Page(b);
p.setString (0, s);
p.setlInt (npos, n);
return b;

Fig. 4.5 Testing the log manager

86 4 Memory Management

public class LogMgr {
private FileMgr fm;
private String logfile;
private Page logpage;
private BlockId currentblk;
private int latestLSN = 0;
private int lastSavedLSN = 0;

public LogMgr (FileMgr fm, String logfile) {
this.fm = fm;
this.logfile = logfile;
byte[] b = new byte[fm.blockSize()];
logpage = new Page (b);
int logsize = fm.length(logfile);
if (logsize == 0)
currentblk = appendNewBlock() ;
else {
currentblk = new BlockId(logfile, logsize-1);
fm.read(currentblk, logpage);

}
public void flush(int lsn) {
if (1sn >= lastSavedLSN)
flush () ;
}
public Iterator<byte[]> iterator() {
flush();
return new LogIterator (fm, currentblk);
}
public synchronized int append(byte[] logrec) {
int boundary = logpage.getInt (0);
int recsize = logrec.length;
int bytesneeded = recsize + Integer.BYTES;
if (boundary - bytesneeded < Integer.BYTES) { // It doesn't fit
flush(); // so move to the next block.
currentblk = appendNewBlock () ;
boundary = logpage.getInt(0);
}
int recpos = boundary - bytesneeded;
logpage.setBytes (recpos, logrec);
logpage.setInt (0, recpos); // the new boundary
latestLSN += 1;
) return latestLSN;
private BlockId appendNewBlock () {
BlockId blk = fm.append(logfile);
logpage.setInt (0, fm.blockSize());
fm.write (blk, logpage);
return blk;

}
private void flush() {

fm.write (currentblk, logpage);
lastSavedLSN = latestLSN;

Fig. 4.6 The code for the SimpleDB class LogMgr

4.3 The SimpleDB Log Manager 87

Note that append places the log records in the page from right to left. The
variable boundary contains the offset of the most recently added record. This
strategy enables the log iterator to read records in reverse order by reading from left
to right. The boundary value is written to the first four bytes of the page so that the
iterator will know where the records begin.

The iterator method flushes the log (in order to ensure that the entire log is on
disk) and then returns a LogIterator object. The class LogIterator is a
package-private class that implements the iterator; its code appears in Fig. 4.7. A
LogIterator object allocates a page to hold the contents of a log block. The
constructor positions the iterator at the first record in the last block of the log (which
is, remember, where the last log record was written). The method next moves to the
next record in the page; when there are no more records, it reads the previous block

class Loglterator implements Iterator<byte[]l> {
private FileMgr fm;
private BlockId blk;
private Page p;
private int currentpos;
private int boundary;
public LoglIterator (FileMgr fm, BlockId blk) {
this.fm = fm;
this.blk = blk;
bytel[] b = new byte[fm.blockSize()];
p = new Page(b);
moveToBlock (blk) ;

public boolean hasNext () {
return currentpos<fm.blockSize () || blk.number ()>0;

}

public byte[] next () {

if (currentpos == fm.blockSize()) {
blk = new BlockId(blk.fileName (), blk.number ()-1);
moveToBlock (blk) ;

}

byte[] rec = p.getBytes (currentpos);

currentpos += Integer.BYTES + rec.length;

return rec;

private void moveToBlock (BlockId blk) {
fm.read (blk, p);
boundary = p.getInt (0);
currentpos = boundary;

Fig. 4.7 The code for the SimpleDB class LogIterator

88 4 Memory Management

into the page and returns its first record. The hasNext method returns false when
there are no more records in the page and no more previous blocks.

4.4 Managing User Data

Log records are used in a limited, well-understood way. The log manager can
therefore fine-tune its use of memory; in particular, it is able to perform its job
optimally with a single dedicated page. Similarly, each LogIterator object only
needs a single page.

JDBC applications, on the other hand, access their data completely unpredictably.
There is no way to know which block an application will request next and whether it
will ever access a previous block again. And even after an application is completely
finished with its blocks, you can’t know whether another application will access any
of those same blocks in the near future. This section describes how the database
engine can efficiently manage memory in such a situation.

4.4.1 The Buffer Manager

The buffer manager is the component of the database engine responsible for the
pages that hold user data. The buffer manager allocates a fixed set of pages, called
the buffer pool. As mentioned in the beginning of this chapter, the buffer pool should
fit into the computer’s physical memory, and these pages should come from the I/O
buffers held by the operating system.

In order to access a block, a client interacts with the buffer manager according to
the protocol given in Fig. 4.8.

A page is said to be pinned if some client is currently pinning it; otherwise, the
page is unpinned. The buffer manager is obligated to keep a page available to its
clients for as long as it is pinned. Conversely, once a page becomes unpinned, the
buffer manager is allowed to assign it to another block.

When a client asks the buffer manager to pin a page to a block, the buffer manager
will encounter one of these four possibilities:

* The contents of the block is in some page in the buffer, and:

— The page is pinned.
— The page is unpinned.

1. The client asks the buffer manager to pin a page from the buffer pool to that block.
2. The client accesses the contents of the page as much as it desires.
3. When the client is done with the page, it tells the buffer manager to unpin it.

Fig. 4.8 The protocol for accessing a disk block

4.4 Managing User Data 89

* The contents of the block is not currently in any buffer, and:

— There exists at least one unpinned page in the buffer pool.
— All pages in the buffer pool are pinned.

The first case occurs when one or more clients are currently accessing the
contents of the block. Since a page can be pinned by multiple clients, the buffer
manager simply adds another pin to the page and returns the page to the client. Each
client that is pinning the page is free to concurrently read and modify its values. The
buffer manager is not concerned about potential conflicts that may occur; that
responsibility belongs to the concurrency manager of Chap. 5.

The second case occurs when the client(s) that were using the buffer have finished
with it, but the buffer has not yet been reassigned. Since the contents of the block are
still in the buffer page, the buffer manager can reuse the page by simply pinning it
and returning it to the client.

The third case requires the buffer manager to read the block from disk into a
buffer page. Several steps are involved. The buffer manager must first select an
unpinned page to reuse (because pinned pages are still being used by clients).
Second, if the selected page has been modified, then the buffer manager must
write the page contents to disk; this action is called flushing the page. Finally, the
requested block can be read into the selected page, and the page can be pinned.

The fourth case occurs when the buffers are heavily used, such as in the query-
processing algorithms of Chap. 14. In this case, the buffer manager cannot satisfy the
client request. The best solution is for the buffer manager to place the client on a wait
list until an unpinned buffer page becomes available.

4.4.2 Buffers

Each page in the buffer pool has associated status information, such as whether it is
pinned and, if so, what block it is assigned to. A buffer is the object that contains this
information. Every page in the buffer pool has an associated buffer. Each buffer
observes the changes to its page and is responsible for writing its modified page to
disk. Just as with the log, a buffer can reduce disk accesses if it can delay writing its
page. For example, if page is modified several times, then it is more efficient to write
the page once, after all modifications have been made. A reasonable strategy is to
have the buffer postpone writing its page to disk until the page is unpinned.

Actually, the buffer can wait even longer than that. Suppose a modified page
becomes unpinned but is not written to disk. If the page gets pinned again to the same
block (as in the second case above), the client will see the modified contents exactly
as it had been left. This has the same effect as if the page had been written to disk and
then read back, but without the disk accesses. In a sense, the buffer’s page acts as the
in-memory version of its disk block. Any client wishing to use the block will simply
be directed to the buffer page, which the client can read or modify without incurring
any disk accesses.

In fact, there are only two reasons why a buffer will ever need to write a modified
page to disk: either the page is being replaced because the buffer is getting pinned to

https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_14

90 4 Memory Management

a different block (as in the third case above) or the recovery manager needs to write
its contents to disk to guard against a possible system crash (to be discussed in
Chap. 5).

4.4.3 Buffer Replacement Strategies

The pages in the buffer pool begin unallocated. As pin requests arrive, the buffer
manager primes the buffer pool by assigning requested blocks to unallocated pages.
Once all pages have been allocated, the buffer manager will begin replacing pages.
The buffer manager may choose any unpinned page in the buffer pool for
replacement.

If the buffer manager needs to replace a page and all buffer pages are pinned, then
the requesting client must wait. Consequently, each client has the responsibility to
“be a good citizen” and unpin a page as soon as it is no longer needed.

When more than one buffer page is unpinned, the buffer manager must decide
which one to replace. This choice can have a dramatic effect on the efficiency of the
database system. For example, the worst choice would be to replace the page that
will be accessed next, because the buffer manager would then have to immediately
replace another page. It turns out that the best choice is to always replace the page
that will be unused for the longest amount of time.

Since the buffer manager cannot predict which pages will be accessed next, it is
forced to guess. Here, the buffer manager is in almost exactly the same situation as
the operating system when it swaps pages in virtual memory. However, there is one
big difference: Unlike the operating system, the buffer manager knows whether a
page is currently being used or not, because the pages in use are exactly the ones that
are pinned. The burden of not being able to replace pinned pages turns out to be a
blessing. Clients, by pinning pages responsibly, keep the buffer manager from
making the really bad guesses. The buffer replacement strategy only has to choose
from among the currently unwanted pages, which is far less critical.

Given the set of unpinned pages, the buffer manager needs to decide which of
those pages will not be needed for the longest amount of time. For example, a
database usually has several pages (such as the catalog files of Chap. 7) that are used
constantly throughout the lifetime of the database. The buffer manager ought to
avoid replacing such pages, since they will almost certainly be re-pinned fairly soon.
There are several replacement strategies that try to make the best guess. This section
considers four of them: Naive, FIFO, LRU, and Clock.

Figure 4.9 introduces an example that will allow us to compare the behavior of
these replacement algorithms. Part (a) gives a sequence of operations that pin and
unpin five blocks of a file, and part (b) depicts the resulting state of the buffer pool,
assuming that it contains four buffers. The only page replacement occurred when the
fifth block (i.e., block 50) was pinned. However, since only one buffer was unpinned
at that time, the buffer manager had no choice. In other words, the buffer pool would
look like Fig. 4.9b, regardless of the page replacement strategy.

https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_7

4.4 Managing User Data 91

pin(10); pin(20); pin(30); pin(40); unpin(20);
pin(50); unpin(40); unpin(10); unpin(30); unpin(50);

(a)

Buffer: 0 1 2 3
block# 10 50 30 40
time read in 1 6 3 4
time unpinned 8 10 9 7

(b)

Fig. 4.9 The effect of some pin/unpin operations on a pool of four buffers. (a) A sequence of ten
pinlunpin operations, (b) The resulting state of the buffer pool

Each buffer in Fig. 4.9b holds three pieces of information: its block number, the
time it was read into the buffer, and the time it became unpinned. The times in the
figure correspond to the position of the operation in Fig. 4.9a.

The buffers of Fig. 4.9b are all unpinned. Suppose now that the buffer manager
receives two more pin requests:

pin(60); pin(70) ;

The buffer manager will need to replace two buffers. All of the buffers are
available; which ones should it choose? Each of the following replacement algo-
rithms will give a different answer.

The Naive Strategy
The simplest replacement strategy is to traverse the buffer pool sequentially,
replacing the first unpinned buffer found. Using the example of Fig. 4.9, block
60 will be assigned to buffer 0, and block 70 will be assigned to buffer 1.

This strategy is easy to implement but has little else to recommend it. For
example, consider again the buffers of Fig. 4.9, and suppose a client repeatedly
pins and unpins blocks 60 and 70, like this:

pin(60) ; unpin(60) ; pin(70); unpin(70); pin(60); unpin(60) ;...

The naive replacement strategy will use buffer O for both blocks, which means
that the blocks will need to be read in from disk each time they are pinned. The
problem is that the buffer pool is not evenly utilized. Had the replacement strategy
chosen two different buffers for blocks 60 and 70, then the blocks would have been
read from disk once each—which is a tremendous improvement in efficiency.

The FIFO Strategy

The naive strategy chooses a buffer based only on convenience. The FIFO strategy
tries to be more intelligent, by choosing the buffer that was least recently replaced,
that is, the page that has been sitting in the buffer pool the longest. This strategy
usually works better than the naive strategy, because older pages are less likely to be

92 4 Memory Management

needed than more recently fetched pages. In Fig. 4.9, the oldest pages are the ones
with the smallest values for “time read in.” Thus, block 60 would get assigned to
buffer 0, and block 70 would get assigned to buffer 2.

FIFO is a reasonable strategy, but it does not always make the right choice. For
example, a database often has frequently used pages, such as the catalog pages of
Chap. 7. Since these pages are used by nearly every client, it makes sense to not
replace them if at all possible. However, these pages will eventually become the
oldest pages in the pool, and the FIFO strategy will choose them for replacement.

The FIFO replacement strategy can be implemented in two ways. One way is to
have each buffer hold the time when its page was last replaced, as in Fig. 4.9b. The
replacement algorithm would then scan the buffer pool, choosing the unpinned page
having the earliest replacement time. A second, more efficient way would be for the
buffer manager to keep a list of pointers to its buffers, ordered by replacement time.
The replacement algorithm searches the list; the first unpinned page found is
replaced, and the pointer to it is moved to the end of the list.

The LRU Strategy

The FIFO strategy bases its replacement decision on when a page was added to the
buffer pool. A similar strategy would be to make the decision based on when a page
was last accessed, the rationale being that a page that has not been used in the near
past will also not be used in the near future. This strategy is called LRU, which
stands for least recently used. In the example of Fig. 4.9, the “time unpinned” value
corresponds to when the buffer was last used. Thus block 60 would be assigned to
buffer 3, and block 70 would be assigned to buffer 0.

The LRU strategy tends to be an effective general-purpose strategy and avoids
replacing commonly used pages. Both implementation options for FIFO can be
adapted to LRU. The only change that must be made is that the buffer manager must
update the timestamp (for the first option) or update the list (for the second option)
each time a page becomes unpinned, instead of when it gets replaced.

The Clock Strategy

This strategy is an interesting combination of the above strategies that has an easy
and straightforward implementation. As in the naive strategy, the clock replacement
algorithm scans through the buffer pool, choosing the first unpinned page it finds.
The difference is that the algorithm always starts its scan at the page after the
previous replacement. If you visualize the buffer pool as forming a circle, then the
replacement algorithm scans the pool like the hand of an analog clock, stopping
when a page is replaced and starting when another replacement is required.

The example of Fig. 4.9b does not indicate the clock position. But the last
replacement it made was buffer 1, which means that the clock is positioned imme-
diately after that. Thus, block 60 will be assigned to buffer 2, and block 70 will be
assigned to buffer 3.

The clock strategy attempts to use the buffers as evenly as possible. If a page is
pinned, the clock strategy will skip past it and not consider it again until it has
examined all other buffers in the pool. This feature gives the strategy an LRU flavor.
The idea is that if a page is frequently used, there is a high probability that it will be

https://doi.org/10.1007/978-3-030-33836-7_7

4.5 The SimpleDB Buffer Manager 93

pinned when its turn for replacement arrives. If so, then it is skipped over and given
“another chance.”

4.5 The SimpleDB Buffer Manager

This section examines the buffer manager of the SimpleDB database system.
Section 4.5.1 covers the buffer manager’s API and gives examples of its use.
Section 4.5.2 then shows how these classes can be implemented in Java.

4.5.1 An API for the Buffer Manager

The SimpleDB buffer manager is implemented by the package simpledb.
buffer. This package exposes the two classes Buf ferMgr and Buffer; their
API appears in Fig. 4.10.

Each database system has one BufferMgr object, which is created during
system startup. Its constructor has three arguments: the size of the buffer pool and
a reference to the file manager and log manager.

A BufferMgr object has methods to pin and unpin a page. The method pin
returns a Buf fer object pinned to a page containing the specified block, and the
unpin method unpins the page. The available method returns the number of
unpinned buffer pages. And the method flushA1l1 ensures that all pages modified
by the specified transaction have been written to disk.

Given a Buffer object, a client can call its contents method to obtain the
associated page. If the client modifies the page, then it is also responsible for
generating an appropriate log record and calling the buffer’s setModified method.

BufferMgr
public BufferMgr (FileMgr fm, LogMgr 1lm, int numbuffs);
public Buffer pin(BlockId blk);
public void unpin (Buffer buff);
public int available();
public void flushAll (int txnum);

Buffer
public Buffer (FileMgr fm, LogMgr 1lm);
public Page contents () ;
public BlockId block();
public boolean isPinned();
public void setModified (int txnum, int lsn);
public int modifyingTx () ;

Fig. 4.10 The API for the SimpleDB buffer manager

94 4 Memory Management

The method has two arguments: an integer that identifies the modifying transaction
and the LSN of the generated log record.

The code in Fig. 4.11 tests the Buf fer class. It prints “The new value is 1” the
first time you execute it, and each subsequent execution increments the printed
value. The code behaves as follows. It creates a SimpleDB object having three
buffers. It pins a page to block 1, increments the integer at offset 80, and calls
setModified to indicate that the page has been modified. The arguments to
setModified should be the transaction number and LSN of the generated log
file. The details behind these two values will be discussed in Chap. 5, so until then,
the given arguments are reasonable placeholders.

The buffer manager hides the actual disk accesses from its clients. A client has no
idea exactly how many disk accesses occur on its behalf and when they occur. A disk
read can occur only during a call to pin—in particular, when the specified block is
not currently in a buffer. A disk write can occur only during a call to pin or
flushAll. A call to pin will cause a disk write if the replaced page has been
modified, and a call to flushA11 will cause a disk write for each page modified by
the specified transaction.

For example, the code of Fig. 4.11 contains two modifications to block 1. Neither
of these modifications is explicitly written to disk. Executing the code shows that the

public class BufferTest {
public static void main(String[] args) {
SimpleDB db = new SimpleDB("buffertest", 400, 3);
BufferMgr bm = db.bufferMgr () ;

Buffer buffl = bm.pin(new BlockId("testfile", 1));
Page p = buffl.contents();

int n = p.getInt(80);

p.setInt (80, n+l); // This modification will
buffl.setModified (1, 0); // get written to disk.
System.out.println("The new value is " + (n+l));
bm.unpin (buffl);

// One of these pins will flush buffl to disk:
Buffer buff2 = bm.pin(new BlockId("testfile", 2));
Buffer buff3 = bm.pin(new BlockId("testfile", 3));
Buffer buff4 = bm.pin(new BlockId("testfile", 4));

bm.unpin (buff2);

buff2 = bm.pin(new BlockId("testfile", 1));

Page p2 = buff2.contents();

p2.setInt (80, 9999); // This modification
buff2.setModified (1, 0); // won't get written to disk.
bm.unpin (buff2);

Fig. 4.11 Testing the Buf fer class

https://doi.org/10.1007/978-3-030-33836-7_5

4.5 The SimpleDB Buffer Manager 95

first modification is written to disk but the second one is not. Consider the first
modification. Since there are only three buffers in the buffer pool, the buffer manager
will need to replace the page for block 1 (and thereby write it to disk) in order to pin
pages for blocks 2, 3, and 4. On the other hand, the page for block 1 does not need to
be replaced after the second modification, so the page does not get written to disk,
and its modifications are lost. The issue of lost modifications will be discussed in
Chap. 5.

Suppose that the database engine has a lot of clients, all of whom are using a lot of
buffers. It is possible for every buffer page to be pinned. In this case, the buffer
manager cannot immediately satisfy a pin request. Instead, it places the client on a
wait list. When a buffer becomes available, the buffer manager takes the client off
the wait list so that it can complete the pin request. In other words, the client will
not be aware of the buffer contention; the client will only notice that the engine
seems to have slowed down.

There is one situation where buffer contention can cause a serious problem.
Consider a scenario where clients A and B each need two buffers, but only two
buffers are available. Suppose client A pins the first buffer. There is now a race for
the second buffer. If client A gets it before client B, then B will be added to the wait
list. Client A will eventually finish and unpin the buffers, at which time client B can
pin them. This is a good scenario. Now suppose instead that client B gets the second
buffer before client A. Then both A and B will be on the wait list. If these are the only
two clients in the system, then no buffers will ever get unpinned, and both A and B
will be on the wait list forever. This is a bad scenario. Clients A and B are said to be
deadlocked.

In a real database system with thousands of buffers and hundreds of clients, this
kind of deadlock is highly unlikely. Nevertheless, the buffer manager must be
prepared to deal with the possibility. The solution taken by SimpleDB is to keep
track of how long a client has been waiting for a buffer. If it has waited too long (say,
10 seconds), then the buffer manager assumes that the client is in deadlock and
throws an exception of type Buf ferAbortException. The client is responsible
for handling the exception, typically by rolling back the transaction and possibly
restarting it.

The code in Fig. 4.12 tests the buffer manager. It again creates a SimpleDB
object having only three buffers, and then calls the buffer manager to pin their pages
to blocks 0, 1, and 2 of file “testfile.” It then unpins block 1, repins block 2, and pins
block 1 again. These three actions will not cause any disk reads and will leave no
available buffers. The attempt to pin block 3 will place the thread on a waiting
list. However, since the thread already holds all of the buffers, none of them will be
unpinned, and the buffer manager will throw an exception after ten seconds
of waiting. The program catches the exception and continues. It unpins block
2. Its attempt to pin block 3 will now be successful because a buffer has become
available.

https://doi.org/10.1007/978-3-030-33836-7_5

96 4 Memory Management

public class BufferMgrTest {
public static void main(String[] args) throws Exception {
SimpleDB db = new SimpleDB ("buffermgrtest", 400, 3);
BufferMgr bm = db.bufferMgr();

Buffer[] buff = new Buffer[6];
buff[0] = bm.pin(new BlockId("testfile", 0));
1]

(

buff[= bm.pin(new BlockId("testfile", 1));
buff[2] = bm.pin(new BlockId("testfile", 2));
bm.unpin(buff[1]); buff[l] = null;
buff[3] = bm.pin(new BlockId("testfile", 0));
buff[4] = bm.pin(new BlockId("testfile", 1));
System.out.println ("Available buffers: " + bm.available());
try {

System.out.println ("Attempting to pin block 3...");

buff[5] = bm.pin(new BlockId("testfile", 3));

}
catch (BufferAbortException e) {
System.out.println ("Exception: No available buffers\n");

}
bm.unpin(buff[2]); buff[2] = null;
buff[5] = bm.pin(new BlockId("testfile"™, 3)); // now this works

System.out.println ("Final Buffer Allocation:");
for (int i=0; i<buff.length; i++) {
Buffer b = buff[i];
if (b != null)
System.out.println ("buff["+i+"] pinned to block "
+ b.block());

Fig. 4.12 Testing the buffer manager

4.5.2 Implementing the Buffer Manager

Figure 4.13 contains the code for class Buffer. A Buffer object keeps track of
four kinds of information about its page:

* A reference to the block assigned to its page. If no block is assigned, then the
value is null.

* The number of times the page is pinned. The pin count is incremented on each pin
and decremented on each unpin.

* An integer indicating if the page has been modified. A value of —1 indicates that
the page has not been changed; otherwise, the integer identifies the transaction
that made the change.

* Log information. If the page has been modified, then the buffer holds the LSN of
the most recent log record. LSN values are never negative. If a client calls

4.5 The SimpleDB Buffer Manager

public class Buffer {
private FileMgr fm;
private LogMgr 1m;
private Page contents;
private BlockId blk = null;

private int pins = 0;
private int txnum = -1;
private int lsn = -1;

public Buffer (FileMgr fm, LogMgr 1lm) {
this.fm = fm;
this.lm = 1m;
contents = new Page(fm.blockSize());

}

public Page contents() {
return contents;

}

public BlockId block() {
return blk;

}

public void setModified(int txnum, int 1lsn) {
this.txnum = txnum;
if (1sn>=0) this.lsn = 1lsn;

}

public boolean isPinned() {
return pins > 0;

}

public int modifyingTx () {
return txnum;

}

void assignToBlock (BlockId b) {
flush();
blk = b;
fm.read (blk, contents);
pins = 0;

}

void flush () {
if (txnum >= 0) {
Im.flush(lsn);
fm.write (blk, contents);
txnum = -1;

}

void pin() {
pins++;

}

void unpin () {
pins--;

Fig. 4.13 The code for the SimpleDB class Buffer

98 4 Memory Management

setModified with a negative LSN, it indicates that a log record was not
generated for that update.

The method flush ensures that the buffer’s assigned disk block has the same
values as its page. If the page has not been modified, then the method need not do
anything. If it has been modified, then the method first calls LogMgr .flush to
ensure that the corresponding log record is on disk; then it writes the page to disk.

The method assignToBlock associates the buffer with a disk block.
The buffer is first flushed, so that any modifications to the previous block are
preserved. The buffer is then associated with the specified block, reading its contents
from disk.

The code for Buf ferMgr appears in Fig. 4.14. The method pin assigns a buffer
to the specified block. It does so by calling the private method tryToPin. That
method has two parts. The first part, findExistingBuffer, tries to find a buffer
that is already assigned to the specified block. The buffer is returned if found.
Otherwise the second part of the algorithm, chooseUnpinnedBuffer, uses
naive replacement to choose an unpinned buffer. The chosen buffer’s
assignToBlock method is called, which handles the writing of the existing
page to disk (if necessary) and the reading of the new page from disk. The method
returns null if it cannot find an unpinned buffer.

If tryToPin returns null, the pin method will call the Java method wait. In
Java, every object has a wait list. The object’s wait method interrupts the execution
of the calling thread and places it on that list. In Fig. 4.14, the thread will stay on that
list until one of two conditions occurs:

* Another thread calls notifyAll (which occurs from a call to unpin).
e MAX TIME milliseconds have elapsed, which means that the thread has been
waiting too long.

When a waiting thread resumes, it continues in its loop, trying to obtain a buffer
(together with all the other threads that were waiting). The thread will keep getting
placed back on the wait list until either it gets the buffer or it has exceeded its time
limit.

The unpin method unpins the specified buffer and then checks to see if that
buffer is still pinned. If not, then notifyAl1l is called to remove all client threads
from the wait list. Those threads will fight for the buffer; whichever is scheduled first
will win. When one of the other threads is scheduled, it may find that all buffers are
still allocated; if so, it will be placed back on the wait list.

4.6 Chapter Summary

e A database engine must strive to minimize disk accesses. It therefore carefully
manages the in-memory pages that it uses to hold disk blocks. The database
components that manage these pages are the log manager and the buffer
manager.

4.6 Chapter Summary

public class BufferMgr {
private Buffer[] bufferpool;
private int numAvailable;
private static final long MAX TIME = 10000;

public BufferMgr (FileMgr fm, LogMgr lm, int
bufferpool = new Buffer[numbuffs];
numAvailable = numbuffs;
for (int 1=0; i<numbuffs; i++)
bufferpool[i] = new Buffer (fm, 1m);

public synchronized int available() {
return numAvailable;

public synchronized void flushAll (int txnum)
for (Buffer buff : bufferpool)
if (buff.modifyingTx () == txnum)
buff.flush();

public synchronized void unpin (Buffer buff)
buff.unpin();
if (!'buff.isPinned()) {
numAvailable++;
notifyAll();

public synchronized Buffer pin(BlockId blk)
try {

// 10 seconds

numbuffs) {

{

{

{

long timestamp = System.currentTimeMillis();

Buffer buff = tryToPin (blk);

while (buff == null && !waitingTooLong (timestamp))

wait (MAX TIME) ;
buff = tryToPin (blk);
}
if (buff == null)
throw new BufferAbortException();
return buff;
}
catch (InterruptedException e) {
throw new BufferAbortException();

Fig. 4.14 The code for the SimpleDB class Buf ferMgr

{

99

100 4 Memory Management

private boolean waitingToolLong(long starttime) {
return System.currentTimeMillis() - starttime > MAX TIME;

private Buffer tryToPin (BlockId blk) {

Buffer buff = findExistingBuffer (blk);

if (buff == null) {
buff = chooseUnpinnedBuffer();
if (buff == null)

return null;

buff.assignToBlock (blk) ;

}

if (!buff.isPinned())
numAvailable--;

buff.pin();

return buff;

private Buffer findExistingBuffer (BlockId blk) {
for (Buffer buff : bufferpool) {
BlockId b = buff.block();
if (b !'= null && b.equals(blk))
return buff;
}

return null;

private Buffer chooseUnpinnedBuffer () {
for (Buffer buff : bufferpool)
if (!'buff.isPinned())
return buff;
return null;

Fig. 4.14 (continued)

* The log manager is responsible for saving log records in the log file. Because log
records are always appended to the log file and are never modified, the log
manager can be very efficient. It only needs to allocate a single page and has a
simple algorithm for writing that page to disk as few times as possible.

¢ The buffer manager allocates several pages, called the buffer pool, to handle user
data. The buffer manager pins and unpins buffer pages to disk blocks, at the
request of clients. A client accesses a buffer’s page after it is pinned and unpins
the buffer when finished.

* A modified buffer will get written to disk in two circumstances: when the page is
being replaced and when the recovery manager needs it to be on disk.

4.7 Suggested Reading 101

e When a client asks to pin a page to a block, the buffer manager chooses the
appropriate buffer. If a page for that block is already in a buffer, then that buffer is
used; otherwise, the buffer manager replaces the contents of an existing buffer.

e The algorithm that determines which buffer to replace is called the buffer
replacement strategy. Four interesting replacement strategies are:

— Naive: Choose the first unpinned buffer it finds.

— FIFO: Choose the unpinned buffer whose contents were replaced least
recently.

— LRU: Choose the unpinned buffer whose contents were unpinned least
recently.

— Clock: Scan the buffers sequentially from the last replaced buffer; choose the
first unpinned buffer found.

4.7 Suggested Reading

The article Effelsberg et al. (1984) contains a well-written and comprehensive
treatment of buffer management that extends many of the ideas in this chapter.
Chapter 13 of Gray and Reuter (1993) contains an in-depth discussion of buffer
management, illustrating their discussion with a C-based implementation of a typical
buffer manager.

Oracle’s default buffer replacement strategy is LRU. However, it uses FIFO
replacement when scanning large tables. The rationale is that a table scan will
typically not need a block after it is unpinned, and so LRU winds up saving the
wrong blocks. Details can be found in Chap. 14 of Ashdown et al. (2019).

Several researchers have investigated how to make the buffer manager itself more
intelligent. The basic idea is that a buffer manager can keep track of the pin requests
of each transaction. If it detects a pattern (say, the transaction repeatedly reads the
same N blocks of a file), it will try to avoid replacing those pages, even if they are not
pinned. The article Ng et al. (1991) describes the idea in more detail and provides
some simulation results.

Ashdown, L., et al. (2019). Oracle database concepts. Document E96138-01,
Oracle Corporation. Available from https://docs.oracle.com/en/database/oracle/
oracle-database/19/cncpt/database-concepts.pdf

Effelsberg, W., & Haerder, T. (1984). Principles of database buffer management.
ACM Transactions on Database Systems, 9(4), 560-595.

Gray, J., & Reuter, A. (1993). Transaction processing: concepts and techniques.
Morgan Kaufman.

Ng, R., Faloutsos, C., & Sellis, T. (1991). Flexible buffer allocation based on
marginal gains. Proceedings of the ACM SIGMOD Conference, pp. 387-396.

https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/database-concepts.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/database-concepts.pdf

102

4.8

4 Memory Management

Exercises

Conceptual Exercises

4.1.

4.2.

43.
4.4.

4.5.

4.6.

4.17.

4.8.

4.9.

4.10.

The code for LogMgr.iterator calls flush. Is this call necessary?
Explain.

Explain why the method Buf ferMgr . pin is synchronized. What problem
could occur if it wasn’t?

Can more than one buffer ever be assigned to the same block? Explain.

The buffer replacement strategies in this chapter do not distinguish between
modified and unmodified pages when looking for an available buffer. A
possible improvement is for the buffer manager to always replace an
unmodified page whenever possible.

(a) Give one reason why this suggestion could reduce the number of disk
accesses made by the buffer manager.

(b) Give one reason why this suggestion could increase the number of disk
accesses made by the buffer manager.

(c) Do you think strategy is worthwhile? Explain.

Another possible buffer replacement strategy is least recently modified: the
buffer manager chooses the modified buffer having the lowest LSN. Explain
why such a strategy might be worthwhile.

Suppose that a buffer page has been modified several times without being
written to disk. The buffer saves only the LSN of the most recent change and
sends only this LSN to the log manager when the page is finally flushed.
Explain why the buffer doesn’t need to send the other LSNs to the log
manager.

Consider the example pin/unpin scenario of Fig. 4.9a, together with the
additional operations pin (60) ; pin (70) . For each of the four replacement
strategies given in the text, draw the state of the buffers, assuming that the
buffer pool contains five buffers.

Starting from the buffer state of Fig. 4.9b, give a scenario in which:

(a) The FIFO strategy requires the fewest disk accesses
(b) The LRU strategy requires the fewest disk accesses
(c) The clock strategy requires the fewest disk accesses

Suppose that two different clients each want to pin the same block but are
placed on the wait list because no buffers are available. Consider the imple-
mentation of the SimpleDB class Buf ferMgr. Show that when a single
buffer becomes available, both clients will be able to use it.
Consider the adage “Virtual is its own reward.” Comment on the cleverness of
the pun, and discuss its applicability to the buffer manager.

4.8 Exercises 103

Programming Exercises

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

The SimpleDB log manager allocates its own page and writes it explicitly to
disk. Another design option is for it to pin a buffer to the last log block and let
the buffer manager handle the disk accesses.

(a) Work out a design for this option. What are the issues that need to be
addressed? Is it a good idea?
(b) Modify SimpleDB to implement your design.

Each LogIterator object allocates a page to hold the log blocks it
accesses.

(a) Explain why using a buffer instead of a page would be much more
efficient.

(b) Modify the code to use a buffer instead of a page. How should the buffer
get unpinned?

This exercise examines whether a JDBC program could maliciously pin all of
the buffers in the buffer pool.

(a) Write a JDBC program to pin all of the buffers of the SimpleDB buffer
pool. What happens when all of the buffers are pinned?

(b) The Derby database system does buffer management differently than
SimpleDB. When a JDBC client requests a buffer, Derby pins the buffer,
sends a copy of the buffer to the client, and unpins the buffer. Explain why
your code will not be malicious to other Derby clients.

(c) Derby avoids SimpleDB’s problem by always copying pages from engine
to client. Explain the consequences of this approach. Do you prefer it to
the SimpleDB approach?

(d) Another way to keep a rogue client from monopolizing all of the buffers is
to allow each transaction to pin no more than a certain percentage (say,
10%) of the buffer pool. Implement and test this modification to the
SimpleDB buffer manager.

Modify class Buf ferMgr to implement each of the other replacement strat-
egies described in this chapter.

Exercise 4.4 suggests a page replacement strategy that chooses unmodified
pages over modified ones. Implement this replacement strategy.

Exercise 4.5 suggests a page replacement strategy that chooses the modified
page having the lowest LSN. Implement this strategy.

The SimpleDB buffer manager traverses the buffer pool sequentially when
searching for buffers. This search will be time-consuming when there are
thousands of buffers in the pool. Modify the code, adding data structures (such
as special-purpose lists and hash tables) that will improve the search times.
In Exercise 3.15, you were asked to write code that maintained statistics about
disk usage. Extend this code to also give information about buffer usage.

Chapter 5)
Transaction Management s

The buffer manager allows multiple clients to access the same buffer concurrently,
arbitrarily reading and writing its values. The result can be chaos: A page might have
different (and even inconsistent) values each time a client looks at it, making it
impossible for the client to get an accurate picture of the database. Or two clients can
unwittingly overwrite the values of each other, thereby corrupting the database.
Consequently, a database engine has a concurrency manager and a recovery
manager, whose jobs are to maintain order and ensure database integrity. Each client
program is written as a sequence of transactions. The concurrency manager regu-
lates the execution of these transactions so that they behave consistently. The
recovery manager reads and writes records to the log, so that changes made by
uncommitted transactions can be undone if necessary. This chapter covers the
functionality of these managers and the techniques used to implement them.

5.1 Transactions

Consider an airline reservation database, having two tables with the following
fields:

SEATS (FlightId, NumAvailable, Price)
CUST (CustId, BalanceDue)

Figure 5.1 contains JDBC code to purchase a ticket for a specified customer on a
specified flight. Although this code has no bugs, various problems can occur when it
is being used concurrently by multiple clients or when the server crashes. The
following three scenarios illustrate these problems.

© Springer Nature Switzerland AG 2020 105
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_5

106 5 Transaction Management

public void reserveSeat (Connection conn, int custId,
int flightId) throws SQLException ({
Statement stmt = conn.createStatement ();
String s;

// step 1l: Get availability and price

s = "select NumAvailable, Price from SEATS " +
"where FlightId = " + flightId;
ResultSet rs = stmt.executeQuery(s);
if (!rs.next()) {
System.out.println("Flight doesn't exist");
return;

}

int numAvailable = rs.getlInt ("NumAvailable");
int price = rs.getInt("Price");

rs.close();

if (numAvailable == 0) {

System.out.println("Flight is full");
return;

// step 2: Update availability

int newNumAvailable = numAvailable - 1;
s = "update SEATS set NumAvailable = " + newNumAvailable +
" where FlightId = " + flightId;

stmt.executeUpdate (s) ;

// step 3: Get and update customer balance

s = "select BalanceDue from CUST where CustID = " + custId;
rs = stmt.executeQuery(s);
int newBalance = rs.getInt ("BalanceDue") + price;
rs.close();
s = T"update CUST set BalanceDue = " + newBalance +

" where CustId = " + custId;

stmt.executeUpdate (s);

Fig. 5.1 JDBC code to reserve a seat on a flight

In the first scenario, suppose that both clients A and B run the JDBC code
concurrently, with the following sequence of actions:

e Client A executes all of step 1 and is then interrupted.
* Client B executes to completion.
e Client A completes its execution.

In this case, both threads will use the same value for numAvailable. The result
is that two seats will be sold, but the number of available seats will be decremented
only once.

5.1 Transactions 107

In the second scenario, suppose that while a client is running the code, the server
crashes just after step two executes. In this case, the seat will be reserved, but the
customer will not be charged for it.

In the third scenario, suppose that a client runs the code to completion, but the
buffer manager does not immediately write the modified pages to disk. If the server
crashes (possibly several days later), then there is no way to know which of the pages
(if any) were eventually written to disk. If the first update was written but not the
second, then the customer receives a free ticket; if the second update was written but
not the first, then the customer is charged for a nonexistent ticket. And if neither page
was written, then the entire interaction will be lost.

The above scenarios show how data can get lost or corrupted when client pro-
grams are able to run indiscriminately. Database engines solve this problem by
forcing client programs to consist of transactions. A transaction is a group of
operations that behaves as a single operation. The meaning of “as a single operation”
can be characterized by the following so-called ACID properties: atomicity, consis-
tency, isolation, and durability.

e Atomicity means that a transaction is “all or nothing.” That is, either all its
operations succeed (the transaction commits) or they all fail (the transaction
does a rollback).

» Consistency means that every transaction leaves the database in a consistent state.
This implies that each transaction is a complete work unit that can be executed
independently of other transactions.

* Isolation means that a transaction behaves as if it is the only thread using the
engine. If multiple transactions are running concurrently, then their result should
be the same as if they were all executed serially in some order.

¢ Durability means that changes made by a committed transaction are guaranteed to
be permanent.

Each of the above scenarios results from some violation of the ACID properties.
The first scenario violated the isolation property, because both clients read the same
value for numAvailable, whereas in any serial execution, the second client would
have read the value written by the first. The second scenario violated atomicity, and
the third scenario violated durability.

The atomicity and durability properties describe the proper behavior of the
commit and rollback operations. A committed transaction must be durable, and an
uncommitted transaction (either due to an explicit rollback or a system crash) must
have its changes completely undone. These features are the responsibility of the
recovery manager and are the topic of Sect. 5.3.

The consistency and isolation properties describe the proper behavior of concur-
rent clients. The database engine must keep clients from conflicting with each other.
A typical strategy is to detect when a conflict is about to occur and to make one of the
clients wait until that conflict is no longer possible. These features are the respon-
sibility of the concurrency manager and are the topic of Sect. 5.4.

108 5 Transaction Management

Transaction
public Transaction (FileMgr fm, LogMgr 1lm, BufferMgr bm);
public void commit () ;
public void rollback();
public void recover () ;

public void pin (BlockId blk);

public void unpin (BlockId blk);

public int getInt (BlockId blk, int offset);

public String getString(BlockId blk, int offset);

public void setInt (BlockId blk, int offset, int wval,
boolean okToLog) ;

public void setString(BlockId blk, int offset, String val,

boolean okToLog) ;
public int availableBuffs();

public int size (String filename);
public Block append(String filename) ;
public int blockSize();

Fig. 5.2 The API for SimpleDB transactions

5.2 Using Transactions in SimpleDB

Before getting into details about how the recovery and concurrency managers do
their job, it will help to get a feel for how clients use transactions. In SimpleDB,
every JDBC transaction has its own Transaction object; its API appears in
Fig. 5.2.

The methods of Transaction fall into three categories. The first category
consists of methods related to the transaction’s lifespan. The constructor begins a
new transaction, the commit and rollback methods terminate it, and the method
recover rolls back all uncommitted transactions. The commit and rollback
methods automatically unpin the transaction’s pinned buffer pages.

The second category consists of methods to access buffers. A transaction hides
the existence of buffers from its client. When a client calls pin on a block, the
transaction saves the buffer internally and does not return it to the client. When the
client calls a method such as getInt, it passes in a BlockId reference. The
transaction finds the corresponding buffer, calls the get Int method on the buffer’s
page, and passes the result back to the client.

The transaction hides the buffer from the client so it can make the necessary calls
to the concurrency and recovery managers. For example, the code for setInt will
acquire the appropriate locks (for concurrency control) and write the value that is
currently in the buffer to the log (for recovery) before modifying the buffer. The
fourth argument to setInt and setString is a boolean that indicates whether
the update should be logged. This value is usually true, but there are certain cases
(such as formatting a new block or undoing a transaction) where logging is not
appropriate and the value should be false.

5.2 Using Transactions in SimpleDB 109

public class TxTest {
public static void main(String[] args) throws Exception {
SimpleDB db = new SimpleDB ("txtest", 400, 8);
FileMgr fm = db.fileMgr ()
LogMgr 1m = db.logMgr () ;
BufferMgr bm = db.bufferMgr();

Transaction txl = new Transaction(fm, 1lm, bm);
BlockId blk = new BlockId("testfile", 1);
txl.pin(blk);

// Don't log initial block values.

txl.setInt (blk, 80, 1, false);
txl.setString(blk, 40, "one", false);
txl.commit () ;

Transaction tx2 = new Transaction (fm, 1m, bm);
tx2.pin(blk);

int ival = tx2.getInt(blk, 80);

String sval = tx2.getString(blk, 40);

System.out.println("initial value at location 80 = " + ival);
System.out.println("initial value at location 40 = " + sval);
int newival = ival + 1;

int newsval = sval + "!";

tx2.setInt (blk, 80, newival, true);
tx2.setString(blk, 40, newsval, true);
tx2.commit () ;

Transaction tx3 = new Transaction(fm, 1m, bm);

tx3.pin(blk);

System.out.println("new value at location 80
+ tx3.getInt(blk, 80));

System.out.println("new value at location 40
+ tx3.getString(blk, 40));

tx3.setInt (blk, 80, 9999, true);

System.out.println ("pre-rollback value at location 80 =
+ tx3.getInt (blk, 80));

tx3.rollback () ;

Transaction tx4 = new Transaction (fm, 1lm, bm);

tx4.pin (blk);

System.out.println ("post-rollback at location 80 = "
+ tx4.getInt (blk, 80));

tx4.commit () ;

Fig. 5.3 Testing the SimpleDB Transaction class

110 5 Transaction Management

The third category consists of three methods related to the file manager. The
method size reads the end of the file marker, and append modifies it; these
methods must call the concurrency manager to avoid potential conflicts. The method
blockSize exists as a convenience to clients who might need it.

Figure 5.3 illustrates a simple use of the Transaction methods. The code
consists of four transactions, which perform similar tasks as the BufferTest
class of Fig. 4.11. All four transactions access block 1 of file “testfile.” Transaction
tx1 initializes the values at offsets 80 and 40; these updates are not logged.
Transaction tx2 reads those values, prints them, and increments them. Transac-
tion tx3 reads and prints the incremented values. Then it sets the integer to 9999
and rolls back. Transaction tx4 reads the integer to verify that the rollback did in
fact occur.

Compare this code to the code from Chap. 4 and observe what the Transac-
tion class does for you: it manages your buffers; it generates log records for each
update and writes them to the log file; and it is able to roll back your transaction on
demand. But equally important is how this class works behind the scenes to ensure
that the code satisfies the ACID properties. For example, suppose you randomly
abort the program while it is executing. When you subsequently restart the database
engine, the modifications of all transactions that had committed will be on disk
(durability), and the modifications of the transaction that happened to be running will
be rolled back (atomicity).

Moreover, the Transact ion class also guarantees that this program will satisfy
the ACID isolation property. Consider the code for transaction tx2. The variables
newival and newsval (see the bold code) are initialized as follows:

int newival = ival + 1;
String newsval =sval + "I ";

This code assumes that the values at locations 80 and 40 of the block have not
changed. Without concurrency control, however, this assumption might not be true.
The issue is the “non-repeatable read” scenario of Sect. 2.2.3. Suppose that tx2 gets
interrupted immediately after initializing ival and sval, and another program
modifies the values at offsets 80 and 40. Then the values of ival and sval are now
out of date, and tx2 must call getInt and getString again to obtain their
correct values. The Transaction class is responsible for making sure that such a
possibility will not occur, so that this code is guaranteed to be correct.

5.3 Recovery Management

The recovery manager is the portion of the database engine that reads and processes
the log. It has three functions: to write log records, to roll back a transaction, and to
recover the database after a system crash. This section investigates these functions in
detail.

https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_2

5.3 Recovery Management 111

<START, 1>

<COMMIT, 1>

<START, 2>

<SETINT, 2, testfile, 1, 80, 1, 2>
<SETSTRING, 2, testfile, 1, 40, one, one!>
<COMMIT, 2>

<START, 3>

<SETINT, 3, testfile, 1, 80, 2, 9999>
<ROLLBACK, 3>

<START, 4>

<COMMIT, 4>

Fig. 5.4 The log records generated from Fig. 5.3

5.3.1 Log Records

In order to be able to roll back a transaction, the recovery manager logs information
about the transaction’s activities. In particular, it writes a log record to the log each
time a loggable activity occurs. There are four basic kinds of log record: start
records, commit records, rollback records, and update records. 1 shall follow
SimpleDB and assume two kinds of update record: one for updates to integers and
one for updates to strings.

Log records are generated by the following loggable activities:

* A start record is written when a transaction begins.
* A commit or rollback record is written when a transaction completes.
* An update record is written when a transaction modifies a value.

Another potentially loggable activity is appending a block to the end of a file.
Then if the transaction rolls back, the new block allocated by append can be
deallocated from the file. For simplicity, I shall ignore this possibility. Exercise
5.48 addresses the issue.

As an example, consider the code of Fig. 5.3, and suppose that the id of tx1 is
1 and so on. Figure 5.4 shows the log records generated by this code.

Each log record contains a description of what type of record it is (START,
SETINT, SETSTRING, COMMIT, or ROLLBACK) and the ID of its transaction.
Update records contain five additional values: the name and block number of the
modified file, the offset where the modification occurred, the old value at that offset,
and the new value at that offset.

In general, multiple transactions will be writing to the log concurrently, and so the
log records for a given transaction will be interspersed through the log.

5.3.2 Rollback

One use of the log is to help the recovery manager roll back a specified transaction
T. The recovery manager rolls back a transaction by undoing its modifications. Since

112 5 Transaction Management

. Set the current record to be the most recent log record.
. Do until the current record is the start record for T:
a) If the current record is an update record for T then:
Write the saved old value to the specified location.
b) Move to the previous record in the log.
3. Append a rollback record to the log.

DO

Fig. 5.5 The algorithm for rolling back transaction T

these modifications are listed in the update log records, it is a relatively simple matter
to scan the log, find each update record, and restore the original contents of each
modified value. Figure 5.5 presents the algorithm.

There are two reasons why this algorithm reads the log backwards from the end,
instead of forward from the beginning. The first reason is that the beginning of the
log file will contain records from long-ago completed transactions. It is most likely
that the records you are looking for are at the end of the log, and thus it is more
efficient to read from the end. The second, more important reason is to ensure
correctness. Suppose that the value at a location was modified several times. Then
there will be several log records for that location, each having a different value. The
value to be restored should come from the earliest of these records. If the log records
are processed in reverse order, then this will in fact occur.

5.3.3 Recovery

Another use of the log is to recover the database. Recovery is performed each time
the database engine starts up. Its purpose is to restore the database to a reasonable
state. The term “reasonable state” means two things:

* All uncompleted transactions should be rolled back.
e All committed transactions should have their modifications written to disk.

When a database engine starts up following a normal shutdown, it should already
be in a reasonable state, because the normal shutdown procedure is to wait until the
existing transactions complete and then flush all buffers. However, if a crash had
caused the engine to go down unexpectedly, then there may be uncompleted trans-
actions whose executions were lost. Since there is no way the engine can complete
them, their modifications must be undone. There may also be committed transactions
whose modifications were not yet flushed to disk; these modifications must be
redone.

The recovery manager assumes that a transaction completed if the log file
contains a commit or rollback record for it. So if a transaction had committed prior
to the system crash but its commit record did not make it to the log file, then the
recovery manager will treat the transaction as if it did not complete. This situation
might not seem fair, but there is really nothing else that the recovery manager can
do. All it knows is what is contained in the log file, because everything else about the
transaction was wiped out in the system crash.

5.3 Recovery Management 113

// The undo stage
1. For each log record (reading backwards from the end):
a) If the current record is a commit record then:
Add that transaction to the list of committed transactions.
b) If the current record is a rollback record then:
Add that transaction to the list of rolled-back transactions.
c¢) If the current record is an update record for a transaction not on the
committed or rollback list, then: Restore the old value at the specified location.

/I The redo stage

2. For each log record (reading forwards from the beginning):
If the current record is an update record and that transaction is on the committed
list, then: Restore the new value at the specified location.

Fig. 5.6 The undo-redo algorithm for recovering a database

Actually, rolling back a committed transaction is not only unfair; it violates the
ACID property of durability. Consequently, the recovery manager must ensure that
such a scenario cannot occur. It does so by flushing the commit log record to disk
before it completes a commit operation. Recall that flushing a log record also flushes
all previous log records. So when the recovery manager finds a commit record in the
log, it knows that all of the update records for that transaction are also in the log.

Each update log record contains both the old value and the new value of the
modification. The old value is used when you want to undo the modification, and the
new value is used when you want to redo the modification. Figure 5.6 presents the
recovery algorithm.

Stage 1 undoes the uncompleted transactions. As with the rollback algorithm, the
log must be read backwards from the end to ensure correctness. Reading the log
backwards also means that a commit record will always be found before its update
records; so when the algorithm encounters an update record, it knows whether that
record needs to be undone or not.

Itis important for stage 1 to read the entire log. For example, the very first transaction
might have made a change to the database before going into an infinite loop. That
update record will not be found unless you read to the very beginning of the log.

Stage 2 redoes the committed transactions. Since the recovery manager cannot
tell which buffers were flushed and which were not, it redoes all changes made by all
committed transactions.

The recovery manager performs stage 2 by reading the log forward from the
beginning. The recovery manager knows which update records need to be redone,
because it computed the list of committed transaction during stage 1. Note that the
log must be read forward during the redo stage. If several committed transactions
happened to modify the same value, then the final recovered value should be due to
the most recent modification.

The recovery algorithm is oblivious to the current state of the database. It writes
old or new values to the database without looking at what the current values are at
those locations, because the log tells it exactly what the contents of the database
should be. There are two consequences to this feature:

114 5 Transaction Management

* Recovery is idempotent.
* Recovery may cause more disk writes than necessary.

By idempotent, I mean that performing the recovery algorithm several times has
the same result as performing it once. In particular, you will get the same result even if
you re-run the recovery algorithm immediately after having run just part of it. This
property is essential to the correctness of the algorithm. For example, suppose that the
database system crashes while it is in the middle of the recovery algorithm. When the
database system restarts, it will run the recovery algorithm again, from the beginning.
If the algorithm were not idempotent, then re-running it would corrupt the database.

Because this algorithm does not look at the current contents of the database, it may
make unnecessary changes. For example, suppose that the modifications made by a
committed transaction have been written to disk; then redoing those changes during
stage 2 will set the modified values to the contents that they already have. The algorithm
can be revised so that it does not make these unnecessary disk writes; see Exercise 5.44.

5.3.4 Undo-Only and Redo-Only Recovery

The recovery algorithm of the previous section performs both undo and redo
operations. A database engine may choose to simplify the algorithm to perform
only undo operations or only redo operations, that is, it executes either stage 1 or
stage 2 of the algorithm, but not both.

5.3.4.1 Undo-Only Recovery

Stage 2 can be omitted if the recovery manager is sure that all committed modifica-
tions have been written to disk. The recovery manager can do so by forcing the
buffers to disk before it writes the commit record to the log. Figure 5.7 expresses this
approach as an algorithm. The recovery manager must follow the steps of this
algorithm in exactly the order given.

Which is better, undo-only recovery or undo-redo recovery? Undo-only recovery
is faster, because it requires only one pass through the log file, instead of two. The
log is also a bit smaller, because update records no longer need to contain the new
modified value. On the other hand, the commit operation is much slower, because it
must flush the modified buffers. If you assume that system crashes are infrequent,
then undo-redo recovery wins. Not only do transactions commit faster, but there
should be fewer overall disk writes due to the postponed buffer flushes.

1. Flush the transaction’s modified buffers to disk.
2. Write a commit record to the log.
3. Flush the log page containing the commit record.

Fig. 5.7 The algorithm for committing a transaction, using undo-only recovery

5.3 Recovery Management 115

5.3.4.2 Redo-Only Recovery

Stage 1 can be omitted if uncommitted buffers are never written to disk. The
recovery manager can ensure this property by having each transaction keep its
buffers pinned until the transaction completes. A pinned buffer will not get chosen
for replacement, and thus its contents will not get flushed. In addition, a rolled back
transaction will need its modified buffers to be “erased.” Figure 5.8 gives the
necessary revisions to the rollback algorithm.

Redo-only recovery is faster than undo-redo recovery, because uncommitted
transactions can be ignored. However, it requires that each transaction keep a buffer
pinned for every block that it modifies, which increases the contention for buffers in
the system. With a large database, this contention can seriously impact the perfor-
mance of all transactions, which makes redo-only recovery a risky choice.

It is interesting to think about whether it is possible to combine the undo-only and
redo-only techniques, to create a recovery algorithm that doesn’t require either stage
1 or stage 2. See Exercise 5.19.

5.3.5 Write-Ahead Logging

Step 1 of the recovery algorithm in Fig. 5.6 needs further examination. Recall that
this step iterates through the log, performing an undo for each update record from an
uncompleted transaction. In justifying the correctness of this step, I made the
following assumption: all updates for an uncompleted transaction will have a
corresponding log record in the log file. Otherwise, the database will be corrupted
because there would be no way to undo the update.

Since the system could crash at any time, the only way to satisfy this assumption
is to have the log manager flush each update log record to disk as soon as it is written.
But as Sect. 4.2 demonstrated, this strategy is painfully inefficient. There must be a
better way.

Let’s analyze the kinds of things that can go wrong. Suppose that an uncompleted
transaction modified a page and created a corresponding update log record. If the
server crashes, there are four possibilities:

(a) Both the page and the log record got written to disk.
(b) Only the page got written to disk.

(c) Only the log record got written to disk.

(d) Neither got written to disk.

For each buffer modified by the transaction:
a) Mark the buffer as unallocated. (In SimpleDB, set its block number to -1)
b) Mark the buffer as unmodified.
¢) Unpin the buffer.

Fig. 5.8 The algorithm for rolling back a transaction, using redo-only recovery

https://doi.org/10.1007/978-3-030-33836-7_4

116 5 Transaction Management

Consider each possibility in turn. If (a), then the recovery algorithm will find the
log record and undo the change to the data block on disk; no problem. If (b), then the
recovery algorithm won’t find the log record, and so it will not undo the change to
the data block. This is a serious problem. If (c), then the recovery algorithm will find
the log record and undo the nonexistent change to the block. Since the block wasn’t
actually changed, this is a waste of time, but not incorrect. If (d), then the recovery
algorithm won’t find the log record, but since there was no change to the block there
is nothing to undo anyway; no problem.

Thus (b) is the only problem case. The database engine avoids this case by
flushing an update log record to disk before flushing the corresponding modified
buffer page. This strategy is called using a write-ahead log. Note that the log may
describe modifications to the database that never wind up occurring (as in possibility
(c) above), but if the database does get modified, the log record for that modification
will always be on disk.

The standard way to implement a write-ahead log is for each buffer to keep track
of the LSN of its most recent modification. Before a buffer replaces a modified page,
it tells the log manager to flush the log up to that LSN. As a result, the log record
corresponding to a modification will always be on disk before the modification gets
saved to disk.

5.3.6 Quiescent Checkpointing

The log contains the history of every modification to the database. As time passes,
the size of the log file can become very large—in some cases, larger than the data
files. The effort to read the entire log during recovery and undo/redo every change to
the database can become overwhelming. Consequently, recovery strategies have
been devised for reading only a portion of the log. The basic idea is that the recovery
algorithm can stop searching the log as soon as it knows two things:

e All earlier log records were written by completed transactions.
* The buffers for those transactions have been flushed to disk.

The first bullet point applies to the undo stage of the recovery algorithm. It
ensures that there are no more uncommitted transactions to be rolled back. The
second bullet point applies to the redo stage and ensures that all earlier committed
transactions do not need to be redone. Note that if the recovery manager implements
undo-only recovery then the second bullet point will always be true.

At any point in time, the recovery manager can perform a quiescent checkpoint
operation, as shown in Fig. 5.9. Step 2 of that algorithm ensures that the first bullet
point is satisfied, and step 3 ensures that the second bullet point is satisfied.

The quiescent checkpoint record acts as a marker in the log. When stage 1 of the
recovery algorithm encounters the checkpoint record as it moves backwards through

5.3 Recovery Management 117

1. Stop accepting new transactions.

2. Wait for existing transactions to finish.

3. Flush all modified buffers.

4. Append a quiescent checkpoint record to the log and flush it to disk.
5. Start accepting new transactions.

Fig. 5.9 The algorithm for performing a quiescent checkpoint

<START, 0>
<SETINT, 0, junk, 33, 8, 542, 543>
<START, 1>

<START, 2>

<COMMIT, 1>
<SETSTRING, 2, junk, 44, 20, hello, ciao>
//The quiescent checkpoint procedure starts here
<SETSTRING, 0, junk, 33, 12, joe, joseph>
<COMMIT, 0>
//tx 3 wants to start here, but must wait
<SETINT, 2, junk, 66, 8, 0, 116>
<COMMIT, 2>
<CHECKPOINT>
<START, 3>
<SETINT, 3, junk, 33, 8, 543, 120>

Fig. 5.10 A log using quiescent checkpointing

the log, it knows that all earlier log records can be ignored; it therefore can begin
stage 2 from that point in the log and move forward. In other words, the recovery
algorithm never needs to look at log records prior to a quiescent checkpoint record.

A good time to write a quiescent checkpoint record is during system startup, after
recovery has completed and before new transactions have begun. Since the recovery
algorithm has just finished processing the log, the checkpoint record ensures that it
will never need to examine those log records again.

For an example, consider the log shown in Fig. 5.10. This example log illustrates
three things: First, no new transactions can start once the checkpoint process begins;
second, the checkpoint record was written as soon as the last transaction completed
and the buffers were flushed; and third, other transactions may start as soon as the
checkpoint record is written.

5.3.7 Nonquiescent Checkpointing

Quiescent checkpointing is simple to implement and easy to understand. However, it
requires that the database be unavailable while the recovery manager waits for
existing transactions to complete. In many database applications, this is a serious
shortcoming—companies don’t want their databases to occasionally stop responding

118 5 Transaction Management

. Let T1,...,Tk be the currently running transactions.

. Stop accepting new transactions.

. Flush all modified buffers.

. Write the record <NQCKPT T1, .., Tk> into the log.
. Start accepting new transactions.

N AW -

Fig. 5.11 The algorithm for adding a nonquiescent checkpoint record

for arbitrary periods of time. Consequently, a checkpointing algorithm has been
developed that doesn’t require quiescence. The algorithm appears in Fig. 5.11.

This algorithm uses a different kind of checkpoint record, called a nonquiescent
checkpoint record. A nonquiescent checkpoint record contains a list of the currently
running transactions.

The recovery algorithm is revised as follows. Stage 1 of the algorithm reads the
log backwards as before and keeps track of the completed transactions. When it
encounters a nonquiescent checkpoint record <NQCKPT T1, ..., Tk>, it deter-
mines which of these transactions are still running. It can then continue reading
the log backwards until it encounters the start record for the earliest of those trans-
actions. All log records prior to this start record can be ignored.

For an example, consider again the log of Fig. 5.10. With nonquiescent
checkpointing, the log would appear as in Fig. 5.12. Note that the <NQCKPT...>
record appears in this log in the place where the checkpoint process began in
Fig. 5.10 and states that transactions 0 and 2 are still running at that point. This
log differs from that of Fig. 5.10 in that transaction 2 never commits.

If the recovery algorithm sees this log during system startup, it would enter stage
1 and proceed as follows.

e When it encounters the <SETINT, 3, ...> logrecord, it will check to see if
transaction 3 was on the list of committed transactions. Since that list is currently
empty, the algorithm will perform an undo, writing the integer 543 to offset 8 of
block 33 of file “junk”.

<START, 0>
<SETINT, 0, junk, 33, 8, 542, 543>
<START, 1>
<START, 2>

<COMMIT, 1>

<SETSTRING, 2, junk, 44, 20, hello, ciao>
<NQCKPT, 0, 2>

<SETSTRING, 0, junk, 33, 12, joe, joseph>
<COMMIT, 0>

<START, 3>

<SETINT, 2, junk, 66, 8, 0, 116>

<SETINT, 3, junk, 33, 8, 543, 120>

Fig. 5.12 A log using nonquiescent checkpointing

5.3 Recovery Management 119

e The log record <SETINT, 2, ...> will be treated similarly, writing the
integer O to offset 8 of block 66 of “junk”.

* The <COMMIT, 0> log record will cause 0 to be added to the list of committed
transactions.

e The <SETSTRING, 0, ...> log record will be ignored, because O is in the
committed transaction list.

* When it encounters the <NQCKPT 0, 2> log record, it knows that transaction
0 has committed, and thus it can ignore all log records prior to the start record for
transaction 2.

e When it encounters the <START, 2> log record, it enters stage 2 and begins
moving forward through the log.

e The <SETSTRING, 0, ...> log record will be redone, because O is in the
committed transaction list. The value ‘joseph’ will be written to offset 12 of block
33 of “junk”.

5.3.8 Data Item Granularity

The recovery-management algorithms of this section use values as the unit of
logging. That is, a log record is created for each value that is modified, with the
log record containing the previous and new versions of the value. This unit of
logging is called a recovery data item. The size of a data item is called its
granularity.

Instead of using values as data items, the recovery manager could choose to use
blocks or files. For example, suppose that blocks were chosen as the data item. In this
case, an update log record would be created each time a block was modified, with the
previous and new values of the block being stored in the log record.

The advantage to logging blocks is that fewer log records are needed if you use
undo-only recovery. Suppose that a transaction pins a block, modifies several values,
and then unpins it. You could save the original contents of the block in a single log
record, instead of having to write one log record for each modified value. The
disadvantage, of course, is that the update log records are now very large; the entire
contents of the block gets saved, regardless of how many of its values actually
change. Thus, logging blocks makes sense only if transactions tend to do a lot of
modifications per block.

Now consider what it would mean to use files as data items. A transaction would
generate one update log record for each file that it changed. Each log record would
contain the entire original contents of that file. To roll back a transaction, you would
just need to replace the existing files with their original versions. This approach is
almost certainly less practical than using values or blocks as data items, because each
transaction would have to make a copy of the entire file, no matter how many values
changed.

Although file-granularity data items are impractical for database systems, they are
often used by non-database applications. Suppose, for example, that your computer

120 5 Transaction Management

crashes while you are editing a file. After the system reboots, some word processors
are able to show you two versions of the file: the version that you most recently
saved and the version that existed at the time of the crash. The reason is that those
word processors do not write your modifications directly to the original file but to a
copy; when you save, the modified file is copied to the original one. This strategy is a
crude version of file-based logging.

5.3.9 The SimpleDB Recovery Manager

The SimpleDB recovery manager is implemented via the class RecoveryMgr in
package simpledb.tx.recovery. The API for RecoveryMgr appears in
Fig. 5.13.

Each transaction has its own RecoveryMgr object, whose methods write the
appropriate log records for that transaction. For example, the constructor writes a
start log record to the log; the commit and rollback methods write
corresponding log records; and the setInt and setString methods extract the
old value from the specified buffer and write an update record to the log. The
rollback and recover methods perform the rollback (or recovery) algorithms.

A RecoveryMgr object uses undo-only recovery with value-granularity data
items. Its code can be divided into two areas of concern: code to implement log
records, and code to implement the rollback and recovery algorithms.

5.3.9.1 Log Records

As mentioned in Sect. 4.2, the log manager sees each log record as a byte array. Each
kind of log record has its own class, which is responsible for embedding the
appropriate values in the byte array. The first value in each array will be an integer
that denotes the operator of the record; the operator can be one of the constants
CHECKPOINT, START, COMMIT, ROLLBACK, SETINT, or SETSTRING. The
remaining values depend on the operator—a quiescent checkpoint record has no
other values, an update record has five other values, and the other records have one
other value.

RecoveryMgr
public RecoveryMgr (Transaction tx, int txnum, LogMgr 1m,
BufferMgr bm) ;
public void commit () ;
public void rollback();
public void recover();
public int setInt (Buffer buff, int offset, int newval);
public int setString(Buffer buff, int offset, String newval);

Fig. 5.13 The API for the SimpleDB recovery manager

https://doi.org/10.1007/978-3-030-33836-7_4

5.3 Recovery Management 121

Each log record class implements the interface LogRecord, which is shown in
Fig. 5.14. The interface defines three methods that extract the components of the log
record. Method op returns the record’s operator. Method txNumber returns the ID
of the transaction that wrote the log record. This method makes sense for all log
records except checkpoint records, which return a dummy ID value. The method
undo restores any changes stored in that record. Only the setint and
setstring log records will have a non-empty undo method; the method for
those records will pin a buffer to the specified block, write the specified value at the
specified offset, and unpin the buffer.

The classes for the individual kinds of log record all have similar code; it should
suffice to examine one of the classes, say SetStringRecord, whose code
appears in Fig. 5.15.

The class has two significant methods: a static method writeToLog, which
encodes the six values of a SETSTRING log record into a byte array, and the
constructor, which extracts those six values from that byte array. Consider the
implementation of writeToLog. It first calculates the size of the byte array and
the offset within that array of each value. It then creates a byte array of that size,
wraps it in a Page object, and uses the page’s set Int and setString methods

public interface LogRecord {
static final int CHECKPOINT = 0, START = 1, COMMIT = 2,
ROLLBACK = 3, SETINT = 4, SETSTRING = 5;
int op ()
int txNumber () ;
void undo (int txnum) ;

static LogRecord createlLogRecord(byte[] bytes) {

Page p = new Page (bytes);
switch (p.getInt(0)) {
case CHECKPOINT:

return new CheckpointRecord();
case START:

return new StartRecord(p);
case COMMIT:

return new CommitRecord(p);
case ROLLBACK:

return new RollbackRecord(p);
case SETINT:

return new SetIntRecord(p);
case SETSTRING:

return new SetStringRecord(p);
default:

return null;

Fig. 5.14 The code for the SimpleDB LogRecord interface

122 5 Transaction Management

public class SetStringRecord implements LogRecord {
private int txnum, offset;
private String val;
private BlockId blk;

public SetStringRecord (Page p) {
int tpos = Integer.BYTES;
txnum = p.getlnt (tpos);
int fpos = tpos + Integer.BYTES;
String filename = p.getString(fpos);
int bpos = fpos + Page.maxLength (filename.length());
int blknum = p.getlInt (bpos);
blk = new BlockId(filename, blknum);
int opos = bpos + Integer.BYTES;
offset = p.getInt (opos);
int vpos = opos + Integer.BYTES;
val = p.getString(vpos);

}

public int op() {
return SETSTRING;

}

public int txNumber () {
return txnum;

}

public String toString() {
return "<SETSTRING " + txnum + " " + blk + " " + offset + "
+ val + ">";

}

public void undo(Transaction tx) {
tx.pin(blk);

tx.setString(blk, offset, val, false); // don't log the undo!

tx.unpin (blk) ;
}

public static int writeToLog(LogMgr 1lm, int txnum, BlockId blk,

int offset, String wval) {
int tpos = Integer.BYTES;
int fpos = tpos + Integer.BYTES;
int bpos = fpos + Page.maxLength (blk.fileName () .length());
int opos = bpos + Integer.BYTES;
int vpos = opos + Integer.BYTES;
int reclen = vpos + Page.maxLength(val.length());
byte[] rec = new byte[reclen];
Page p = new Page(rec);
.setInt (0, SETSTRING) ;
.setInt (tpos, txnum);
.setString(fpos, blk.fileName());
.setInt (bpos, blk.number());
.setInt (opos, offset);

‘s ' T 'O T O

.setString(vpos, val);
return 1lm.append(rec);

Fig. 5.15 The code for the class SetStringRecord

5.4 Concurrency Management 123

to write the values in the appropriate locations. The constructor is analogous. It
determines the offset of each value within the page and extracts them.

The undo method has one argument, which is the transaction performing the
undo. The method has the transaction pin the block denoted by the record, write the
saved value, and unpin the block. The method that calls undo (either rollback or
recover) is responsible for flushing the buffer contents to disk.

5.3.9.2 Rollback and Recover

The class RecoveryMgr implements the undo-only recovery algorithm; its code
appears in Fig. 5.16. The commit and rollback methods flush the transaction’s
buffers before writing their log record, and the doRollback and doRecover
methods make a single backward pass through the log.

The doRol1lback method iterates through the log records. Each time it finds a
log record for that transaction, it calls the record’s undo method. It stops when it
encounters the start record for that transaction.

The doRecover method is implemented similarly. It reads the log until it hits a
quiescent checkpoint record or reaches the end of the log, keeping a list of committed
transaction numbers. It undoes uncommitted update records the same as in rol1l-
back, the difference being that it handles all uncommitted transactions, not just a
specific one. This method is slightly different from the recovery algorithm of
Fig. 5.6, because it will undo transactions that have already been rolled back.
Although this difference does not make the code incorrect, it does make it less
efficient. Exercise 5.50 asks you to improve it.

5.4 Concurrency Management

The concurrency manager is the component of the database engine that is responsible
for the correct execution of concurrent transactions. This section examines what it
means for execution to be “correct” and studies some algorithms that ensure
correctness.

5.4.1 Serializable Schedules

The history of a transaction is its sequence of calls to methods that access the
database files—in particular, the get/set methods." For example, the histories of
each transaction in Fig. 5.3 could be written, somewhat tediously, as shown in
Fig. 5.17a. Another way to express the history of a transaction is in terms of the

'The size and append methods also access a database file but more subtly than do the get/set
methods. Section 5.4.5 will consider the effect of size and append.

124

public class RecoveryMgr {

private
private
private

LogMgr 1lm;
BufferMgr bm;
Transaction tx;

5 Transaction Management

private int txnum;

public RecoveryMgr (Transaction tx, int txnum, LogMgr 1m,
BufferMgr bm) {

this.tx = tx;

this.txnum = txnum;

this.lm = 1m;

this.bm = bm;
StartRecord.writeToLog (1lm, txnum);

}

public void commit () {
bm.flushAll (txnum) ;
int lsn = CommitRecord.writeToLog (lm, txnum);
Im.flush(lsn);

}

public void rollback() {
doRollback() ;
bm.flushAll (txnum) ;
int 1lsn = RollbackRecord.writeToLog (1lm, txnum);
Im.flush(1lsn);
}

public void recover () {
doRecover () ;
bm.flushAll (txnum) ;
int 1lsn = CheckpointRecord.writeToLog (1lm) ;
1Im.flush(lsn);
}

public int setInt (Buffer buff, int offset, int newval) {
int oldval = buff.contents().getInt (offset);
BlockId blk = buff.block();
return SetIntRecord.writeToLog (lm, txnum, blk, offset,
oldval) ;

}

public int setString(Buffer buff, int offset, String newval)

{
String oldval = buff.contents().getString(offset);

BlockId blk = buff.block();
return SetStringRecord.writeToLog(lm, txnum, blk, offset,
oldval) ;

}

private void doRollback() {
Iterator<byte[]> iter = lm.iterator();
while (iter.hasNext()) {

Fig. 5.16 The code for the class RecoveryMgr

5.4 Concurrency Management 125

byte[] bytes = iter.next();
LogRecord rec = LogRecord.createlLogRecord (bytes) ;

if (rec.txNumber () == txnum) {
if (rec.op() == START)
return;

rec.undo (tx) ;

}

private void doRecover () {
Collection<Integer> finishedTxs = new ArrayList<Integer>();
Iterator<byte[]> iter = lm.iterator();
while (iter.hasNext()) {
byte[] bytes = iter.next();
LogRecord rec = LogRecord.createLogRecord (bytes) ;
if (rec.op() == CHECKPOINT)
return;
if (rec.op() == COMMIT || rec.op() == ROLLBACK)

finishedTxs.add (rec.txNumber ());
else if (!finishedTxs.contains (rec.txNumber()))
rec.undo (tx) ;

}

Fig. 5.16 (continued)

affected blocks, as shown in Fig. 5.17b. For example, the history for tx2 states that
it reads twice from block blk and then writes twice to blk.

Formally, the history of a transaction is the sequence of database actions made by
that transaction. The term “database action” is deliberately vague. Part (a) of
Fig. 5.17 treated a database action as the modification of a value, and part
(b) treated it as the read/write of a disk block. Other granularities are possible,
which are discussed in Sect. 5.4.8. Until then, I shall assume that a database action
is the reading or writing of a disk block.

When multiple transactions are running concurrently, the database engine will
interleave the execution of their threads, periodically interrupting one thread and
resuming another. (In SimpleDB, the Java runtime environment does this automat-
ically.) Thus, the actual sequence of operations performed by the concurrency
manager will be an unpredictable interleaving of the histories of its transactions.
That interleaving is called a schedule.

The purpose of concurrency control is to ensure that only correct schedules get
executed. But what does “correct” mean? Well, consider the simplest possible sched-
ule—one in which all transactions run serially (such as in Fig. 5.17). The operations in
this schedule will not be interleaved, that is, the schedule will simply be the back-to-
back histories of each transaction. This kind of schedule is called a serial schedule.

Concurrency control is predicated on the assumption that a serial schedule has to
be correct, since there is no concurrency. The interesting thing about defining

126 5 Transaction Management

txl: setInt(blk, 80, 1, false);
setString(blk, 40, "one", false);

tx2: getInt(blk, 80);
getString(blk, 40);
setInt (blk, 80, newival, true);
setString(blk, 40, newsval, true);

tx3: getInt (blk, 80));
getString(blk, 40));
setInt (blk, 80, 9999, true);
getInt (blk, 80));

tx4: getInt (blk, 80));

(a)

txl: W(blk); W(blk)

tx2: R(blk); R(blk); W(blk); W(blk)
tx3: R(blk); R(blk); W(blk); R(blk)
tx4: R(blk)

(b)

Fig. 5.17 Transaction histories from Fig. 5.3. (a) Data access histories, (b) Block access histories

correctness in terms of serial schedules is that different serial schedules of the same
transactions can give different results. For example, consider the two transactions T'1
and T2, having the following identical histories:

T1: W(b1l); W(b2)
T2: W(b1l); W(b2)

Although these transactions have the same history (i.e., they both write block b1 first
and then block b2), they are not necessarily identical as transactions—for example, T1
might write an ‘X’ at the beginning of each block, whereas T2 might write a “Y.” If T1
executes before T2, the blocks will contain the values written by T2, but if they execute
in the reverse order, the blocks will contain the values written by T1.

In this example, T1 and T2 have different opinions about what blocks bl and b2
should contain. And since all transactions are equal in the eyes of the database
engine, there is no way to say that one result is more correct than another. Thus, you
are forced to admit that the result of either serial schedule is correct. That is, there can
be several correct results.

A non-serial schedule is said to be serializable if it produces the same result as
some serial schedule.” Since serial schedules are correct, it follows that serializable

The term serializable is also used in Java—a serializable class is one whose objects can be written
as a stream of bytes. Unfortunately, that use of the term has absolutely nothing to do with the
database usage of it.

5.4 Concurrency Management 127

schedules must also be correct. For an example, consider the following non-serial
schedule of the above transactions:

W1l (bl); W2 (bl); Wl (b2); W2 (b2)

Here, W1(b1) means that transaction T1 writes block bl, etc. This schedule
results from running the first half of T1, followed by the first half of T2, the second
half of T1, and the second half of T2. This schedule is serializable, because it is
equivalent to doing T1 first and then T2. On the other hand, consider the following
schedule:

W1l (bl); W2 (bl); W2 (b2); W1 (b2)

This transaction does the first half of T1, all of T2, and then the second half of T1.
The result of this schedule is that block bl contains the values written by T2, but
block b2 contains the values written by T1. This result cannot be produced by any
serial schedule, and so the schedule is said to be non-serializable.

Recall the ACID property of isolation, which said that each transaction should
execute as if it were the only transaction in the system. A non-serializable schedule
does not have this property. Therefore, you are forced to admit that non-serializable
schedules are incorrect. In other words, a schedule is correct if and only if it is
serializable.

5.4.2 The Lock Table

The database engine is responsible for ensuring that all schedules are serializable. A
common technique is to use locking to postpone the execution of a transaction.
Section 5.4.3 will look at how locking can be used to ensure serializability. This
section simply examines how the basic locking mechanism works.

Each block has two kinds of lock—a shared lock (or slock) and an exclusive lock
(or xlock). If a transaction holds an exclusive lock on a block, then no other
transaction is allowed to have any kind of lock on it; if the transaction holds a shared
lock on a block, then other transactions are only allowed to have shared locks on
it. Note that these restrictions apply only to other transactions. A single transaction is
allowed to hold both a shared and exclusive lock on a block.

The lock table is the database engine component responsible for granting locks to
transactions. The SimpleDB class LockTable implements the lock table. Its API
appears in Fig. 5.18.

LockTable
public void sLock(Block blk);
public void xLock (Block blk);
public void unlock (Block blk);

Fig. 5.18 The API for the SimpleDB class LockTable

128 5 Transaction Management

The method sLock requests a shared lock on the specified block. If an exclusive
lock already exists on the block, the method waits until the exclusive lock has been
released. The method xLock requests an exclusive lock on the block. This method
waits until no other transaction has any kind of lock on it. The unlock method
releases a lock on the block.

Figure 5.19 presents the class ConcurrencyTest, which demonstrates some
interactions between lock requests.

public class ConcurrencyTest {
private static FileMgr fm;
private static LogMgr 1m;
private static BufferMgr bm;

public static void main(String[] args) {
//initialize the database engine
SimpleDB db = new SimpleDB ("concurrencytest", 400, 8);
fm = db.fileMgr();

Im = db.logMgr () ;

bm = db.bufferMgr();

A a = new A(); new Thread(a).start();
B b = new B(); new Thread(b).start();
C ¢ = new C(); new Thread(c).start();

static class A implements Runnable {
public void run() {
try {

Transaction txA = new Transaction (fm, 1m, bm);
BlockId blkl = new BlockId("testfile", 1);
BlockId blk2 = new BlockId("testfile", 2);
txA.pin(blkl) ;
txA.pin (blk2) ;
System.out.println("Tx A: request slock 1");
txA.getInt (blkl, 0);
System.out.println("Tx A: receive slock 1");
Thread.sleep (1000) ;
System.out.println("Tx A: request slock 2");
txA.getInt (blk2, 0);
System.out.println("Tx A: receive slock 2");
txA.commit () ;

}
catch(InterruptedException e) {};

static class B implements Runnable {
public void run() {
try {
Transaction txB = new Transaction (fm, 1m, bm);

Fig. 5.19 Testing the interaction between lock requests

5.4 Concurrency Management 129

BlockId blkl = new BlockId("testfile", 1);
BlockId blk2 = new BlockId("testfile", 2);
txB.pin (blkl) ;
txB.pin (blk2) ;
System.out.println("Tx B: request xlock 2");
txB.setInt (blk2, 0, 0, false);
System.out.println ("Tx B: receive xlock 2");
Thread.sleep(1000) ;
System.out.println("Tx B: request slock 1");
txB.getInt (blkl, O0);
System.out.println("Tx B: receive slock 1");
txB.commit () ;

}

catch(InterruptedException e) {};

static class C implements Runnable {
public void run() {

try {
Transaction txC = new Transaction (fm, 1m, bm);
BlockId blkl = new BlockId("testfile", 1);
BlockId blk2 = new BlockId("testfile", 2);
txC.pin (blkl) ;
txC.pin (blk2) ;
System.out.println ("Tx C: request xlock 1");
txC.setInt(blkl, 0, 0, false);
System.out.println("Tx C: receive xlock 1");
Thread.sleep (1000);
System.out.println("Tx C: request slock 2");
txC.getInt (blk2, 0);
System.out.println("Tx C: receive slock 2");
txC.commit () ;

}

catch (InterruptedException e) {};

Fig. 5.19 (continued)

The ma in method executes three concurrent threads, corresponding to an object
from each of classes A, B, and C. These transactions do not explicitly lock and
unlock blocks. Instead, Transaction’s getInt method obtains an slock, its
setInt method obtains an xlock, and its commi t method unlocks all its locks. The
sequence of locks and unlocks for each transaction thus looks like this:

txA: sLock (blkl); sLock(blk2); unlock(blkl); unlock (blk2)
txB: xLock (blk2); sLock(blkl); unlock(blkl); unlock (blk2)
txC: xLock (blkl); sLock (blk2); unlock(blkl); unlock (blk2)

130 5 Transaction Management

The threads have sleep statements to force the transactions to alternate their lock
requests. The following sequence of events occurs:

1. Thread A obtains an slock on blk1.

2. Thread B obtains an xlock on blk2.

3. Thread C cannot get an xlock on blkl, because someone else has a lock on

it. Thus thread C waits.

4. Thread A cannot get an slock on blk2, because someone else has an xlock on

it. Thus thread A also waits.

5. Thread B can continue. It obtains an slock on block blkl, because nobody
currently has an xlock on it. (It doesn’t matter that thread C is waiting for an
xlock on that block.)

. Thread B unlocks block blk1, but this does not help either waiting thread.

. Thread B unlocks block blk2.

. Thread A can now continue and obtains its slock on blk2.

. Thread A unlocks block blkl1.

. Thread C finally is able to obtain its xlock on blk1.

. Threads A and C can continue in any order until they complete.

— O O 0 3 O\

[E—

5.4.3 The Lock Protocol

It is time to tackle the question of how locking can be used to ensure that all
schedules are serializable. Consider two transactions having the following histories:

Tl: R(bl); W(b2)
T2: W(bl); W(b2)

What is it that causes their serial schedules to have different results? Transactions
T1 and T2 both write to the same block b2, which means that the order of these
operations makes a difference—whichever transaction writes last is the “winner.”
The operations {W1 (b2) , W2 (b2) } are said to conflict. In general, two operations
conflict if the order in which they are executed can produce a different result. If two
transactions have conflicting operations, then their serial schedules may have dif-
ferent (but equally correct) results.

This conflict is an example of a write-write conflict. A second kind of conflict is a
read-write conflict. For example, the operations {R1 (b1) , W2 (b1) } conflict—if
R1 (bl) executes first, then T1 reads one version of block b1, whereas if W2 (b1)
executes first, then T1 reads a different version of block bl. Note that two read
operations cannot ever conflict, nor can operations involving different blocks.

The reason to care about conflicts is because they influence the serializability of a
schedule. The order in which conflicting operations are executed in a non-serial
schedule determines what the equivalent serial schedule must be. In the above
example, if W2 (b1) executes before R1 (b1l), then any equivalent serial schedule

5.4 Concurrency Management 131

1. Before reading a block, acquire a shared lock on it.
2. Before modifying a block, acquire an exclusive lock on it.
3. Release all locks after a commit or rollback.

Fig. 5.20 The lock protocol

must have T2 running before T1. In general, if you consider all operations in T1 that
conflict with T2, then either they all must be executed before any conflicting T2
operations or they all must be executed after them. Nonconflicting operations can
happen in an arbitrary order.’

Locking can be used to avoid write-write and read-write conflicts. In particular,
suppose that all transactions use locks according to the protocol of Fig. 5.20.

From this protocol, you can infer two important facts. First, if a transaction gets a
shared lock on a block, then no other active transaction will have written to the block
(otherwise, some transaction would still have an exclusive lock on the block).
Second, if a transaction gets an exclusive lock on a block, then no other active
transaction will have accessed the block in any way (otherwise, some transaction
would still have a lock on the block). These facts imply that an operation performed
by a transaction will never conflict with a previous operation by another active
transaction. In other words, if all transactions obey the lock protocol, then:

» The resulting schedule will always be serializable (and hence correct)
* The equivalent serial schedule is determined by the order in which the trans-
actions commit

By forcing transactions to hold their locks until they complete, the lock protocol
drastically limits the concurrency in the system. It would be nice if a transaction
could release its locks when they are no longer needed, so other transactions
wouldn’t have to wait as long. However, two serious problems can arise if a
transaction releases its locks before it completes: it may no longer be serializable,
and other transactions can read its uncommitted changes. These two issues are
discussed next.

5.4.3.1 Serializability Problems

Once a transaction unlocks a block, it can no longer lock another block without
impacting serializability. To see why, consider a transaction T1 that unlocks block x
before locking block y.

Tl: ...R(x); UL(x); SL(y); R(y); ...

*Actually, you can construct obscure examples in which certain write-write conflicts can also occur
in any order; see Exercise 5.26. Such examples, however, are not practical enough to be worth
considering.

132 5 Transaction Management

Suppose that T1 is interrupted during the time interval between the unlock of x
and the slock of y. At this point, T1 is extremely vulnerable, because both x and y are
unlocked. Suppose that another transaction T2 jumps in, locks both x and y, writes to
them, commits, and releases its locks. The following situation has occurred: T1 must
come before T2 in the serial order, because T1 read the version of block x that
existed before T2 wrote it. On the other hand, T1 must also come after T2 in the
serial order, because T1 will read the version of block y written by T2. Thus, the
resulting schedule is non-serializable.

It can be shown that the converse is also true—if a transaction acquires all of its
locks before unlocking any of them, the resulting schedule is guaranteed to be
serializable (see Exercise 5.27). This variant of the lock protocol is called two-
phase locking. This name comes from the fact that under this protocol, a transaction
has two phases—the phase where it accumulates the locks and the phase where it
releases the locks.

Although two-phase locking is theoretically a more general protocol, a database
engine cannot easily take advantage of it. Usually by the time a transaction has
finished accessing its final block (which is when locks are finally able to be released),
it is ready to commit anyway. So the fully general two-phase locking protocol is
rarely effective in practice.

5.4.3.2 Reading Uncommitted Data

Another problem with releasing locks early (even with two-phase locking) is that
transactions will be able to read uncommitted data. Consider the following partial
schedule:

.Wl(b); UL1(b); SL2(b); R2(b); ...

In this schedule, T'1 writes to block b and unlocks it; transaction T2 then locks and
reads b. If T1 eventually commits, then there is no problem. But suppose that T1
does arollback. Then T2 will also have to roll back, because its execution is based on
changes that no longer exist. And if T2 rolls back, this could cause still other
transactions to roll back. This phenomenon is known as cascading rollback.

When the database engine lets a transaction read uncommitted data, it enables
more concurrency, but it takes the risk that the transaction that wrote the data will not
commit. Certainly, rollbacks tend to be infrequent, and cascaded rollbacks should be
more so. The question is whether a database engine wants to take any risk of possibly
rolling back a transaction unnecessarily. Most commercial database systems are not
willing to take this risk and therefore always wait until a transaction completes
before releasing its exclusive locks.

5.4 Concurrency Management 133

5.4.4 Deadlock

Although the lock protocol guarantees that schedules will be serializable, it does not
guarantee that all transactions will commit. In particular, it is possible for trans-
actions to be deadlocked.

Section 4.5.1 gave an example of deadlock in which two client threads were each
waiting for the other to release a buffer. A similar possibility exists with locks. A
deadlock occurs when there is a cycle of transactions in which the first transaction is
waiting for a lock held by the second transaction, the second transaction is waiting
for a lock held by the third transaction, and so on, until the last transaction is waiting
for a lock held by the first transaction. In such a case, none of the waiting transactions
can continue, and all will wait potentially forever. For a simple example, consider the
following two histories, in which the transactions write to the same blocks but in
different orders:

T1l: W(bl); W(b2)
T2: W(b2); W(bl)

Suppose that T1 first acquires its lock on block bl. There is now a race for the
lock on block b2. If T1 gets it first, then T2 will wait, T1 will eventually commit and
release its locks, and T2 can continue. No problem. But if T2 gets the lock on block
b2 first, then deadlock occurs—T1 is waiting for T2 to unlock block b2, and T2 is
waiting for T1 to unlock block bl. Neither transaction can continue.

The concurrency manager can detect a deadlock by keeping a “waits-for” graph.
This graph has one node for each transaction and an edge from T1 to T2 if T1 is
waiting for a lock that T2 holds; each edge is labeled by the block that the transaction
is waiting for. Every time a lock is requested or released, the graph is updated. For
example, the waits-for graph corresponding to the above deadlock scenario appears
in Fig. 5.21.

It is easy to show that a deadlock exists iff the waits-for graph has a cycle; see
Exercise 5.28. When the transaction manager detects the occurrence of a deadlock, it
can break it by summarily rolling back any one of the transactions in the cycle. A
reasonable strategy is to roll back the transaction whose lock request “caused” the
cycle, although other strategies are possible; see Exercise 5.29.

If you consider threads waiting for buffers as well as those waiting for locks, then
testing for deadlock gets considerably more complicated. For example, suppose that
the buffer pool contains only two buffers, and consider the following scenario:

T1l: xlock(bl); pin(b4)
T2: pin(b2); pin(b3); xlock (bl)

Fig. 5.21 A waits-for graph

https://doi.org/10.1007/978-3-030-33836-7_4

134 5 Transaction Management

Suppose transaction T1 gets interrupted after obtaining the lock on block b1, and
then T2 pins blocks b2 and b3. T2 will wind up on the waiting list for xlock(b1), and
T1 will wind up on the waiting list for a buffer. There is deadlock, even though the
waits-for graph is acyclic.

In order to detect deadlock in such situations, the lock manager must not only
keep a waits-for graph, it also needs to know about which transactions are waiting for
what buffers. Incorporating this additional consideration into the deadlock detection
algorithm turns out to be fairly difficult. Adventurous readers are encouraged to try
Exercise 5.37.

The problem with using a waits-for graph to detect deadlock is that the graph is
somewhat difficult to maintain and the process of detecting cycles in the graph is
time-consuming. Consequently, simpler strategies have been developed to approx-
imate deadlock detection. These strategies are conservative, in the sense that they
will always detect a deadlock, but they might also treat a non-deadlock situation as a
deadlock. This section considers two such possible strategies; Exercise 5.33 con-
siders another.

The first approximation strategy is called wait-die, which is defined in Fig. 5.22.
This strategy ensures that no deadlocks can occur, because the waits-for graph will
contain only edges from older transactions to newer transactions. But the strategy
also treats every potential deadlock as a cause for rollback. For example, suppose
transaction T1 is older than T2, and T2 requests a lock currently held by T1. Even
though this request may not immediately cause deadlock, there is the potential for it,
because at some later point, T1 might request a lock held by T2. Thus the wait-die
strategy will preemptively roll back T2.

The second approximation strategy is to use a time limit to detect a possible
deadlock. If a transaction has been waiting for some preset amount of time, then the
transaction manager will assume that it is deadlocked and will roll it back. See
Fig. 5.23.

Regardless of the deadlock detection strategy, the concurrency manager must
break the deadlock by rolling back an active transaction. The hope is that by

Suppose T1 requests a lock that conflicts with a lock held by T2.
If T1 is older than T2 then:
T1 waits for the lock.
Otherwise:
T1 is rolled back (i.e. it “dies”).

Fig. 5.22 The wait-die deadlock detection strategy

Suppose T1 requests a lock that conflicts with a lock held by T2.

1. T1 waits for the lock.
2. If T1 stays on the wait list too long then:
T1 is rolled back.

Fig. 5.23 The time limit deadlock detection strategy

5.4 Concurrency Management 135

releasing that transaction’s locks, the remaining transactions will be able to com-
plete. Once the transaction is rolled back, the concurrency manager throws an
exception; in SimpleDB, this exception is called a LockAbortException. As
with the Buf ferAbortException of Chap. 4, this exception is caught by the
JDBC client of the aborted transaction, which then decides how to handle it. For
example, the client could choose to simply exit, or it could try to run the transaction
again.

5.4.5 File-Level Conflicts and Phantoms

This chapter has so far considered the conflicts that arise from the reading and
writing of blocks. Another kind of conflict involves the methods size and
append, which read and write the end-of-file marker. These two methods clearly
conflict with each other: Suppose that transaction T1 calls append before transac-
tion T2 calls size; then T1 must come before T2 in any serial order.

One of the consequences of this conflict is known as the phantom problem.
Suppose that T2 reads the entire contents of a file repeatedly and calls size before
each iteration to determine how many blocks to read. Moreover, suppose that after
T2 reads the file the first time, transaction T1 appends some additional blocks to the
file, fills them with values, and commits. The next time through the file, T2 will see
these additional values, in violation of the ACID property of isolation. These
additional values are called phantoms, because to T2 they have shown up
mysteriously.

How can the concurrency manager avoid this conflict? The lock protocol requires
T2 to obtain an slock on each block it reads, so that T1 will not be able to write new
values to those blocks. However, this approach will not work here, because it would
require T2 to slock the new blocks before T1 creates them!

The solution is to allow transactions to lock the end-of-file marker. In particular,
a transaction needs to xlock the marker in order to call the append method, and
it needs to slock the marker in order to call the size method. In the above
scenario, if T1 calls append first, then T2 will not be able to determine the file
size until T1 completes; conversely, if T2 has already determined the file size, then
T1 would be blocked from appending until T2 commits. In either case, phantoms
cannot occur.

5.4.6 Multiversion Locking

Transactions in many database applications are read-only. Read-only transactions
coexist nicely within the database engine because they share locks and never have to
wait for each other. However, they do not get along well with update transactions.
Suppose that one update transaction is writing to a block. Then all read-only

https://doi.org/10.1007/978-3-030-33836-7_4

136 5 Transaction Management

transactions that want to read that block must wait, not just until the block is written
but until the update transaction has completed. Conversely, if an update transaction
wants to write a block, it needs to wait until all of the read-only transactions that read
the block have completed.

In other words, a lot of waiting is going to occur when read-only and update
transactions conflict, regardless of which transaction gets its lock first. Given that
this situation is a common one, researchers have developed strategies for reducing
this waiting. One such strategy is called multiversion locking.

5.4.6.1 The Principle of Multiversion Locking

As its name suggests, multiversion locking works by storing multiple versions of
each block. The basic idea is as follows:

* Each version of a block is timestamped with the commit time of the transaction
that wrote it.

e When a read-only transaction requests a value from a block, the concurrency
manager uses the version of the block that was most recently committed at the
time the transaction began.

In other words, a read-only transaction sees a snapshot of the committed data as it
would have looked at the time the transaction began. Note the term “committed
data.” The transaction sees the data written by transactions that committed before it
began and does not see the data written by later transactions.

Consider the following example of multiversion locking. Suppose four trans-
actions have the following histories:

T1: W(bl); W(b2
T2: W(bl); W(b2)
T3: R(bl); R(b2
T4: W(b2)

and that they execute according to the following schedule:

time=3 time=11
Versions of block b,: <written <written
by T,> by T,>
time=3 time=7 time=11
Versions of block b,: <written <written <written
- by T,> by T,> by T,>

Fig. 5.24 Multiversion concurrency

5.4 Concurrency Management 137
W1l(bl); W1(b2); C1; W2 (bl); R3(bl); W4 (b2); C4; R3(b2); C3; W2(bl); C2

This schedule assumes that a transaction begins at its first operation and obtains
its locks immediately before they are needed. The operation Ci indicates when
transaction Ti commits. The update transactions T1, T2, and T4 follow the lock
protocol, as you can verify from the schedule. Transaction T3 is a read-only
transaction and does not follow the protocol.

The concurrency manager stores a version of a block for each update transaction
that writes to it. Thus, there will be two versions of bl and three versions of b2, as
shown in Fig. 5.24.

The timestamp on each version is the time when its transaction commits, not
when the writing occurred. Assume that each operation takes one time unit, so T1
commits at time 3, T4 at time 7, T3 at time 9, and T2 at time 11.

Now consider the read-only transaction T3. It begins at time 5, which means that
it should see the values that were committed at that point, namely, the changes made
by T1 but not T2 or T4. Thus, it will see the versions of bl and b2 that were
timestamped at time 3. Note that T3 will not see the version of b2 that was
timestamped at time 7, even though that version had been committed by the time
that the read occurred.

The beauty of multiversion locking is that read-only transactions do not need to
obtain locks and thus never have to wait. The concurrency manager chooses the
appropriate version of a requested block according to the start time of the transaction.
An update transaction can be concurrently making changes to the same block, but a
read-only transaction will not care because it sees a different version of that block.

Multiversion locking only applies to read-only transactions. Update transactions
need to follow the lock protocol, obtaining both slocks and xlocks as appropriate.
The reason is every update transaction reads and writes the current version of the
data (and never a previous version), and thus conflicts are possible. But remember
that these conflicts are between update transactions only and not with the read-only
transactions. Thus, assuming that there are relatively few conflicting update trans-
actions, waiting will be much less frequent.

5.4.6.2 Implementing Multiversion Locking

Now that you have seen how multiversion locking should work, let’s examine how
the concurrency manager does what it needs to do. The basic issue is how to
maintain the versions of each block. A straightforward but somewhat difficult
approach would be to explicitly save each version in a dedicated “version file.” A
different approach is to use the log to reconstruct any desired version of a block. Its
implementation works as follows.

Each read-only transaction is given a timestamp when it starts. Each update
transaction is given a timestamp when it commits. The commit method for an
update transaction is revised to include the following actions:

138 5 Transaction Management

* The recovery manager writes the transaction’s timestamp as part of its commit log
record.

* For each xlock held by the transaction, the concurrency manager pins the block,
writes the timestamp to the beginning of the block, and unpins the buffer.

Suppose that a read-only transaction having timestamp t requests a block b. The
concurrency manager takes the following steps to reconstruct the appropriate
version:

» It copies the current version of block b to a new page.
¢ It reads the log backwards three times, as follows:

— It constructs a list of transactions that committed after time t. Since trans-
actions commit in timestamp order, the concurrency manager can stop reading
the log when it finds a commit record whose timestamp is less than t.

— It constructs a list of uncompleted transactions by looking for log records
written by transactions that do not have a commit or rollback record. It can
stop reading the log when it encounters a quiescent checkpoint record or the
earliest start record of a transaction in a nonquiescent checkpoint record.

— It uses the update records to undo values in the copy of b. When it encounters
an update record for b written by a transaction on either of the above lists, it
performs an undo. It can stop reading the log when it encounters the start
record for the earliest transaction on the lists.

* The modified copy of b is returned to the transaction.

In other words, the concurrency manager reconstructs the version of the block at
time t by undoing modifications made by transactions that did not commit before
t. This algorithm uses three passes through the log for simplicity. Exercise 5.38 asks
you to rewrite the algorithm to make a single pass through the log.

Finally, a transaction needs to specify whether it is read-only or not, since the
concurrency manager treats the two types of transaction differently. In JDBC, this
specification is performed by the method setReadOnly in the Connection
interface. For example:

Connection conn= ... // obtain the connection
conn.setReadOnly (true) ;

The call to setReadOnly is considered to be a “hint” to the database
system. The system can choose to ignore the call if it does not support multiversion
locking.

5.4 Concurrency Management

139

ISOLATION LEVEL PROBLEMS LOCK USAGE COMMENTS
serializable none slocks held to completion, the only level that
’ slock on eof marker guarantees correctness
slocks held to completion, useful for modify-based
repeatable read phantoms . .
no slock on eof marker transactions
useful for conceptually
phantoms, slocks released early, separable transactions

read committed

values may change no slock on eof marker whose updates are “all

or nothing”
phantoms, useful for read-only
read uncommitted values may change, no slocks at all transactions that tolerate
dirty reads inaccurate results

Fig. 5.25 Transaction isolation levels

5.4.7 Transaction Isolation Levels

Enforcing serializability causes a considerable amount of waiting, because the lock
protocol requires transactions to hold their locks until they complete. Consequently,
if a transaction T1 happens to need just one lock that conflicts with a lock held by T2,
then T1 cannot do anything else until T2 completes.

Multiversion locking is very attractive because it allows read-only transactions to
execute without locks and therefore without the inconvenience of having to wait.
However, the implementation of multiversion locking is somewhat complex and
requires additional disk accesses to recreate the versions. Moreover, multiversion
locking does not apply to transactions that update the database.

There is another way for a transaction to reduce the amount of time it waits for
locks—it can specify that it does not need complete serializability. Chapter 2
examined the four transaction isolation levels of JDBC. Figure 5.25 summarizes
these levels and their properties.

Chapter 2 related these isolation levels to the various problems that can occur.
What is new about Fig. 5.25 is that it also relates these levels to the way that slocks
are used. Serializable isolation requires very restrictive shared locking, whereas
read-uncommitted isolation does not even use slocks. Clearly, the less restrictive
the locking, the less waiting that occurs. But less restrictive locking also introduces
more inaccuracies into the results of queries: a transaction may see phantoms, or it
may see two different values at a location at different times, or it may see values
written by an uncommitted transaction.

I want to stress that these isolation levels apply only to data reading. All trans-
actions, regardless of their isolation level, should behave correctly with respect to
writing data. They must obtain the appropriate xlocks (including the xlock on the eof
marker) and hold them to completion. The reason is that an individual transaction
may choose to tolerate inaccuracies when it runs a query, but an inaccurate update
poisons the entire database and cannot be tolerated.

https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2

140 5 Transaction Management

How does read uncommitted isolation compare with multiversion locking? Both
apply to read-only transactions, and both operate without locks. However, a trans-
action that uses read uncommitted isolation sees the current value of each block that
it reads, regardless of which transaction wrote to it or when. It is not even close to
being serializable. On the other hand, a transaction that uses multiversion locking
sees the committed contents of the blocks at a single point in time and is serializable.

5.4.8 Data Item Granularity

This chapter has assumed that the concurrency manager locks blocks. But other
locking granularities are possible: The concurrency manager could lock values, files,
or even the entire database. The unit of locking is called a concurrency data item.

The principles of concurrency control are not affected by the granularity of data
item used. All of the definitions, protocols, and algorithms in this chapter apply to
any data item. The choice of granularity is therefore a practical one, which needs to
balance efficiency with flexibility. This section examines some of these trade-offs.

The concurrency manager keeps a lock for each data item. A smaller granularity
size is useful because it allows for more concurrency. For example, suppose that two
transactions wish to concurrently modify different parts of the same block. These
concurrent modifications are possible with value-granularity locking but not with
block-granularity locking.

However, a smaller granularity requires more locks. Values tend to make imprac-
tically small data items, because they entail an enormous number of locks. At the
other extreme, using files as data items would require very few locks but would also
significantly impact concurrency—a client would need to xlock the entire file in
order to update any portion of it. Using blocks as data items is a reasonable
compromise.

As an aside, note that some operating systems (such as MacOS and Windows) use
file-granularity locking to implement a primitive form of concurrency control. In
particular, an application cannot write to a file without an xlock on the file, and it
cannot obtain the xlock if that file is currently being used by another application.

Some concurrency managers support data items at multiple granularities, such as
blocks and files. A transaction that plans to access only a few blocks of a file could
lock them separately; but if the transaction plans to access all (or most of) the file, it
would obtain a single file-granularity lock. This approach blends the flexibility of
small-granularity items with the convenience of high-level items.

Another possible granularity is to use data records as concurrency data items.
Data records are handled by the record manager, which is the topic of the next
chapter. SimpleDB is structured so that the concurrency manager does not under-
stand records and therefore cannot lock them. However, some commercial systems
(such as Oracle) are built so that the concurrency manager knows about the record
manager and can call its methods. In this case, data records would be a reasonable
concurrency data item.

5.4 Concurrency Management 141

ConcurrencyMgr
public ConcurrencyMgr (int txnum) ;

public void sLock (Block blk);
public void xLock(Block blk);
public void release();

Fig. 5.26 The API for the SimpleDB concurrency manager

Although data-record granularity appears attractive, it introduces additional prob-
lems with phantoms. Since new data records can get inserted into existing blocks, a
transaction that reads all records from a block needs a way to keep other transactions
from inserting records into that block. The solution is for the concurrency manager to
also support a coarser-granularity data item, such as blocks or files. In fact, some
commercial systems avoid phantoms by simply forcing a transaction to obtain an
xlock on the file before it performs any insertion.

5.4.9 The SimpleDB Concurrency Manager

The SimpleDB concurrency manager is implemented via the class
ConcurrencyMgr in the package simpledb.tx.concurrency. The con-
currency manager implements the lock protocol, using block-level granularity. Its
API appears in Fig. 5.26.

Each transaction has its own concurrency manager. The methods of the concur-
rency manager are similar to those of the lock table but are transaction-specific. Each
ConcurrencyMgr object keeps track of the locks held by its transaction. The
methods sLock and xLock will request a lock from the lock table only if the
transaction does not yet have it. The method release is called at the end of the
transaction to unlock all its locks.

The ConcurrencyMgr class makes use of the class LockTable, which
implements the SimpleDB lock table. The remainder of this section examines the
implementation of these two classes.

5.4.9.1 The Class LockTable

The code for the class LockTable appears in Fig. 5.27. The LockTable object
holds a Map variable called 1ocks. This map contains an entry for each block that
currently has an assigned lock. The value of an entry will be an Integer object; a
value of -1 denotes that an exclusive lock is assigned, whereas a positive value
denotes the current number of shared locks assigned.

The sLock and xLock methods work very similarly to the pin method of
BufferMgr. Each method calls the Java wait method inside of a loop, which

142 5 Transaction Management

class LockTable {
private static final long MAX TIME = 10000; // 10 seconds

private Map<Block, Integer> locks = new HashMap<Block, Integer>();

public synchronized void sLock (Block blk) {
try {

long timestamp = System.currentTimeMillis();

while (hasXlock(blk) && !waitingTooLong (timestamp))
wait(MAXiTIME);

if (hasXlock (blk))
throw new LockAbortException();

int val = getLockval (blk); // will not be negative

locks.put (blk, wval+l);

}
catch (InterruptedException e) {
throw new LockAbortException();

public synchronized void xLock (Block blk) {
try {
long timestamp = System.currentTimeMillis();
while (hasOtherSLocks (blk) && !waitingTooLong (timestamp))
wait (MAX TIME) ;
if (hasOtherSLocks (blk))
throw new LockAbortException();
locks.put (blk, -1);
}
catch (InterruptedException e) {
throw new LockAbortException();

public synchronized void unlock(Block blk) {
int val = getLockVal (blk);
if (val > 1)
locks.put (blk, wval-1);
else {
locks.remove (blk) ;
notifyAll();

private boolean hasXlock (Block blk) {
return getLockVal (blk) < 0;

Fig. 5.27 The code for the SimpleDB class LockTable

5.4 Concurrency Management 143

private boolean hasOtherSLocks (Block blk) {
return getLockVval (blk) > 1;
}

private boolean waitingTooLong(long starttime) {
return System.currentTimeMillis() - starttime > MAX TIME;
}

private int getLockVal (Block blk) {
Integer ival = locks.get (blk);
return (ival == null) ? 0 : ival.intValue();

}

Fig. 5.27 (continued)

means that the client thread is continually placed on the wait list as long as the loop
condition holds. The loop condition for sLock calls the method hasX1ock, which
returns true if the block has an entry in 1locks with a value of -1. The loop
condition for xLock calls the method hasOtherLocks, which returns true if
the block has an entry in 1ocks with a value greater than 1. The rationale is that the
concurrency manager will always obtain an slock on the block before requesting the
xlock, and so a value higher than 1 indicates that some other transaction also has a
lock on this block.

The unlock method either removes the specified lock from the 1ocks collec-
tion (if it is either an exclusive lock or a shared lock held by only one transaction) or
decrements the number of transactions still sharing the lock. If the lock is removed
from the collection, the method calls the Java not i fyA11 method, which moves all
waiting threads to the ready list for scheduling. The internal Java thread scheduler
resumes each thread in some unspecified order. There may be several threads waiting
on the same released lock. By the time a thread is resumed, it may discover that the
lock it wants is unavailable and will place itself on the wait list again.

This code is not especially efficient about how it manages thread notification. The
notifyAll method moves all waiting threads, which includes threads waiting on
other locks. Those threads, when scheduled, will (of course) discover that their lock
is still unavailable and will place themselves back on the wait list. On one hand, this
strategy will not be too costly if there are relatively few conflicting database threads
running concurrently. On the other hand, a database engine ought to be more
sophisticated than that. Exercises 5.53-5.54 ask you to improve the wait/notification
mechanism.

5.4.9.2 The Class ConcurrencyMgr

The code for the class ConcurrencyMgr appears in Fig. 5.28. Although there is a
concurrency manager for each transaction, they all need to use the same lock table.

144 5 Transaction Management

public class ConcurrencyMgr {
private static LockTable locktbl = new LockTable();
private Map<Block,String> locks = new HashMap<Block,String>();

public void sLock(Block blk) {
if (locks.get (blk) == null) {
locktbl.sLock (blk) ;
locks.put (blk, "S");

public void xLock (Block blk) {
if ('hasXLock(blk)) {
sLock (blk) ;
locktbl.xLock (blk) ;
locks.put (blk, "X");

public void release() {
for (Block blk : locks.keySet()
locktbl.unlock (blk) ;
locks.clear();

}

private boolean hasXLock (Block blk) {
String locktype = locks.get (blk);
return locktype != null && locktype.equals ("X");

Fig. 5.28 The code for the SimpleDB class ConcurrencyMgr

This requirement is implemented by having each ConcurrencyMgr object share a
static LockTable variable. The description of the locks held by the transaction is
held in the local variable locks. This variable holds a map that has an entry for each
locked block. The value associated with the entry is either “S” or “X,” depending on
whether there is an slock or an xlock on that block.

The method sLock first checks to see if the transaction already has a lock on the
block; if so, there is no need to go to the lock table. Otherwise, it calls the lock table’s
sLock method and waits for the lock to be granted. The method xLock need not do
anything if the transaction already has an xlock on the block. If not, the method first
obtains an slock on the block and then obtains the xlock. (Recall that the lock table’s
xLock method assumes that the transaction already has an slock.) Note that xlocks
are “‘stronger” than slocks, in the sense that a transaction having an xlock on a block
also has an implied slock on it.

5.6 Chapter Summary 145
5.5 Implementing SimpleDB Transactions

Section 5.2 introduced the API for the class Transaction. It is now possible to
discuss its implementation. The Transaction class makes use of the class
BufferList to manage the buffers it has pinned. Each class is discussed in turn.

The Class Transaction
The code for class Transaction appears in Fig. 5.29. Each Transaction
object creates its own recovery manger and concurrency manager. It also creates
the object myBuf fers to manage the currently pinned buffers.

The commit and rollback methods perform the following activities:

* They unpin any remaining buffers.
* They call the recovery manager to commit (or roll back) the transaction.
* They call the concurrency manager to release its locks.

The methods getInt and getString first acquire an slock on the specified
block from the concurrency manager and then return the requested value from the
buffer. The methods setInt and setString first acquire an xlock from the
concurrency manager and then call the corresponding method in the recovery
manager to create the appropriate log record and return its LSN. This LSN can
then be passed to the buffer’s setModified method.

The methods size and append treat the end-of-file marker as a “dummy”” block
with block number -1. The method size obtains an slock on the block, and append
obtains an xlock on the block.

The Class Buf ferList
The class Buf ferList manages the list of currently pinned buffers for a transac-
tion; see Fig. 5.30. A BufferList object needs to know two things: which buffer
is assigned to a specified block, and how many times each block is pinned. The code
uses a map to determine buffers and a list to determine pin counts. The list contains a
BlockId object as many times as it is pinned; each time the block is unpinned, one
instance is removed from the list.

The method unpinAll performs the buffer-related activity required when a
transaction commits or rolls back—it has the buffer manager flush all buffers
modified by the transaction and unpins any still-pinned buffers.

5.6 Chapter Summary

* Data can get lost or corrupted when client programs are able to run indiscrimi-
nately. Database engines force client programs to consist of fransactions.

e A transaction is a group of operations that behaves as a single operation. It
satisfies the ACID properties of atomicity, consistency, isolation, and durability.

* The recovery manager is responsible for ensuring atomicity and durability. It is
the portion of the server that reads and processes the log. It has three functions: to

146

public class Transaction {
private static int nextTxNum 0;

static final int END OF FILE

RecoveryMgr

private -1;

private recoveryMgr;

private ConcurrencyMgr concurMgr;
BufferMgr bm;

FileMgr fm;

int txnum;

BufferList mybuffers;

private
private
private
private

public Transaction(FileMgr fm,
this.fm = fm;

LogMgr 1m,

this.bm = bm;

txnum = nextTxNumber () ;

recoveryMgr new RecoveryMgr (this, txnum,
concurMgr = new ConcurrencyMgr () ;
mybuffers = new BufferList (bm);

}

public void commit () {
recoveryMgr.commit () ;
concurMgr.release() ;
mybuffers.unpinAll () ;

1m,

5 Transaction Management

BufferMgr bm) {

bm) ;

System.out.println("transaction " + txnum + " committed");

}

public void rollback() {
recoveryMgr.rollback() ;
concurMgr.release() ;
mybuffers.unpinAll () ;
System.out.println("transaction " + txnum +

}

public void recover () {
bm.flushAll (txnum) ;
recoveryMgr.recover () ;

}

public void pin(BlockId blk) {
mnybuffers.pin (blk);

}

public void unpin(BlockId blk) {
mybuffers.unpin (blk) ;

}

public int getInt (BlockId blk,
concurMgr.sLock (blk) ;
Buffer buff mybuffers.getBuffer (blk);
return buff.contents().getInt (offset);

int offset) {

}

public String getString(BlockId blk,
concurMgr.sLock (blk) ;
Buffer buff mybuffers.getBuffer (blk);
return buff.contents().getString(offset);

}

Fig. 5.29 The code for the SimpleDB class Transaction

" rolled back");

int offset) {

5.6 Chapter Summary 147

public void setInt (BlockId blk, int offset, int wval,
boolean okToLog) {
concurMgr.xLock (blk) ;
Buffer buff = mybuffers.getBuffer (blk);
int lsn = -1;
if (okToLog)
lsn = recoveryMgr.setInt (buff, offset, wval);
Page p = buff.contents();
p.setlInt (offset, wval);
buff.setModified (txnum, 1lsn);
}
public void setString(BlockId blk, int offset, String wval,
boolean okTolog) {

concurMgr.xLock (blk) ;
Buffer buff = mybuffers.getBuffer (blk);

int lsn = -1;
if (okToLog)
lsn = recoveryMgr.setString(buff, offset, wval);

Page p = buff.contents();
p.setString(offset, wval);
buff.setModified (txnum, 1lsn);
}
public int size(String filename) {
BlockId dummyblk = new BlockId(filename, END OF FILE);
concurMgr.sLock (dummyblk) ;
return fm.length (filename) ;

}

public BlockId append(String filename) {
BlockId dummyblk = new BlockId(filename, END OF FILE);
concurMgr.xLock (dummyblk) ;
return fm.append(filename) ;
}
public int blockSize() {
return fm.blockSize();

}

public int availableBuffs () {
return bm.available();

}

private static synchronized int nextTxNumber () {
nextTxNum++;
System.out.println ("new transaction: " + nextTxNum) ;

return nextTxNum;

Fig. 5.29 (continued)

148 5 Transaction Management

class BufferList {

private Map<BlockId,Buffer> buffers = new HashMap<>();
private List<BlockId> pins = new ArrayList<>();
private BufferMgr bm;

public BufferlList (BufferMgr bm) {
this.bm = bm;

Buffer getBuffer (BlockId blk) {
return buffers.get (blk);

void pin(BlockId blk) {
Buffer buff = bm.pin(blk);
buffers.put (blk, buff);
pins.add (blk) ;

void unpin (BlockId blk) {
Buffer buff = buffers.get (blk);
bm.unpin (buff);
pins.remove (blk) ;
if (!pins.contains (blk))
buffers.remove (blk) ;

void unpinAll () {
for (BlockId blk : pins) {
Buffer buff = buffers.get (blk);
bm.unpin (buff);
}
buffers.clear();
pins.clear();

Fig. 5.30 The code for the SimpleDB class BufferList

write log records, to roll back a transaction, and to recover the database after a
system crash.

Each transaction writes a start record to the log to denote when it begins, update
records to indicate the modifications it makes, and a commit or rollback record to
denote when it completes. In addition, the recovery manager can write checkpoint
records to the log at various times.

The recovery manager rolls back a transaction by reading the log backwards. It
uses the transaction’s update records to undo the modifications.

The recovery manager recovers the database after a system crash.

5.6 Chapter Summary 149

e The undo-redo recovery algorithm undoes the modifications made by uncom-
mitted transactions and redoes the modifications made by committed transactions.

e The undo-only recovery algorithm assumes that modifications made by a com-
mitted transaction are flushed to the disk before the transaction commits. Thus, it
only needs to undo modifications made by uncommitted transactions.

* The redo-only recovery algorithm assumes that modified buffers are not flushed
until the transaction commits. This algorithm requires a transaction to keep
modified buffers pinned until it completes, but it avoids the need to undo
uncommitted transactions.

e The write-ahead logging strategy requires that an update log record be forced to
disk before the modified data page. Write-ahead logging guarantees that modifi-
cations to the database will always be in the log and therefore will always be
undoable.

* Checkpoint records are added to the log in order to reduce the portion of the log
that the recovery algorithm needs to consider. A quiescent checkpoint record can
be written when no transactions are currently running; a nonquiescent checkpoint
record can be written at any time. If undo-redo (or redo-only) recovery is used,
then the recovery manager must flush modified buffers to disk before it writes a
checkpoint record.

* A recovery manager can choose to log values, records, pages, files, etc. The unit
of logging is called a recovery data item. The choice of data item involves a trade-
off: A large-granularity data item will require fewer update log records, but each
log record will be larger.

* The concurrency manager is the portion of the database engine that is responsible
for the correct execution of concurrent transactions.

* The sequence of operations performed by the transactions in the engine is called a
schedule. A schedule is serializable if it is equivalent to a serial schedule. Only
serializable schedules are correct.

e The concurrency manager uses locking to guarantee that schedules are
serializable. In particular, it requires all transactions to follow the lock protocol,
which states:

— Before reading a block, acquire a shared lock on it.
— Before modifying a block, acquire an exclusive lock on it.
— Release all locks after commit or rollback.

* A deadlock can occur if there is a cycle of transactions where each transaction is
waiting for a lock held by the next transaction. The concurrency manager can
detect deadlock by keeping a waits-for graph and checking for cycles.

e The concurrency manager can also use algorithms to approximate deadlock
detection. The wait-die algorithm forces a transaction to roll back if it needs a
lock held by an older transaction. The time-limit algorithm forces a transaction to
roll back if it has been waiting for a lock longer than expected. Both of these
algorithms will remove deadlock when it exists, but might also roll back a
transaction unnecessarily.

150 5 Transaction Management

* While one transaction is examining a file, another transaction might append new
blocks to it. The values in those blocks are called phantoms. Phantoms are
undesirable because they violate serializability. A transaction can avoid phantoms
by locking the end-of-file marker.

» The locking needed to enforce serializability significantly reduces concurrency.
The multiversion locking strategy allows read-only transactions to run without
locks (and thus without having to wait). The concurrency manager implements
multiversion locking by associating timestamps with each transaction and using
those timestamps to reconstruct the version of the blocks as they were at a
specified point in time.

e Another way to reduce the waiting time imposed by locking is to remove the
requirement of serializability. A transaction can specify that it belongs to one of
four isolation levels: serializable, repeatable read, read committed, or read
uncommitted. Each non-serializable isolation level reduces the restrictions on
slocks given by the log protocol and results in less waiting as well as increased
severity of read problems. Developers who choose non-serializable isolation
levels must consider carefully the extent to which inaccurate results will occur
and the acceptability of such inaccuracies.

e As with recovery, a concurrency manager can choose to lock values, records,
pages, files, etc. The unit of locking is called a concurrency data item. The choice
of data item involves a trade-off. A large-granularity data item will require fewer
locks, but the larger locks will conflict more readily and thus reduce concurrency.

5.7 Suggested Reading

The notion of a transaction is fundamental to many areas of distributed computing,
not just database systems. Researchers have developed an extensive set of tech-
niques and algorithms; the ideas in this chapter are the small tip of a very large
iceberg. Two excellent books that provide an overview of the field are Bernstein and
Newcomer (1997) and Gray and Reuter (1993). A comprehensive treatment of many
concurrency control and recovery algorithms appears in Bernstein et al. (1987). A
widely adopted recovery algorithm is called ARIES and is described in Mohan et al.
(1992).

Oracle’s implementation of the serializable isolation level is called snapshot
isolation, which extends multiversion concurrency control to include updates.
Details can be found in Chap. 9 of Ashdown et al. (2019). Note that Oracle calls
this isolation level “serializable,” although it is subtly different from it. Snapshot
isolation is more efficient than the locking protocol, but it does not guarantee
serializability. Although most schedules will be serializable, there are certain sce-
narios in which is can result in non-serializable behavior. The article Fekete et al.
(2005) analyzes these scenarios and shows how to modify at-risk applications to
guarantee serializability.

5.8 Exercises 151

Oracle implements undo-redo recovery, but it separates the undo information
(i.e., the old, overwritten values) from the redo information (the newly written
values). Redo information is stored in a redo log, which is managed similarly to
the descriptions in this chapter. However, undo information is not stored in a log file
but in special undo buffers. The reason is that Oracle uses previous, overwritten
values for multiversion concurrency as well as for recovery. Details can be found in
Chap. 9 of Ashdown et al. (2019).

It is often useful to think of a transaction as being comprised of several smaller,
coordinated transactions. For example, in a nested transaction, a parent transaction
is able to spawn one or more child subtransactions; when a subtransaction com-
pletes, its parent decides what to do. If the subtransaction aborts, the parent could
choose to abort all of its children, or it might continue by spawning another
transaction to replace the aborted one. The basics of nested transactions can be
found in Moss (1985). The article Weikum (1991) defines multilevel transactions,
which are similar to nested transactions; the difference is that a multilevel transaction
uses subtransactions as a way to increase efficiency via parallel execution.

Ashdown, L., et al. (2019). Oracle database concepts. Document E96138-01,
Oracle Corporation. Retrieved from https://docs.oracle.com/en/database/oracle/
oracle-database/19/cncpt/database-concepts.pdf

Bernstein, P., Hadzilacos, V., & Goodman, N. (1987). Concurrency control and
recovery in database systems. Reading, MA: Addison-Wesley.

Bemnstein, P., & Newcomer, E. (1997). Principles of transaction processing. San
Mateo: Morgan Kaufman.

Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., & Shasha, D. (2005). Making
snapshot isolation serializable. ACM Transactions on Database Systems, 30(2),
492-528.

Gray, J., & Reuter, A. (1993). Transaction processing: concepts and techniques. San
Mateo: Morgan Kaufman.

Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., & Schwartz, P. (1992). ARIES: A
transaction recovery method supporting fine-granularity locking and partial roll-
backs using write-ahead logging. ACM Transactions on Database Systems, 17
(1), 94-162.

Moss, J. (1985). Nested transactions: An approach to reliable distributed comput-
ing. Cambridge, MA: MIT Press.

Weikum, G. (1991). Principles and realization strategies of multilevel transaction
management. ACM Transactions on Database Systems, 16(1), 132-180.

5.8 Exercises

Conceptual Exercises

5.1. Assume that the code of Fig. 5.1 is being run by two concurrent users, but
without transactions. Give a scenario in which two seats are reserved but only
one sale is recorded.

https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/database-concepts.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/database-concepts.pdf

152

5.2.

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

5.9.

5.10.

5.11

5 Transaction Management

Software configuration managers such as Git or Subversion allow a user to
commit a series of changes to a file and to roll back a file to a previous state.
They also allow multiple users to modify a file concurrently.

(a) What is the notion of a transaction in such systems?
(b) How do such systems ensure serializability?
(c) Would such an approach work for a database system? Explain.

Consider a JDBC program that performs several unrelated SQL queries but
does not modify the database. The programmer decides that since nothing is
updated, the concept of a transaction is unimportant; thus, the entire program
is run as a single transaction.

(a) Explain why the concept of a transaction is important to a read-only
program.

(b) What is the problem with running the entire program as a large
transaction?

(c) How much overhead is involved in committing a read-only transaction?
Does it make sense for the program to commit after every SQL query?

The recovery manager writes a start record to the log when each transaction
begins.

(a) What is the practical benefit of having start records in the log?

(b) Suppose that a database system decides not to write start records to the log.
Can the recovery manager still function properly? What capabilities are
impacted?

The SimpleDB rollback method writes the rollback log record to disk
before it returns. Is this necessary? Is it a good idea?

Suppose that the recovery manager was modified so that it didn’t write
rollback log records when it finished. Would there be a problem? Would
this be a good idea?

Consider the undo-only commit algorithm of Fig. 5.7. Explain why it would
be incorrect to swap steps 1 and 2 of the algorithm.

Show that if the system crashes during a rollback or a recovery, then redoing
the rollback (or recovery) is still correct.

Is there any reason to log the changes made to the database during rollback or
recovery? Explain.

A variation on the nonquiescent checkpointing algorithm is to mention only
one transaction in the checkpoint log record, namely, the oldest active trans-
action at the time.

(a) Explain how the recovery algorithm will work.
(b) Compare this strategy with the strategy given in the text. Which is simpler
to implement? Which is more efficient?

. What should the rollback method do if it encounters a quiescent checkpoint

log record? What if it encounters a nonquiescent log record? Explain.

5.8 Exercises 153

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

The algorithm for nonquiescent checkpointing does not allow new transac-
tions to start while it is writing the checkpoint record. Explain why this
restriction is important for correctness.

Another way to do nonquiescent checkpointing is to write two records to the
log. The first record is <BEGIN NQCKPT>, and contains nothing else. The
second record is the standard <NQCKPT . . . > record, which contains the list
of active transactions. The first record is written as soon as the recovery
manager decides to do a checkpoint. The second record is written later, after
the list of active transactions has been created.

(a) Explain why this strategy solves the problem of Exercise 5.12.
(b) Give a revised recovery algorithm that incorporates this strategy.

Explain why the recovery manager will never encounter more than one
quiescent checkpoint record during recovery.

Give an example showing that the recovery manager could encounter several
nonquiescent checkpoint records during recovery. What is the best way for it
to handle the nonquiescent checkpoint records it finds after the first one?
Explain why the recovery manager could not encounter both a nonquiescent
and a quiescent checkpoint record during recovery.

Consider the recovery algorithm of Fig. 5.6. Step 1c doesn’t undo a value for
transactions that have been rolled back.

(a) Explain why this is a correct thing to do.
(b) Would the algorithm be correct if it did undo those values? Explain.

When the rollback method needs to restore the original contents of a value,
it writes the page directly and doesn’t request any kind of lock. Can this cause
a non-serializable conflict with another transaction? Explain.

Explain why it is not possible to have a recovery algorithm that combines the
techniques of undo-only and redo-only recovery. That is, explain why it is
necessary to keep either undo information or redo information.

Suppose that the recovery manager finds the following records in the log file
when the system restarts after a crash.

<START, 1>

<START, 2>

<SETSTRING, 2, junk, 33, 0, abc, def>
<SETSTRING, 1, junk, 44, 0, abc, xyz>
<START, 3>

<COMMIT, 2>

<SETSTRING, 3, junk, 33, 0, def, joe>
<START, 4>

<SETSTRING, 4, junk, 55, 0, abc, sue>
<NQCKPT, 1, 3, 4>

<SETSTRING, 4, junk, 55, 0, sue, max>
<START, 5>

<COMMIT, 4>

154

5.21.

5.22.

5.23.

5.24.

5.25.

5.26.

5.27.

5.28.
5.29.

5 Transaction Management

(a) Assuming undo-redo recovery, indicate what changes to the database will
be performed.

(b) Assuming undo-only recovery, indicate what changes to the database will
be performed.

(c) Is it possible for transaction T1 to have committed, even though it has no
commit record in the log?

(d) Is it possible for transaction T1 to have modified a buffer containing block
23?

(e) Is it possible for transaction T1 to have modified block 23 on disk?

(f) Is it possible for transaction T1 to have not modified a buffer containing
block 447

Is a serial schedule always serializable? Is a serializable schedule always
serial? Explain.
This exercise asks you to examine the need for non-serial schedules.

(a) Suppose that the database is much larger than the size of the buffer pool.
Explain why the database system will handle transactions more quickly if
it can execute the transactions concurrently.

(b) Conversely, explain why concurrency is less important if the database fits
into the buffer pool.

The get/set methods in the SimpleDB class Transaction obtain a lock on
the specified block. Why don’t they unlock the block when they are done?
Consider Fig. 5.3. Give the history of the transaction if files are the element of
concurrency.

Consider the following two transactions and their histories:

T1l: W(bl); R(b2); W(bl); R(b3); W(b3); R(b4); W(b2)
T2: R(b2); R(b3); R(bl); W(b3); R(b4); W(b4)

(a) Give a serializable non-serial schedule for these transactions.

(b) Add lock and unlock actions to these histories that satisfy the lock
protocol.

(c) Give a non-serial schedule corresponding to these locks that deadlocks.

(d) Show that there is no non-deadlocked non-serial serializable schedule for
these transactions that obeys the lock protocol.

Give an example schedule which is serializable but has conflicting write-write
operations that do not affect the order in which the transactions commit. (Hint:
Some of the conflicting operations will not have corresponding read
operations.)

Show that if all transactions obey the two-phase locking protocol, then all
schedules are serializable.

Show that the waits-for graph has a cycle if and only if there is a deadlock.
Suppose that a transaction manager maintains a waits-for graph in order to
accurately detect deadlocks. Section 5.4.4 suggested that the transaction

5.8 Exercises 155

5.30.

5.31.

5.32.

5.33.

5.34.

5.35.

5.36.

5.37.

5.38.

5.39.

5.40.

5.41.

manager roll back the transaction whose request caused the cycle in the graph.
Other possibilities are to roll back the oldest transaction in the cycle, the
newest transaction in the cycle, the transaction holding the most locks, or
the transaction holding the fewest locks. Which possibility makes the most
sense to you? Explain.

Suppose in SimpleDB that transaction T currently has a shared lock on a block
and calls setInt on it. Give a scenario in which this will cause a deadlock.
Consider the ConcurrencyTest class of Fig. 5.19. Give a schedule that
causes deadlock.

Consider the locking scenario described for Fig. 5.19. Draw the different states
of the waits-for graph as locks are requested and released.

A variant of the wait-die protocol is called wound-wait and is as follows:

e If T1 has a lower number than T2, then T2 is aborted (i.e., T1 “wounds”
T2).
e If T1 has a higher number than T2, then T1 waits for the lock.

The idea is that if an older transaction needs a lock held by a younger one, then
it simply kills the younger one and takes the lock.

(a) Show that this protocol prevents deadlock.
(b) Compare the relative benefits of the wait-die and wound-wait protocols.

In the wait-die deadlock detection protocol, a transaction is aborted if it
requests a lock held by an older transaction. Suppose you modified the
protocol so that transactions are aborted instead if they request a lock held
by a younger transaction. This protocol would also detect deadlocks. How
does this revised protocol compare to the original one? Which would you
prefer the transaction manager to use? Explain.

Explain why the lock/unlock methods in class LockTable are synchronized.
What bad thing could happen if they were not?

Suppose that a database system uses files as concurrency elements. Explain
why phantoms are not possible.

Give an algorithm for deadlock detection that also handles transactions
waiting for buffers.

Rewrite the algorithm for multiversion locking so that the concurrency man-
ager only makes one pass through the log file.

The read-committed transaction isolation level purports to reduce a trans-
action’s waiting time by releasing its slocks early. At first glance, it is not
obvious why a transaction would wait less by releasing locks that it already
has. Explain the advantages of early lock release and give illustrative
scenarios.

The method nextTransactionNumber is the only method in Trans-
action that is synchronized. Explain why synchronization is not necessary
for the other methods.

Consider the SimpleDB class Transaction.

156

5 Transaction Management

(a) Can a transaction pin a block without locking it?
(b) Can a transaction lock a block without pinning it?

Programming Exercises

5.42.

5.43.

5.44.

5.45.

5.46.

5.47.

5.48.

5.49.

A SimpleDB transaction acquires an slock on a block whenever a get Int or
getString method is called. Another possibility is for the transaction to
acquire the slock when the block is pinned, under the assumption that you
don’t pin a block unless you intend to look at its contents.

(a) Implement this strategy.
(b) Compare the benefits of this strategy with that of SimpleDB. Which do
you prefer and why?

After recovery, the log is not needed except for archival purposes. Revise the
SimpleDB code so that the log file is saved to a separate directory after
recovery, and a new empty log file is begun.

Revise the SimpleDB recovery manager so that it undoes an update record
only when necessary.

Revise SimpleDB so that it uses blocks as the elements of recovery. A possible
strategy is to save a copy of a block the first time a transaction modifies it. The
copy could be saved in a separate file, and the update log record could hold the
block number of the copy. You will also need to write methods that can copy
blocks between files.

Implement a static method in class Transaction that performs quiescent
checkpointing. Decide how the method will get invoked (e.g., every N trans-
actions, every N seconds, or manually). You will need to revise Transac-
tion as follows:

* Use a static variable to hold all currently active transactions.

* Revise the constructor of Transaction to see if a checkpoint is being
performed and, if so, to place itself on a wait list until the checkpoint
procedure completes.

Implement nonquiescent checkpointing using the strategy described in
the text.

Suppose a transaction appends a lot of blocks to a file, writes a bunch of values
to these blocks, and then rolls back. The new blocks will be restored to their
initial condition, but they themselves will not be deleted from the file. Modify
SimpleDB so that they will. (Hint: You can take advantage of the fact that only
one transaction at a time can be appending to a file, which means that the file
can be truncated during rollback. You will need to add to the file manager the
ability to truncate a file.)

Log records could also be used for auditing a system as well as recovery. For
auditing, the record needs to store the date when the activity occurred, as well
as the IP address of the client.

(a) Revise the SimpleDB log records in this way.

5.8 Exercises 157

5.50.

5.51.
5.52.

5.53.

5.54.

5.55.

5.56.

(b) Design and implement a class whose methods support common auditing
tasks, such as finding when a block was last modified, or what activity
occurred by a particular transaction or from a particular IP address.

Each time the server starts up, transaction numbers begin again at 0. This
means that throughout the history of the database, there will be multiple
transactions having the same number.

(a) Explain why this non-uniqueness of transaction numbers is not a signif-
icant problem.

(b) Revise SimpleDB so that transaction numbers continue from the last time
the server was running.

Revise SimpleDB so that it uses undo-redo recovery.
Implement deadlock detection in SimpleDB using:

(a) The wait-die protocol given in the text
(b) The wound-wait protocol given in Exercise 5.33

Revise the lock table so that it uses individual wait lists for each block.
(So notifyAll only touches the threads waiting on the same lock.)
Revise the lock table so that it keeps its own explicit wait list(s) and chooses
itself which transactions to notify when a lock becomes available. (i.e., it uses
the Java method notify instead of not1fyAall.)

Revise the SimpleDB concurrency manager so that:

(a) Files are the elements of concurrency.
(b) Values are the elements of concurrency. (Warning: You will still need to
keep the methods size and append from causing conflicts.)

Write test programs:

(a) To verify that the recovery manager works (commit, rollback, and
recovery)

(b) To more completely test the lock manager

(c) To test the entire transaction manager

Chapter 6)
Record Management S

The transaction manager is able to read and write values at specified locations on a
disk block. However, it has no idea what values are in a block nor where those values
might be located. This responsibility belongs to the record manager. It organizes a
file into a collection of records and has methods for iterating through the records and
placing values in them. This chapter studies the functionality provided by the record
manager and the techniques used to implement that functionality.

6.1 Designing a Record Manager

A record manager must address several issues, such as:

* Should each record be placed entirely within one block?

» Will all of the records in a block be from the same table?

» Is each field representable using a predetermined number of bytes?
¢ Where should each field value be positioned within its record?

This section discusses these issues and their trade-offs.

6.1.1 Spanned Versus Unspanned Records

Suppose that the record manager needs to insert four 300-byte records into a file,
where the block size is 1000 bytes. Three records fit nicely into the first 900 bytes of
the block. But what should the record manager do with the fourth record? Figure 6.1
depicts two options.

In Fig. 6.1a, the record manager creates a spanned record, that is, a record whose
values span two or more blocks. It stores the first 100 bytes of the record in the

© Springer Nature Switzerland AG 2020 159
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_6

160 6 Record Management

block 0: block 1:
‘ R1 | R2] R3 |R4a‘ ‘Rdb\

0 300 600 900 0 200
(a)

block 0: block 1:
‘ R1 | R2 [R3 % l R4 |
0 300 600 900 0 300
(b)

Fig. 6.1 Spanned versus unspanned records. (a) Record R4 spans blocks 0 and 1, (b) record R4 is
stored entirely in block 1

existing block and the next 200 bytes of the record in a new block. In Fig. 6.1b, the
record manager stores the entire fourth record in a new block.

The record manager has to decide whether to create spanned records or not. A
disadvantage of unspanned records is that they waste disk space. In Fig. 6.1b,
100 bytes (or 10%) of each block is wasted. An even worse case would be if each
record contained 501 bytes—then a block could contain only 1 record, and nearly
50% of its space would be wasted. Another disadvantage is that the size of an
unspanned record is limited to the block size. If records can be larger than a block,
then spanning is necessary.

The main disadvantage of spanned records is that they increase the complexity of
record access. Because a spanned record is split among several blocks, multiple
block accesses will required to read it. Moreover, the spanned record may need to be
reconstructed from these blocks by reading it into a separate area of memory.

6.1.2 Homogeneous Versus Nonhomogeneous Files

A file is homogeneous if all its records come from the same table. The record
manager must decide whether or not to allow nonhomogeneous files. The trade-off
is again one of efficiency versus flexibility.

For example, consider the STUDENT and DEPT tables from Fig. 1.1. A homo-
geneous implementation would place all STUDENT records in one file and all DEPT
records in another file. This placement makes single-table SQL queries easy to
answer—the record manager needs to scan only through the blocks of one file.
However, multi-table queries become less efficient. Consider a query that joins these
two tables, such as “Find the names of students and their major departments.” The
record manager will have to search back and forth between the blocks of STUDENT
records and the blocks of DEPT records (as will be discussed in Chap. 8), looking for
matching records. Even if the query could be performed without excess searching
(e.g., via an index join of Chap. 12), the disk drive will still have to seek repeatedly
as it alternates between reading the STUDENT and DEPT blocks.

https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_12

6.1 Designing a Record Manager 161

block 0: block 1:

10 compsci| 1 joe 10 2021 3 max 10 2022 H 9 lee 10 2021| 20 math |2 amy 20 2020

Fig. 6.2 Clustered, nonhomogeneous records

A nonhomogeneous organization would store the STUDENT and DEPT records
in the same file, with the record for each student stored near the record for its major
department. Figure 6.2 depicts the first two blocks of such an organization, assuming
three records per block. The file consists of a DEPT record, followed by the
STUDENT records having that department as a major. This organization requires
fewer block accesses to calculate the join, because the joined records are clustered on
the same (or a nearby) block.

Clustering improves the efficiency of queries that join the clustered tables because
the matching records are stored together. However, clustering will cause single-table
queries to become less efficient because the records for each table are spread out over
more blocks. Similarly, joins with other tables will also be less efficient. Thus
clustering is effective only if the most heavily used queries perform the join encoded
by the clustering.’

6.1.3 Fixed-Length Versus Variable-Length Fields

Every field in a table has a defined type. Based on that type, the record manager
decides whether to implement the field using a fixed-length or variable-length
representation. A fixed-length representation uses exactly the same number of
bytes to store each of the field’s values, whereas a variable-length representation
expands and contracts based on the data value stored.

Most types are naturally fixed-length. For example, both integers and floating-
point numbers can be stored as 4-byte binary values. In fact, all numeric and date/
time types have natural fixed-length representations. The Java type String is the
prime example of a type that needs a variable-length representation, because char-
acter strings can be arbitrarily long.

Variable-length representations can cause significant complications. Consider,
for example, a record sitting in the middle of a block packed with records, and
suppose that you modify one of its field values. If the field is fixed-length, then the
record will remain the same size, and the field can be modified in place. However, if
the field is variable-length, then the record may get larger. In order to make room for
the larger record, the record manager may have to rearrange the location of the

"In fact, clustering is the fundamental organizational principle behind the early hierarchical
database systems, such as IBM’s IMS system. Databases that are naturally understood hierarchically
can be implemented very efficiently in such systems.

Chao Yang

162 6 Record Management

records in the block. In fact, if the modified record gets too large, then one or more
records might need to be moved out of the block and placed in a different block.

Consequently, the record manager tries its best to use a fixed-length representa-
tion whenever possible. For example, a record manager can choose from three
different representations of a string field:

* A variable-length representation, in which the record manager allocates the exact
amount of space in the record that the string requires

» A fixed-length representation, in which the record manager Stores'the'string'in'a
location outside of the record and keeps a fixed-length reference to that location in
the record

* A fixed-length representation, in which the record manager allocates the same
amount of space in the record for each string, regardless of its length

These representations are depicted in Fig. 6.3. Part (a) shows three COURSE
records, where the Tit1le field is implemented using a variable-length representa-
tion. These records are space-efficient but have the problems just discussed.

Part (b) shows the same three records, but with the Tit1le strings placed in a
separate “‘string area.” This area could be a separate file or (if the strings are very
large) a directory in which each string is stored in its own file. In either case, the field
contains a reference to the string’s location in that area. This representation results in
records that are both fixed-length and small. Small records are good, because they
can be stored in fewer blocks and thus require fewer block accesses. The downside to
this representation is that retrieving the string value from a record requires an
additional block access.

Part (c) shows two of the records, implemented using a fixed-length Tit1e field.
This implementation has the advantage that the records are fixed-length and the
strings are stored in the record. However, the downside is that some records will be
larger than they need to be. If there is a wide difference in string sizes, then this

32 calculus 20] |12 db systems and implementation 10 ‘ l52 acting 30
(a)
records: | 32 0 20| ‘ 12 12 10| ‘ 52 45 30|
string area: |calculus db systems and implementation acting ... ‘
0 12 45
(b)
32 Calcu?usV A20| |12 db systems and implementation 10 ‘

«©)

Fig. 6.3 Alternative representations for the Title field in COURSE records. (a) Allocating
exactly as much space as each string needs, (b) storing the strings in a separate location. (c)
allocating the same amount of space for each string

Chao Yang

6.1 Designing a Record Manager 163

wasted space will be significant, resulting in a larger file and correspondingly more
block accesses.

None of these representations are clearly better than the others. As a way to help
the record manager choose the proper representation, standard SQL provides three
different string datatypes: char, varchar, and clob. The type char (n) spec-
ifies strings of exactly n characters. The types varchar (n) and clob (n) specify
strings of at most n characters. Their difference is the expected size of n. In
varchar (n), n is reasonably small, say no more than 4K. On the other hand,
the value of nin clob (n) can be in the giga-character range. (The acronym CLOB
stands for “character large object.”) For an example of a c1ob field, suppose that the
university database adds a field Syllabus to its SECTION table, with the idea that
the values of this field would contain the text of each section’s syllabus. Assuming
that syllabi can be no more than 8000 characters, you could reasonably define the
field as c1lob (8000) .

Fields of type char most naturally correspond to Fig. 6.3c. Since all strings will
be the same length, there is no wasted space inside the records, and the fixed-length
representation will be most efficient.

Fields of type varchar (n) most naturally correspond to Fig. 6.3a. Since n will
be relatively small, placing the string inside the record will not make the record too
large. Moreover, the variance in string sizes means that the fixed-length representa-
tion would waste space. Thus, the variable-length representation is the best
alternative.

If n happens to be small (say, less than 20), then the record manager might choose
to implement a varchar field using the third representation. The reason is that the
wasted space will be insignificant compared to the benefits of a fixed-length
representation.

Fields of type c1lob correspond to Fig. 6.3b, because that representation handles
large strings the best. By storing the large string outside of the record, the records
themselves become smaller and more manageable.

6.1.4 Placing Fields in Records

The record manager determines the structure of its records. For fixed-length records,
it determines the location of each field within the record. The most straightforward
strategy is to store the fields next to each other. The size of the record then becomes
the sum of the sizes of the fields, and the offset of each field is the end of the previous
field.

This strategy of tightly packing fields into records is appropriate for Java-based
systems (like SimpleDB and Derby) but can cause problems elsewhere. The issue
has to do with ensuring that values are aligned properly in memory. In most
computers, the machine code to access an integer requires that the integer be stored
in a memory location that is a multiple of 4; the integer is said to be aligned on a
4-byte boundary. The record manager must therefore ensure that every integer in

164 6 Record Management

every page is aligned on a 4-byte boundary. Since OS pages are always aligned on a
2"-byte boundary for some reasonably large N, the first byte of each page will be
properly aligned. Thus, the record manager must simply make sure that the offset of
each integer within each page is a multiple of 4. If the previous field ended at a
location that is not a multiple of 4, then the record manager must pad it with enough
bytes so that it does.

For example, consider the STUDENT table, which consists of three integer fields
and avarchar (10) string field. The integer fields are multiples of 4, so they don’t
need to be padded. The string field, however, requires 14 bytes (assuming the
SimpleDB representation of Sect. 3.5.2); it therefore needs to be padded with
2 additional bytes so that the field following it will be aligned on a multiple of 4.

In general, different types may require different amounts of padding. Double-
precision floating point numbers, for example, are usually aligned on an 8-byte
boundary, and small integers are usually aligned on a 2-byte boundary. The record
manager is responsible for ensuring these alignments. A simple strategy is to
position the fields in the order that they were declared, padding each field to ensure
the proper alignment of the next field. A more clever strategy is to reorder the fields
so that the least amount of padding is required. For example, consider the following
SQL table declaration:

create table T (A smallint, B double precision, C smallint, D int, E int)

Suppose the fields are stored in the order given. Then field A needs to be padded
with 6 extra bytes and field C needs to be padded with 2 extra bytes, leading to a
record length of 28 bytes; see Fig. 6.4a. On the other hand, if the fields are stored in
the order [B, D, A, C, E], then no padding is required, and the record length is only
20 bytes, as shown in Fig. 6.4b.

In addition to padding fields, the record manager must also pad each record. The
idea is that each record needs to end on a k-byte boundary, where k is the largest
supported alignment, so that every record in a page has the same alignment as the
first one. Consider again the field placement of Fig. 6.4a, which has a record length
of 28 bytes. Suppose that the first record begins at byte O of the block. Then the
second record will start at byte 28 of the block, which means that field B of the
second record will start at byte 36 of the block, which is the wrong alignment. It is
essential that each record begin on an 8-byte boundary. In the example of Fig. 6.4,
the records of both part (a) and part (b) need to be padded with 4 additional bytes.

Fig. 6.4 Placing fields in a | N V A B I c % D I E ‘

re'cord to establish 0 2 8 16 18 20 24 -8
alignment. (a) A placement
that requires padding, (b) a
placement that needs no | B ‘ D ‘ A | c | E |

padding 0 8 12 14 16 20

https://doi.org/10.1007/978-3-030-33836-7_3

6.2 Implementing a File of Records 165

A Java program does not need to consider padding because it cannot directly
access numeric values in a byte array. For example, the Java method to read an
integer from a page is ByteBuffer.getInt. This method does not call a
machine-code instruction to obtain the integer but instead constructs the integer
itself from the 4 specified bytes of the array. This activity is less efficient than a
single machine-code instruction, but it avoids alignment issues.

6.2 Implementing a File of Records

The previous section considered the various decisions that the record manager must
address. This section considers how these decisions get implemented. It begins with
the most straightforward implementation: a file containing homogeneous,
unspanned, fixed-length records. It then considers how other design decisions affect
this implementation.

6.2.1 A Straightforward Implementation

Suppose you want to create a file of homogeneous, unspanned, fixed-length records.
The fact that the records are unspanned means that you can treat the file as a
sequence of blocks, where each block contains its own records. The fact that the
records are homogeneous and fixed-length means that you can allocate the same
amount of space for each record within a block. In other words, you can think of each
block as an array of records. SimpleDB calls such a block a record page.

A record manager can implement record pages as follows. It divides a block into
slots, where each slot is large enough to hold a record plus one additional byte. The
value of this byte is a flag that denotes whether the slot is empty or in use; let’s say
that a 0 means “empty” and a 1 means “in use.””

For example, suppose that the block size is 400 and the record size is 26; then
each slot is 27 bytes long, and the block holds 14 slots with 22 bytes of wasted space.
Figure 6.5 depicts this situation. This figure shows 4 of the 14 slots; slots 0 and
13 currently contain records, whereas slots 1 and 2 are empty.

[slot 0][slot 1][slot 2] [slot 13]

1] ro [o] rt [o]| Rz | |1]| ri3 7

0 1 27 28 54 55 81 351 352 378 400

Fig. 6.5 A record page with space for 14 26-byte records

2You can improve the space usage by only using a bit to hold each empty/inuse flag. See Exercise
6.7.

166 6 Record Management

The record manager needs to be able to insert, delete, and modify records in a
record page. To do so, it uses the following information about the records:

¢ The size of a slot
¢ The name, type, length, and offset of each field of a record

These values constitute the record’s layout. For an example, consider the table
STUDENT as defined in Fig. 2.4. A STUDENT record contains three integers plus a
ten-character varchar field. Assuming the storage strategy of SimpleDB, each
integer requires 4 bytes and a ten-character string requires 14 bytes. Let’s also
assume that padding is not necessary, that varchar fields are implemented by
allocating fixed space for the largest possible string, and that the empty/inuse flag
takes up one byte at the beginning of each slot. Figure 6.6 gives the resulting layout
of this table.

Given a layout, the record manager can determine the location of each value
within the page. The record in slot k begins at location RLxk, where RL is the record
length. The empty/inuse flag for that record is at location RLxk, and the value of its
field F is at location RLxk+Offset (F).

The record manager can process insertions, deletions, modifications, and
retrievals quite easily:

¢ To insert a new record, the record manager examines the empty/inuse flag of each
slot until it finds a 0. It then sets the flag to 1 and returns the location of that slot. If
all flag values are 1, then the block is full and insertion is not possible.

e To delete a record, the record manager simply sets its empty/inuse flag to 0.

* To modify a field value of a record (or to initialize a field of a new record), the
record manager determines the location of that field and writes the value to that
location.

* To retrieve the records in the page, the record manager examines the empty/inuse
flag of each slot. Each time it finds a 1, it knows that that slot contains an existing
record.

The record manager also needs a way to identify a record within a record page.
When records are fixed-length, the most straightforward record identifier is its slot
number.

Slot Size: 27

Field Information: Name Type Length Offset
SId int 4 1
SName varchar(10) 14 5
GradYear int 4 19
Majorld int 4 23

Fig. 6.6 The layout of STUDENT

https://doi.org/10.1007/978-3-030-33836-7_2

6.2 Implementing a File of Records 167
6.2.2 Implementing Variable-Length Fields

The implementation of fixed-length fields is very straightforward. This section
considers how the introduction of variable-length fields affects that implementation.
One issue is that the field offsets in a record are no longer fixed. In particular, the
offsets of all fields following a variable-length field will differ from record to record.
The only way to determine the offset of those fields is to read the previous field and
see where it ends. If the first field in a record is variable-length, then it will be
necessary to read the first n-1 fields of the record in order to determine the offset of
the nth field. Consequently, the record manager typically places the fixed-length
fields at the beginning of each record so that they can be accessed by a precomputed
offset. The variable-length fields are placed at the end of the record. The first
variable-length field will have a fixed offset, but the remaining ones will not.

Another issue is that modifying a field value can cause a record’s length to
change. If the new value is larger, then the block contents to the right of the modified
value must be shifted to make room. In extreme cases, the shifted records will spill
out of the block; this situation must be handled by allocating an overflow block.

An overflow block is a new block allocated from an area known as the overflow
area. Any record that spills out of the original block is removed from that block and
added to an overflow block. If many such modifications occur, then a chain of
several overflow blocks may be necessary. Each block will contain a reference to the
next overflow block on the chain. Conceptually, the original and overflow blocks
form a single (large) record page.

For example, consider the COURSE table, and suppose that course titles are
saved as variable-length strings. Figure 6.7a depicts a block containing the first three
records of the table. (The Title field has been moved to the end of the record
because the other fields are fixed-length.) Figure 6.7b depicts the result of modifying
the title “DbSys” to “Database Systems Implementation.” Assuming a block size of
80 bytes, the third record no longer fits in the block, and so it is placed in an overflow
block. The original block contains a reference to that overflow block.

data

“ 1 |12 10 IDbSys || 1 i22 ilC [Compilers H 1 [32 [20 \Calculus ‘

block

0 1 5 9 18 19 23 27 40 41 45 49 61 80
(a)
data N -
block { 1 |l2 IlU I Database Systems Implementation H 1 |22 |1O | Compilers

0o 1 5 9 40 41 45 49 62 80
overflow
block: ‘ 1 |32 |ZU | Calculus

0 1 5 9 21 80

(b)

Fig. 6.7 Using an overflow block to implement variable-length records. (a) The original block, (b)
the result of modifying the title of course 12

168 6 Record Management

[record 0 110 record 1 110 record 2]

[1[22]10] posys][1 [22[10] compiters || 1 [3220 [calculus

2 L 5 9 18 19 23 27 40 41 45 49 61 80
(a)

[record 0 110 110 record 2]

[1]22]10] posys][0 [22]10] compiters][1 [32[20[calculus

g 1 5 9 18 19 23 27 40 41 45 49 61 80
(b)

[ID-TABLE] [record 2] [record 0 1
n |32 |20|Calculu5“12l101 DbSys |
0 43 63 80

Fig. 6.8 Using an ID table to implement variable-length records. (a) The original block, (b) the
straightforward way to delete record 1, (¢) using an ID table to delete record 1

A third issue concerns the use of the slot number as a record identifier. It is no
longer possible to multiply the slot number by the slot size, as with fixed-length
records. The only way to find the beginning of a record having a given id is to read
the records starting from the beginning of the block.

The use of the slot number as a record identifier also complicates record inser-
tions. Figure 6.8 illustrates the issue.

Part (a) depicts a block containing the first three COURSE records, the same as in
Fig. 6.7a. Deleting the record for course 22 sets the flag to O (for “empty”’) and leaves
the record intact, as shown in Part (b). This space is now available for insertion.
However, a record can be inserted into the space only if its Tit1e field has nine or
fewer characters. In general, a new record might not fit into the block even though
there are numerous empty spaces left by smaller deleted records. The block is said to
be fragmented.

A way to reduce this fragmentation is to shift the remaining records so that they
are all grouped on one end of the block. However, doing so changes the slot numbers
of the shifted records, which unfortunately changes their ids.

The solution to this problem is to use an ID table to dissociate the record’s slot
number from its location in the page. An ID table is an array of integers stored at the
beginning of the page. Each slot in the array denotes a record id. The value in the
array slot is the location of the record having that id; a value of 0 means that no
record currently has that id. Figure 6.8c depicts the same data as Fig. 6.8b, but with
an ID table. The ID table contains three entries: two of them point to the records at
offsets 63 and 43 of the block, and the other is empty. The record at location 63 has
id 0, and the record at location 43 has id 2. There is currently no record having id 1.

The ID table provides a level of indirection that allows the record manager to
move records within a block. If the record moves, its entry in the ID table is adjusted

6.2 Implementing a File of Records 169

correspondingly; if the record is deleted, its entry is set to 0. When a new record is
inserted, the record manager finds an available entry in the array and assigns it as the
id of the new record. In this way, the ID table allows variable-length records to be
moved within a block, while providing each record with a fixed identifier.

The ID table expands as the number of records in the block increases. The size of
the array is necessarily open-ended, because a block can hold a varying number of
variable-length records. Typically the ID table is placed at one end of the block, and
the records are placed at the other end, and they grow toward each other. This
situation can be seen in Fig. 6.8c, where the first record in the block is at its far right.

An ID table makes empty/inuse flags unnecessary. A record is in use if an entry of
the ID table points to it. Empty records have an id of 0 (and in fact don’t even exist).
The ID table also enables the record manager to quickly find each record in the
block. To move to a record having a particular id, the record manager simply uses the
location stored in that entry of the ID table; to move to the next record, the record
manager scans the ID table until it finds the next non-zero entry.

6.2.3 Implementing Spanned Records

This section considers how spanned records can be implemented. When records are
unspanned, the first record in each block always begins at the same location. With
spanned records, this situation is no longer true. Consequently, the record manager
must store an integer at the beginning of each block to hold the offset of the first
record.

For example, consider Fig. 6.9. The first integer in block O is a 4, denoting that the
first record R1 begins at offset 4 (i.e., immediately after the integer). Record R2
spans blocks 0 and 1, and so the first record in block 1 is R3, which begins at offset
60. Record R3 continues through block 2 into block 3. Record R4 is the first record
in block 3 and begins at offset 30. Note that the first integer of block 2 is 0, denoting
the fact that no record begins in that block.

The record manager can choose to split a spanned record in two different ways.
The first way is to fill the block as much as possible, splitting it on the block
boundary; the remaining bytes are placed into the next block(s) of the file. The
second way is to write the record value by value; when the page becomes full, the
writing continues on a new page. The first way has the advantage that it wastes
absolutely no space but has the disadvantage of splitting a value across blocks. To
access the split value, the record manager must reconstruct the value by catenating
the bytes from the two blocks.

Block 0: Block 1: Block 2: Block 3:

la] »1 [rea |[60] r2b [R3a | [0] m3b | [30[R3c | ra |

Fig. 6.9 Implementing spanned records

170 6 Record Management
6.2.4 Implementing Nonhomogeneous Records

If the record manager supports nonhomogeneous records, then it will also need to
support variable-length records, because records from different tables need not be
the same size. There are two issues related to having nonhomogeneous records in a
block:

* The record manager needs to know the layout of each type of record in the block.
* Given a record, the record manager needs to know which table it comes from.

The record manager can address the first issue by keeping an array of layouts, one
for each possible table. The record manager can address the second issue by adding
an extra value to the beginning of each record; this value, sometimes called a tag
value, is an index into the layout array, which specifies the table that the record
belongs to.

For example, consider again Fig. 6.2, which depicts nonhomogeneous blocks
from the DEPT and STUDENT tables. The record manager will keep an array
containing the layout information from both of these tables; let’s assume that
DEPT information is in index O of the array and STUDENT information is in
index 1. Then the tag value for each record from DEPT will be 0, and the tag
value for each STUDENT record will be 1.

The behavior of the record manager does not need much change. When the record
manager accesses a record, it determines from the tag value which table information
to use. It can then use that table to read or write to any field, the same as in the
homogeneous case.

The log records in SimpleDB are an example of nonhomogeneous records. The
first value of each log record is an integer that indicates the type of the log record.
The recovery manager uses that value to determine how to read the rest of the
record.

6.3 SimpleDB Record Pages

The next two sections examine the SimpleDB record manager, which implements
the basic record manager of Sect. 6.2.1. This section covers the implementation of
record pages, and the next section covers how to implement a file of record pages.
Some of the end-of-chapter exercises ask you to modify it to handle other design
decisions.

6.3.1 Managing Record Information

The SimpleDB record manager uses the classes Schema and Layout to manage a
record’s information. Their API appears in Fig. 6.10.

6.3 SimpleDB Record Pages 171

Schema
public Schema();
public void addField(String fldname, int type, int length);
public void addIntField(String fldname) ;
public void addStringField(String fldname, int length);
public void add(String fldname, Schema sch);
public void addAll (Schema sch);

public List<String> fields();

public boolean hasField(String fldname);
public int type (String fldname) ;

public int length(String fldname);

Layout
public Layout (Schema schema) ;
public Layout (Schema schema, Map<String, Integer> offsets,
int slotSize);

public Schema schema () ;
public int offset (String fldname);
public int slotSize();

Fig. 6.10 The API for SimpleDB record information

A Schema object holds a record’s schema, that is, the name and type of each
field, and the length of each string field. This information corresponds to what a user
would specify when creating a table and contains no physical information. For
example, the length of a string is the maximum number of characters allowed, not
its size in bytes.

A schema can be thought of as a list of triples of the form [fieldname, type,
length]. The class Schema contains five methods to add a triple to the list. The
method addField adds a triple explicitly. The methods addIntField,
addStringField, add, and addAll are convenience methods; the first two
of these methods calculate the triple, and the last two copy triples from an existing
schema. The class also has accessor methods to retrieve the collection of field names,
determine if a specified field is in the collection, and retrieve the type and length of a
specified field.

The class Layout additionally contains the physical information about a record.
It calculates field and slot sizes, and the field offsets within the slot. The class has two
constructors, corresponding to the two reasons for creating a Layout object. The
first constructor is called when a table is created; it calculates the layout information
based on the given schema. The second constructor is called after the table has been
created; the client simply provides the previously-calculated values.

The code fragment in Fig. 6.11 illustrates the use of these two classes. The first
part of the code creates a schema containing the three fields of the COURSE table

172 6 Record Management

Schema sch = new Schema();
sch.addIntField ("cid") ;
sch.addStringField("title", 20);
sch.addIntField ("deptid") ;
Layout layout = new Layout (sch);

for (String fldname : layout.schema().fields()) {
int offset = layout.offset (fldname);
System.out.println(fldname + " has offset " + offset);

Fig. 6.11 Specifying the structure of COURSE records

and then creates a Layout object from it. The second part of the code prints the
name and offset of each field.

6.3.2 Implementing the Schema and Layout

The code for the class Schema is straightforward and appears in Fig. 6.12. Inter-
nally, the class stores the triples in a map keyed on the field name. The object
associated with the field name belongs to the private class FieldInfo, which
encapsulates the length and type of the field.

Types are denoted by the constants INTEGER and VARCHAR, as defined in the
JDBC class Types. The length of a field is only meaningful for string fields; the
method addIntField gives integers a length value of 0, but this value is irrele-
vant as it will never be accessed.

The code for Layout appears in Fig. 6.13. The first constructor positions the
fields in the order they appear in the schema. It determines the length of each field in
bytes, calculates the slot size as the sum of the field lengths, adding four bytes for an
integer-sized empty/inuse flag. It assigns the flag to be at offset O of the slot, and
assigns the offset of each field to be the location at which the previous field ends (i.e.,
with no padding).

6.3.3 Managing the Records in a Page

The class RecordPage manages the records within a page. Its API appears in
Fig. 6.14.

The methods nextAfter and insertAfter search the page for desired
records. The nextAfter method returns the first used slot that follows the
specified slot, skipping over any empty slots. A negative return value indicates
that all remaining slots are empty. The method insertAfter looks for the first
empty slot following the specified slot. If an empty slot is found, the method sets its
flag to USED and returns the slot number. Otherwise, the method returns —1.

6.3 SimpleDB Record Pages 173

public class Schema {
private List<String> fields = new ArrayList<>();
private Map<String,FieldInfo> info = new HashMap<>();

public void addField(String fldname, int type, int length) {
fields.add (fldname) ;
info.put (fldname, new FieldInfo(type, length));

}

public void addIntField(String fldname) ({
addField (fldname, INTEGER, 0);
}

public void addStringField(String fldname, int length) {
addField (fldname, VARCHAR, length);
}

public void add(String fldname, Schema sch) {
int type = sch.type (fldname) ;
int length = sch.length(fldname) ;
addField(fldname, type, length);

}

public void addAll (Schema sch) {
for (String fldname : sch.fields())
add (fldname, sch);

}

public List<String> fields () {
return fields;

}

public boolean hasField(String fldname) {
return fields.contains (fldname) ;

}

public int type (String fldname) {
return info.get (fldname) .type;
}

public int length(String fldname) {
return info.get (fldname) .length;
}

class FieldInfo {
int type, length;
public FieldInfo (int type, int length) {
this.type = type;
this.length = length;

Fig. 6.12 The code for SimpleDB class Schema

174 6 Record Management

public class Layout {
private Schema schema;
private Map<String, Integer> offsets;
private int slotsize;

public Layout (Schema schema) {
this.schema = schema;
offsets = new HashMap<>();
int pos = Integer.BYTES; // space for the empty/inuse flag
for (String fldname : schema.fields()) {
offsets.put (fldname, pos);
pos += lengthInBytes (fldname) ;
}

slotsize = pos;

public Layout (Schema schema, Map<String,Integer> offsets,
int slotsize) {

this.schema = schema;
this.offsets = offsets;
this.slotsize = slotsize;
}
public Schema schema () {

return schema;

public int offset(String fldname) {
return offsets.get (fldname) ;

public int slotSize() {
return slotsize;

private int lengthInBytes(String fldname) {
int fldtype = schema.type (fldname) ;
if (fldtype == INTEGER)
return Integer.BYTES;
else // fldtype == VARCHAR
return Page.maxLength (schema.length (fldname))

Fig. 6.13 The code for the SimpleDB class Layout

The get/set methods access the value of a specified field in the specified
record. The delete method sets the record’s flag to EMPTY. The format method
gives default values to all record slots in the page. It sets each empty/inuse flag to
EMPTY, all integers to O, and all strings to " ".

6.3 SimpleDB Record Pages 175

RecordPage
public RecordPage (Transaction tx, BlockId blk, Layout layout);

public BlockId block();

public int getInt (int slot, String fldname);
public String getString(int slot, String fldname);
public void setInt (int slot, String fldname, int wval);

public void setString(int slot, String fldname, String val);
public void format () ;
public void delete (int slot);

public int nextAfter (int slot);
public int insertAfter (int slot);

Fig. 6.14 The API for SimpleDB record pages

The class RecordTest illustrates the use of the RecordPage methods; its
code appears in Fig. 6.15. It defines a record schema having two fields: an integer
field A and a string field B. It then creates a RecordPage object for a new block and
formats it. The for loop uses the insertAfter method to fill the page with
random-valued records. (Each A-value is a random number between O and 49, and
the B-values are a string version of that number.) The two while loops use the
nextAfter method to search the page. The first loop deletes selected records, and
the second loop prints the contents of the remaining records.

6.3.4 Implementing Record Pages

SimpleDB implements the slotted-page structure of Fig. 6.5. The only difference is
that the empty/inuse flags are implemented as 4-byte integers instead of single bytes
(the reason being that SimpleDB doesn’t support byte-sized values). The code for the
class RecordPage appears in Fig. 6.16.

The private method of £ set uses the slot size to calculate the starting location of
arecord slot. The get /set methods calculate the location of their specified field by
adding the offset of the field to the offset of the record. The methods nextAfter
and insertAfter call the private method searchAfter to find a slot having
the specified flag USED or EMPTY, respectively. Method searchAfter repeatedly
increments the specified slot until it either finds a slot having the specified flag or it
runs out of slots. The delete method sets the flag of the specified slot to EMPTY,
and insertAfter sets the flag of the found slot to USED.

176 6 Record Management

public class RecordTest {

public static void main(String[] args) throws Exception {
SimpleDB db = new SimpleDB ("recordtest", 400, 8);
Transaction tx = db.newTx();
Schema sch = new Schema () ;

sch.addIntField ("A") ;

sch.addStringField ("B", 9);

Layout layout = new Layout (sch);

for (String fldname : layout.schema () .fields()) {
int offset = layout.offset (fldname);
System.out.println(fldname + " has offset " + offset);

}

BlockId blk = tx.append("testfile");

tx.pin(blk);

RecordPage rp = new RecordPage (tx, blk, layout);

rp.format () ;

System.out.println("Filling the page with random records.");
int slot = rp.insertAfter(-1);
while (slot >= 0) {

int n = (int) Math.round (Math.random() * 50);

rp.setInt (slot, "A", n);

rp.setString(slot, "B", "rec"+n);

System.out.println("inserting into slot " + slot + ": {"
+n+ ", " + "rec"+tn + "}");

slot = rp.insertAfter (slot);
}
System.out.println("Deleted these records with A-values < 25.");
int count = 0;
slot = rp.nextAfter(-1);
while (slot >= 0) {
int a = rp.getlInt(slot, "A");
String b = rp.getString(slot, "B");
if (a < 25) {
count++;
System.out.println("slot " + slot + ": {"
+a+ ", " +b+"}";
rp.delete(slot);
}
slot = rp.nextAfter(slot);
}
System.out.println(count + " values under 25 were deleted.\n");
System.out.println ("Here are the remaining records.");
slot = rp.nextAfter(-1);
while (slot >= 0) {
int a = rp.getlInt(slot, "A");
String b = rp.getString(slot, "B");
System.out.println("slot " + slot + ": {"
+a+ ", "+ b+ "}";
slot = rp.nextAfter(slot);

tx.unpin (blk) ;
tx.commit () ;

}

Fig. 6.15 Testing the RecordPage class

6.3 SimpleDB Record Pages

public class RecordPage ({
public static final int EMPTY = 0, USED = 1;
private Transaction tx;
private BlockId blk;
private Layout layout;

public RecordPage (Transaction tx, BlockId blk, Layout layout)

this.tx = tx;
this.blk = blk;
this.layout = layout;
tx.pin (blk);

}

public int getInt (int slot, String fldname) {
int fldpos = offset(slot) + layout.offset (fldname);
return tx.getlInt(blk, fldpos);

}

public String getString(int slot, String fldname) {
int fldpos = offset(slot) + layout.offset (fldname);
return tx.getString(blk, fldpos):;

}

public void setInt (int slot, String fldname, int wval) {
int fldpos = offset(slot) + layout.offset (fldname);
tx.setInt (blk, fldpos, wval, true);

}

public void setString(int slot, String fldname, String val)

int fldpos = offset(slot) + layout.offset (fldname);
tx.setString(blk, fldpos, val, true);
}
public void delete (int slot) {
setFlag(slot, EMPTY);
}
public void format () {
int slot = 0;
while (isValidSlot(slot)) {
tx.setInt (blk, offset(slot), EMPTY, false);
Schema sch = layout.schema();
for (String fldname : sch.fields()) {

int fldpos = offset(slot) + layout.offset (fldname);

if (sch.type (fldname) == INTEGER)
tx.setInt (blk, fldpos, 0, false);
else
tx.setString(blk, fldpos, "", false);

}
slot++;

Fig. 6.16 The code for the SimpleDB class RecordPage

{

177

178 6 Record Management

public int nextAfter (int slot) {
return searchAfter(slot, USED);
}
public int insertAfter (int slot) {
int newslot = searchAfter (slot, EMPTY);
if (newslot >= 0)
setFlag(newslot, USED);
return newslot;
}
public BlockId block() {
return blk;
}
// Private auxiliary methods
private void setFlag(int slot, int flag) {
tx.setInt (blk, offset(slot), flag, true);
}
private int searchAfter (int slot, int flag) {

slot++;
while (isValidSlot(slot)) {
if (tx.getInt(blk, offset(slot)) == flag)
return slot;
slot++;

}
return -1;

}

private boolean isValidSlot (int slot) {
return offset (slot+l) <= tx.blockSize();

}
private int offset(int slot) {

return slot * layout.slotSize();

}
Fig. 6.16 (continued)

6.4 SimpleDB Table Scans

A record page manages a block of records. This section examines fable scans, which
store arbitrarily many records in multiple blocks of a file.

6.4.1 Table Scans

The TableScan class manages the records in a table. Its API is given in Fig. 6.17.

A TableScan object keeps track of a current record, and its methods change
the current record and access its contents. The method beforeFirst positions the
current record before the first record of the file, and next positions the current
record at the next record in the file. If the current block has no more records, then

6.4 SimpleDB Table Scans 179

TableScan

public TableScan (Transaction tx, String tblname,
Layout layout);

public void close () ;
public boolean hasField(String fldname) ;

// methods that establish the current record
public void beforeFirst () ;

public boolean next();

public void moveToRid (RID r);

public void insert () ;

// methods that access the current record

public int getInt (String fldname) ;
public String getString(String fldname);
public void setInt (String fldname, int wval);
public void setString (String fldname, String val);
public RID currentRid () ;
public void delete () ;
RID
public RID(int blknum, int slot);
public int blockNumber () ;
public int slot();

Fig. 6.17 The API for SimpleDB table scans

next will read succeeding blocks in the file until another record is found. If no more
records can be found, then the call to next returns false.

The get/set and delete methods apply to the current record. The insert
method inserts a new record somewhere in the file, starting with the current record’s
block. Unlike the insertion method of RecordPage, this insertion method always
succeeds; if it cannot find a place to insert the record in the existing blocks of the file,
it appends a new block to the file and inserts the record there.

Each record in a file can be identified by a pair of values: its block number in the
file and its slot within the block. These two values are known as a record identifier
(or rid). The class RID implements these record identifiers. Its class constructor
saves the two values; the accessor methods blockNumber and slot
retrieves them.

The TableScan class contains two methods that interact with rids. The method
moveToRid positions the current record at the specified rid, and the method
currentRid returns the rid of the current record.

The TableScan class provides a level of abstraction significantly different from
the other classes you have seen so far. That is, the methods of Page, Buffer,
Transaction, and RecordPage all apply to a particular block. The
TableScan class, on the other hand, hides the block structure from its clients. In
general, a client will not know (or care) which block is currently being accessed.

180 6 Record Management

public class TableScanTest {
public static void main(String[] args) throws Exception {
SimpleDB db = new SimpleDB("tabletest", 400, 8);
Transaction tx = db.newTx();

Schema sch = new Schemal();

sch.addIntField ("A");

sch.addStringField ("B", 9);

Layout layout = new Layout (sch);

for (String fldname : layout.schema().fields()) {
int offset = layout.offset (fldname);
System.out.println(fldname + " has offset " + offset);

}

TableScan ts = new TableScan (tx, "T", layout);

System.out.println("Filling the table with 50 random records.");
ts.beforeFirst();
for (int i=0; i<50; i++) {
ts.insert () ;
int n = (int) Math.round (Math.random() * 50);
ts.setInt ("A", n);
ts.setString ("B", "rec"+n);
System.out.println("inserting into slot " + ts.getRid() + ": ("
+n+ ", " + "rec"+n + "}");
}
System.out.println("Deleting records with A-values < 25.");
int count = 0;
ts.beforeFirst();
while (ts.next()) {
int a = ts.getInt ("A");
String b = ts.getString("B");
if (a < 25) {
count++;
System.out.println("slot " + ts.getRid() + ": {"
+a+ ", "+Db+ "y,
ts.delete();

}
}

System.out.println(count + " values under 10 were deleted.\n");

System.out.println("Here are the remaining records.");
ts.beforeFirst();
while (ts.next()) {
int a = ts.getInt ("A");
String b = ts.getString("B");
System.out.println("slot " + ts.getRid() +
" {"+a+", " +Db+"}";
}
ts.close();
tx.commit () ;

}

Fig. 6.18 Testing the table scan

6.4 SimpleDB Table Scans 181

The class TableScanTest in Fig. 6.18 illustrates the use of table scans. The
code is similar to RecordTest, except that it inserts 50 records into the file. The
calls to ts.insert will allocate as many new blocks as necessary to hold the
records. In this case, three blocks will be allocated (at 18 records per block).
However, the code has no idea that this is happening. If you run this code multiple
times, you will observe that another 50 records are inserted into the file and that they
fill in the slots abandoned by the previously deleted records.

6.4.2 Implementing Table Scans

The code for class TableScan appears in Fig. 6.19. A TableScan object holds

the record page for its current block. The get /set/delete methods simply call

the corresponding method of the record page. The private method moveToBlock is

called when the current block changes; that method closes the current record page

and opens another one for the specified block, positioned before the its first slot.
The algorithm for the next method is as follows:

. Move to the next record in the current record page.

. If there are no more records in that page, then move to the next block of the file
and get its next record.

3. Continue until either a next record is found or the end of the file is encountered.

N =

It is possible for multiple blocks of a file to be empty (see Exercise 6.2), so a call
to next may need to loop through several blocks.

The insert method tries to insert a new record starting after the current record.
If the current block is full, then it moves to the next one and continues until it finds an
empty slot. If all blocks are full, then it appends a new block to the file and inserts the
record there.

TableScan implements the interface UpdateScan (and also Scan, by exten-
sion). These interfaces are central to the execution of queries and will be discussed in
Chap. 8. The methods getVal and setVal are also discussed in Chap. 8. They get
and set objects of type Constant. A constant is an abstraction of a value type (such
as int or String) and makes it easier to express a query without having to know
the type of a given field.

RID objects are simply a combination of two integers: a block number and a slot
number. The code for the class RID is therefore straightforward and appears in
Fig. 6.20.

https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8

182

public class TableScan implements UpdateScan {
private Transaction tx;
private Layout layout;
private RecordPage rp;
private String filename;
private int currentslot;

public TableScan (Transaction tx, String tblname,

this.tx = tx;
this.layout = layout;
filename = tblname + ".tbl";
if (tx.size(filename) == 0)
moveToNewBlock () ;
else
moveToBlock (0) ;
}
// Methods that implement Scan
public void close() {
if (rp !'= null)
tx.unpin(rp.block());
}
public void beforeFirst () {
moveToBlock (0) ;
}

public boolean next () {
currentslot = rp.nextAfter (currentslot);
while (currentslot < 0) {
if (atLastBlock())
return false;
moveToBlock (rp.block () .number () +1) ;

currentslot = rp.nextAfter (currentslot);

}
return true;

}
public int getInt (String fldname) {
return rp.getInt (currentslot, fldname);

}
public String getString(String fldname) {

return rp.getString(currentslot, fldname);

}
public Constant getVal (String fldname) {

if (layout.schema () .type (fldname) == INTEGER)
return new IntConstant (getInt (fldname));

else

6 Record Management

Layout layout) {

return new StringConstant (getString(fldname));

}
public boolean hasField(String fldname) {

return layout.schema () .hasField(fldname) ;

}
// Methods that implement UpdateScan

public void setInt (String fldname, int wval)

Fig. 6.19 The code for the SimpleDB class TableScan

6.4 SimpleDB Table Scans 183

}

rp.setInt (currentslot, fldname, val);
}
public void setString(String fldname, String val) {
rp.setString(currentslot, fldname, val);
}
public void setVal (String fldname, Constant wval) {
if (layout.schema () .type (fldname) == INTEGER)
setInt (fldname, (Integer)val.asJavavVal());
else
setString (fldname, (String)val.asJavavVal());
}
public void insert() {
currentslot = rp.insertAfter (currentslot);
while (currentslot < 0) {
if (atLastBlock())

moveToNewBlock () ;
else

moveToBlock (rp.block () .number () +1);
currentslot = rp.insertAfter (currentslot);

}
}
public void delete() {

rp.delete (currentslot) ;
}
public void moveToRid (RID rid) {
close();
BlockId blk = new BlockId(filename, rid.blockNumber ());
rp = new RecordPage (tx, blk, layout);
currentslot = rid.slot();
}
public RID getRid() {
return new RID(rp.block () .number (), currentslot);
}
// Private auxiliary methods
private void moveToBlock (int blknum) {
close();
BlockId blk = new BlockId(filename, blknum) ;
rp = new RecordPage (tx, blk, layout);
currentslot = -1;
}
private void moveToNewBlock () {
close();
BlockId blk = tx.append(filename);
rp = new RecordPage (tx, blk, layout);
rp.format () ;
currentslot = -1;
}
private boolean atLastBlock() {
return rp.block() .number () == tx.size(filename) - 1;

Fig. 6.19 (continued)

184 6 Record Management

public class RID {
private int blknum;
private int slot;

public RID(int blknum, int slot) {
this.blknum = blknum;
this.slot = slot;

}

public int blockNumber () {
return blknum;

}

public int slot () {
return slot;

}

public boolean equals (Object obj) {
RID r = (RID) obj;
return blknum == r.blknum && slot==r.slot;

}

public String toString() {
return "[" + blknum + ", " + slot + "]";
}

Fig. 6.20 The code for the SimpleDB class RID

6.5 Chapter Summary

* The record manager is the portion of the database system that stores records in a
file. It has three basic responsibilities:

— Placing fields within records
— Placing records within blocks
— Providing access to the records in a file

There are several issues that must be addressed when designing a record manager.

e One issue is whether to support variable-length fields. Fixed-length records can
be implemented easily, because fields can be updated in place. Updating a
variable-length field can cause records to spill out of a block and be placed into
an overflow block.

* SQL has three different string types: char, varchar, and clob.

— The char type is most naturally implemented using a fixed-length
representation.

— The varchar type is most naturally implemented using a variable-length
representation.

— The clob type is implemented most naturally using a fixed-length represen-
tation that stores the string in an auxiliary file.

6.6 Suggested Reading 185

e A common implementation technique for variable-length records is to use an ID
table. Each entry in the table points to a record in the page. A record can move
around in a page by just changing its entry in the ID table.

* A second issue is whether to create spanned records. Spanned records are useful
because they do not waste space and allow for large records, but they are more
complicated to implement.

e A third issue is whether to allow nonhomogeneous records in a file.
Nonhomogeneous records allow related records to be clustered on a page.
Clustering can lead to very efficient joins but tend to make other queries more
expensive. The record manager can implement nonhomogeneous records by
storing a fag field at the beginning of each record; the tag denotes the table that
the record belongs to.

» A fourth issue is how to determine the offset of each field within a record. The
record manager may need to pad the fields so that they are aligned on appropriate
byte boundaries. A field in a fixed-length record has the same offset for each record.
It may be necessary to search a variable-length record for the beginning of its fields.

6.6 Suggested Reading

The ideas and techniques in this chapter have been present in relational databases
from the very beginning. Section 3.3 of Stonebraker et al. (1976) describes the
approach taken by the first version of INGRES; this approach uses the variation of
the ID table described in Sect. 6.2.2. Section 3 of Astrahan et al. (1976) describes the
page structure for the early System R database system (which later became IBM’s
DB2 product), which stored records nonhomogeneously. Both articles discuss a
broad range of implementation ideas and are well worth reading in their entirety. A
more detailed discussion of these techniques, together with a C-based implementa-
tion of an example record manager, appears in Chap. 14 of Gray and Reuter (1993).

The strategy of storing each record contiguously in a page is not necessarily best.
The article Ailamaki et al. (2002) advocates breaking up the records on a page and
placing the values for each field together. Although this record organization doesn’t
change the number of disk accesses performed by the record manager, it significantly
improves the performance of the CPU because its data cache is utilized more
effectively. The article Stonebraker et al. (2005) goes even farther, proposing that
tables should be organized by field values, that is, all of the record values for each
field should be stored together. The article shows how field-based storage can be
more compact than record-based storage, which can lead to more efficient queries.

An implementation strategy for very large records is described in Carey et al.
(1986).

Ailamaki, A., DeWitt, D., & Hill, M. (2002). Data page layouts for relational
databases on deep memory hierarchies. VLDB Journal, 11(3), 198-215.

Astrahan, M., Blasgen, M., Chamberlin, D., Eswaren, K., Gray, J., Griffiths, P.,
King, W., Lorie, R., McJones, P., Mehl, J., Putzolu, G., Traiger, 1., Wade, B., &

186 6 Record Management

Watson, V. (1976). System R: Relational approach to database management.
ACM Transactions on Database Systems, 1(2), 97-137.

Carey, M., DeWitt, D., Richardson, J., & Shekita, E. (1986). Object and file
management in the EXODUS extendable database system. In Proceedings of
the VLDB Conference (pp. 91-100).

Gray, J., & Reuter, A. (1993). Transaction processing: concepts and techniques. San
Mateo, CA: Morgan Kaufman.

Stonebraker, M., Abadi, D., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau,
E., Lin, A., Madden, S., O’Neil, E., O’Neil, P, Rasin, A., Tran, N., & Zdonik,
S. (2005). C-Store: A column-oriented DBMS. In Proceedings of the VLDB
Conference (pp. 553-564).

Stonebraker, M., Kreps, P., Wong, E., & Held, G. (1976). The design and imple-
mentation of INGRES. ACM Transactions on Database Systems, 1(3), 189-222.

6.7 Exercises

Conceptual Problems

6.1. Assume that the block size is 400 bytes and that records cannot span blocks.
Calculate the maximum number of records that can fit in a SimpleDB record
page and the amount of wasted space in the page for each of the following slot
sizes: 10 bytes, 20 bytes, 50 bytes, and 100 bytes.

6.2. Explain how the file for a table can contain blocks having no records.

6.3. Consider each table in the university database (except STUDENT).

(a) Give the layout for that table, as in Fig. 6.6. (You can use the varchar
declarations in the demo client files or assume that all string fields are
defined as varchar (20).)

(b) Draw a picture of the record page(s) (as in Fig. 6.5) for each table, using
the records of Fig. 1.1. As in Fig. 6.5, assume that the empty/full flag is a
single byte long. Also assume a fixed-length implementation of string
fields.

(c) Do part (b), but assume a variable-length implementation of string fields.
Use Fig. 6.8c as a model.

(d) Revise your pictures from parts (b) and (c) to show the state of the pages
after their second record has been deleted.

6.4. Another way to deal with very large strings is to not store them in the database.
Instead, you could place the strings in an OS file and store the name of the file
in the database. This strategy would eliminate the need for the clob type.
Give several reasons why this strategy is not particularly good.

6.5. Suppose that you want to insert a record into a block that contains an overflow
block, as in Fig. 6.7b. Is it a good idea to save the record in the overflow block?
Explain.

https://doi.org/10.1007/978-3-030-33836-7_1

6.7 Exercises 187

6.6.

Here is another way to implement variable-length records. Each block has two
areas: a sequence of fixed-length slots (as in SimpleDB) and a place where
variable-length values are stored. A record is stored in a slot. Its fixed-length
values are stored with the record, and its variable-length values are stored in
the value area. The record will contain the block offset where the value is
located. For example, the records in Fig. 6.8a could be stored like this:

[slot 0 110 slot 1 110 slot 2] value area
| 1 I 12 | 10 | 71 II 1 | 22 | 10 l 58 H 1 | 32 | 20 | 46 | Calculus Compilers DbSys
0 1 5 9 13 14 18 22 26 27 31 35 39 46 58 71 80

6.7.

(a) Explain what should happen when a variable-length value gets modified.
Do you need an overflow block? If so, what should it look like?

(b) Compare this storage strategy with that of ID tables. Explain the compar-
ative benefits of each.

(c) Which implementation strategy do you prefer? Why?

Using a byte for each empty/inuse flag wastes space, since only a bit is needed.
An alternative implementation strategy is to store the empty/inuse bits for
each slot in a bit array at the beginning of the block. This bit array could be
implemented as one or more 4-byte integers.

(a) Compare this bit array with the ID table of Fig. 6.8c.

(b) Suppose that the block size is 4K and records are assumed to be at least
15 bytes. How many integers are needed to store the bit array?

(c) Describe an algorithm for finding an empty slot to insert a new record.

(d) Describe an algorithm for finding the next non-empty record in a block.

Programming Problems

6.8.

6.9.

6.10.

Revise the class RecordPage so that its block is not pinned by the con-
structor but instead is pinned at the beginning of each get/set method.
Similarly, the block is unpinned at the end of each get /set method, thereby
eliminating the need for a close method. Do you think this is better than the
SimpleDB implementation? Explain.

Revise the record manager so that varchar fields have a variable-length
implementation.

SimpleDB only knows how to read files in the forward direction.

(a) Revise the classes TableScan and RecordPage to support a pre-
vious method, as well as the method afterLast, which positions the
current record to be after the last record in the file (or page).

(b) Revise the TableScanTest program to print its records in reverse
order.

188

6.11.
6.12.

6.13.

6.14.

6 Record Management

Revise the record manager so that records are spanned.

Revise the class Layout to pad string fields so that their size is always a
multiple of 4.

Revise the SimpleDB record manager to handle null field values. Since it is
unreasonable to use a particular integer or string value to denote a null, you
should use flags to specify which values are null. In particular, suppose that a
record contains N fields. Then you can store N additional bits with each record,
such that the value of the ith bit is 1 iff the value of the ith field is null.
Assuming that N<32, the empty/inuse integer can be used for this purpose.
Bit O of this integer denotes empty/inuse, as before. But now the other bits
hold null-value information. You should make the following revisions to the
code:

* Modify Layout so that it has a method bitLocation (fldname),
which returns the position in the flag where the field’s null information
bit is located.

* Modify RecordPage and TableScan to have two additional public
methods: a void method setNull (fldname), which stores a 1 in the
appropriate bit of the flag, and a boolean method isNull (fldname),
which returns true if the null-bit for the specified field of the current
record is 1.

* Modify the format method of RecordPage to explicitly set of the fields
of the new record to non-null.

* Modify the setString and set Int methods to set the specified field to
non-null.

Suppose that setString is called with a string that is longer than is
specified in the schema.

(a) Explain what kinds of things can go wrong and when they will be
detected.

(b) Fix the SimpleDB code so that the error is detected and handled
appropriately.

Chapter 7 ®)
Metadata Management S

The previous chapter examined how the record manager stores records in files. As
you saw, however, a file is useless by itself; the record manager also needs to know
the records’ layout in order to “decode” the contents of each block. The layout is an
example of metadata. This chapter examines the kinds of metadata supported by a
database engine, their purpose and functionality, and the ways that the engine stores
metadata in the database.

7.1 The Metadata Manager

Metadata is data that describes a database. A database engine maintains a wide
variety of metadata. For example:

* Table metadata describes the structure of the table’s records, such as the length,
type, and offset of each field. The layout used by the record manager is an
example of this kind of metadata.

* View metadata describes the properties of each view, such as its definition and
creator. This metadata helps the planner handle queries that mention views.

e Index metadata describes the indexes that have been defined on the table (to be
discussed in Chap. 12). The planner uses this metadata to see if a query can be
evaluated using an index.

 Statistical metadata describes the size of each table and the distribution of its field
values. The query optimizer uses this metadata to estimate the cost of a query.

The metadata for the first three categories is generated when a table, view, or
index is created. Statistical metadata is generated each time the database is updated.

The metadata manager is the component of the database engine that stores and
retrieves its metadata. The SimpleDB metadata manager is comprised of four
separate managers, corresponding to each of the four metadata types. The remaining
sections of this chapter cover these managers in detail.

© Springer Nature Switzerland AG 2020 189
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_7

190 7 Metadata Management
7.2 Table Metadata

The SimpleDB class TableMgr manages table data. Its API, shown in Fig. 7.1,
consists of a constructor and two methods. The constructor is called once, during
system startup. The method createTable takes the table’s name and schema as
arguments; the method calculates the record offsets and saves it all in the catalog.
The method getLayout goes to the catalog, extracts the metadata for the specified
table, and returns a Layout object containing the metadata.

The class TableMgrTest in Fig. 7.2 demonstrates these methods. It first
defines a schema containing an integer field named “A” and a string field named

TableMgr
public TableMgr (boolean isnew, Transaction tx);
public void createTable(String tblname, Schema sch,
Transaction tx);

public Layout getLayout (String tblname, Transactcion tx);
Fig. 7.1 The API for the SimpleDB table manager

public class TableMgrTest {
public static void main(String[] args) throws Exception {
SimpleDB db = new SimpleDB("tblmgrtest", 400, 8);
Transaction tx = db.newTx () ;
TableMgr tm = new TableMgr (true, tx);

Schema sch = new Schemal();
sch.addIntField ("A");
sch.addStringField ("B", 9);
tm.createTable ("MyTable", sch, tx);

Layout layout = tm.getLayout ("MyTable", tx);
int size = layout.slotSize();
Schema sch2 = layout.schema() ;
System.out.println ("MyTable has slot size " + size);
System.out.println("Its fields are:");
for (String fldname : sch2.fields()) {
String type;
if (sch2.type(fldname) == INTEGER)
type = "int";
else {
int strlen = sch2.length (fldname);
type = "varchar (" + strlen + ")";
}
System.out.println(fldname + ": " + type);
}

tx.commit () ;

Fig. 7.2 Using the table manager methods

7.2 Table Metadata 191

“B.” It then calls createTable to create a table named “MyTable” having this
schema. The code then calls getLayout to retrieve the calculated layout.

The metadata manager saves its metadata in the part of the database called the
catalog. But how does it implement the catalog? The most common strategy is for
the database engine to store catalog information in database tables. SimpleDB uses
two tables to hold its table metadata: the table tblcat stores metadata specific to
each table, and the table fldcat stores metadata specific to each field of each table.
These tables have the following fields:

tblcat (TblName, SlotSize)
fldcat (TblName, FldName, Type, Length, Offset)

There is one record in tblcat for each database table and one record in fldcat
for each field of each table. The S1ot Size field gives the length of the slot in bytes,
as calculated by Layout. The Length field gives the length of the field in
characters, as specified in its table’s schema. For an example, the catalog tables
corresponding to the university database of Fig. 1.1 are shown in Fig. 7.3. Note
how the table’s layout information has been “flattened” into a series of fldcat
records. The Type values in table fldcat contain the values 4 and 12; these values
are the codes for types INTEGER and VARCHAR that are defined in the JDBC class
Types.

Catalog tables can be accessed the same as any user-created table. For example,
the SQL query of Fig. 7.4 retrieves the names and length of all fields in the
STUDENT table.'

The catalog tables even contain records describing their own metadata. These
records are not shown in Fig. 7.3. Instead, Exercise 7.1 asks you to determine them.
Figure 7.5 shows the code for the class CatalogTest, which prints the record
length of each table and the offset of each field. If you run the code, you will see that
the metadata for the catalog tables is also printed.

Figure 7.6 gives the code for TableMgr. The constructor creates the schemas for
the catalog tables tblcat and fldcat and calculates their Layout objects. If the
database is new, it also creates the two catalog tables.

The createTable method uses a table scan to insert records into the catalog. It
inserts one record into tblcat for the table and one record into fldcat for each
field of the table.

The getLayout method opens table scans on the two catalog tables and scans
them for records corresponding to the specified table name. It then constructs the
requested Layout object from those records.

"Note that the constant “student” is in lower case, even though the table was defined in upper case.
The reason is that all table and field names in SimpleDB are stored in lower case, and constants in
SQL statements are case-sensitive.

https://doi.org/10.1007/978-3-030-33836-7_1

192

7 Metadata Management

tblcat TbIName SlotSize
student 30
dept 20
course 36
section 28
enroll 22

fldcat TblName FldName Type Length Offset
student sid 4 0 4
student sname 12 10 8
student majorid 4 0 22
student gradyear 4 0 26
dept did 4 0 4
dept dname 12 8
course cid 4 0 4
course title 12 20
course deptid 4 0 32
section sectid 0 4
section courseid 4 0 8
section prof 12 8 12
section year 4 0 24
enroll eid 4 0 4
enroll studentid 4 0 8
enroll sectionid 4 0 12
enroll grade 12 2 16

Fig. 7.3 Catalog tables for the university database

select FldName, Length
from fldcat

where TblName = 'student'

Fig. 7.4 An SQL query to retrieve metadata

7.3 View Metadata

public class CatalogTest {

}

public static void main(String[] args) throws Exception {

SimpleDB db = new SimpleDB("catalogtest", 400, 8);
Transaction tx = db.newTx();
TableMgr tm = new TableMgr (true, tx);

Schema sch = new Schemal() ;
sch.addIntField ("A") ;
sch.addStringField ("B", 9);
tm.createTable ("MyTable", sch, tx);

System.out.println("All tables and their lengths:");

Layout layout = tm.getLayout("tblcat", tx);
TableScan ts = new TableScan(tx, "tblcat", layout);
while (ts.next()) {

String tname = ts.getString("tblname");

int size = ts.getlInt ("slotsize");
System.out.println(tname + " " + size);
}
ts.close();

System.out.println("All fields and their offsets:");

layout = tm.getLayout("fldcat", tx);
ts = new TableScan(tx, "fldcat", layout);
while (ts.next()) {
String tname = ts.getString("tblname");
String fname = ts.getString("fldname");

193

int offset = ts.getlInt ("offset");
System.out.println(tname + " " + fname + " " + offset);
}
ts.close();

Fig. 7.5 Using table scans to read the catalog tables

7.3 View Metadata

A view is a table whose records are computed dynamically from a query. That query
is called the definition of the view and is specified when the view is created. The
metadata manager stores the definition of each newly created view and retrieves its
definition when requested.

The SimpleDB class ViewMgr handles this responsibility. The class stores view

definitions in the catalog table viewcat, one record per view. The table has the
following fields:

viewcat (ViewName, ViewDef)

194 7 Metadata Management

public class TableMgr {
public static final int MAX NAME = 16; // table or field name
private Layout tcatLayout, fcatLayout;

public TableMgr (boolean isNew, Transaction tx) {
Schema tcatSchema = new Schema();
tcatSchema.addStringField ("tblname", MAX NAME) ;
tcatSchema.addIntField ("slotsize");
tcatLayout = new Layout (tcatSchema) ;

Schema fcatSchema new Schema () ;
fcatSchema.addsStringField ("tblname", MAX NAME) ;
fcatSchema.addstringField ("fldname", MAX NAME) ;
fcatSchema.addIntField ("type");
fcatSchema.addIntField ("length") ;
fcatSchema.addIntField ("offset");

fcatLayout = new Layout (fcatSchema) ;

if (isNew) {

createTable ("tblcat", tcatSchema, tx);

createTable ("fldcat", fcatSchema, tx);
}
}

public void createTable (String tblname, Schema sch,
Transaction tx) {
Layout layout = new Layout (sch);
// insert one record into tblcat
TableScan tcat = new TableScan(tx, "tblcat", tcatLayout);
tcat.insert () ;
tcat.setString ("tblname", tblname);
tcat.setInt ("slotsize", layout.slotSize());
tcat.close();
// insert a record into fldcat for each field
TableScan fcat = new TableScan(tx, "fldcat", fcatLayout);
for (String fldname : sch.fields()) {
fcat.insert ();
fcat.setString ("tblname", tblname);
fcat.setString ("fldname", fldname);

fcat.setInt ("type", sch.type (fldname)) ;
fcat.setInt ("length", sch.length(fldname)) ;
fcat.setInt ("offset", layout.offset (fldname));

}
fcat.close();
}
public Layout getLayout (String tblname, Transaction tx) {
int size = -1;
TableScan tcat = new TableScan(tx, "tblcat", tcatLayout);
while (tcat.next ())
if (tcat.getString ("tblname") .equals (tblname)) {
size = tcat.getInt("slotsize");
break;

}

tcat.close();

Fig. 7.6 The code for the SimpleDB class TableMgr

7.4 Statistical Metadata 195

Schema sch = new Schema () ;
Map<String, Integer> offsets = new HashMap<String, Integer>();
TableScan fcat = new TableScan(tx, "fldcat", fcatLayout);
while (fcat.next ())
if (fcat.getString("tblname") .equals (tblname)) {
String fldname = fcat.getString("fldname");

int fldtype = fcat.getInt ("type");
int fldlen = fcat.getInt ("length");
int offset = fcat.getInt ("offset");

offsets.put (fldname, offset);
sch.addField (fldname, fldtype, fldlen);
}

fcat.close();
return new Layout (sch, offsets, size);

}

Fig. 7.6 (continued)

The code for ViewMgr appears in Fig. 7.7. Its constructor is called during system
startup and creates the viewcat table if the database is new. The methods
createView and getViewDef both use a table scan to access the catalog
table—createView inserts a record into the table, and getViewDef iterates
through the table looking for the record corresponding to the specified view name.

View definitions are stored as varchar strings, which means that there is a
relatively small limit on the length of a view definition. The current limit of
100 characters is, of course, completely unrealistic, as a view definition could be
thousands of characters long. A better choice would be to implement the ViewDef
field as a c1ob type, such as clob (9999).

7.4 Statistical Metadata

Another form of metadata managed by a database system is the statistical informa-
tion about each table in the database, such as how many records it has and the
distribution of their field values. These statistics are used by the query planner to
estimate costs. Experience has shown that a good set of statistics can significantly
improve the execution time of queries. Consequently, commercial metadata man-
agers tend to maintain detailed, comprehensive statistics, such as value and range
histograms for each field in each table and correlation information between fields in
different tables.

For simplicity, this section considers only the following three kinds of statistical
information:

e The number of blocks used by each table T
e The number of records in each table T
e For each field F of table T, the number of distinct F-values in T

196 7 Metadata Management

class ViewMgr {
private static final int MAX VIEWDEF = 100; // max view def chars
TableMgr tblMgr;

public ViewMgr (boolean isNew, TableMgr tblMgr, Transaction tx) {
this.tblMgr = tblMgr;
if (isNew) {
Schema sch = new Schema();
sch.addstringField("viewname", TableMgr.MAX NAME) ;
sch.addStringField("viewdef", MAX VIEWDEF) ;
tblMgr.createTable ("viewcat", sch, tx);

public void createView(String vname, String vdef,
Transaction tx) {
Layout layout = tblMgr.getLayout ("viewcat", tx);
TableScan ts = new TableScan (tx, "viewcat", layout);
ts.setString ("viewname", vname) ;
ts.setString ("viewdef", vdef);
ts.close();

}

public String getViewDef (String vname, Transaction tx) {

String result = null;
Layout layout = tblMgr.getLayout ("viewcat", tx);
TableScan ts = new TableScan(tx, "viewcat", layout);
while (ts.next())
if (ts.getString("viewname") .equals (vname)) {
result = ts.getString("viewdef");
break;

}
ts.close();
return result;

Fig. 7.7 The code for the SimpleDB class ViewMgr

These statistics are denoted by B(T), R(T), and V(T,F) respectively.

Figure 7.8 gives some example statistics for the university database. The values
correspond to a university that admits about 900 students per year and offers about
500 sections per year; the university has kept this information for the last 50 years.
The values in Fig. 7.8 try to be realistic and do not necessarily correspond to values
that might be calculated from Fig. 1.1. Instead, the figures assume that 10 STUDENT
records fit per block, 20 DEPT records per block, and so on.

Look at the V(T,F) values for the STUDENT table. The fact that SId is a key of
STUDENT means that V(STUDENT, SId) = 45,000. The assignment V(STU-
DENT, SName) = 44,960 means that 40 of the 45,000 students have duplicate
names. The assignment V(STUDENT, GradYear) = 50 means that at least one
student graduated in each of the last 50 years. And the assignment V(STUDENT,

https://doi.org/10.1007/978-3-030-33836-7_1

7.4 Statistical Metadata 197

T B(T) R(T) V(T,F)

45,000 for F=SId
44,960 for F=SName
50 for F=GradYear
40 for F=Majorld

STUDENT 4,500 45,000

DEPT 2 40 40 for F=DId, DName

500 for F=CId, Title
40 for F=Deptld

COURSE 25 500

25,000 for F=Sectld

500 for F=Courseld
250 for F=Prof

50 for F=YearOffered

SECTION 2,500 25,000

1,500,000 for F=EId
25,000 for F=Sectionld
45,000 for F=Studentld
14 for F=Grade

ENROLL 50,000 1,500,000

Fig. 7.8 Example statistics about the university database

StatMgr
public StatMgr (TableMgr tm, Transaction tx);

public StatInfo getStatInfo(String tblname, Layout lo,
Transaction tx);

StatInfo

public int blocksAccessed() ;
public int recordsOutput();
public int distinctValues (String fldname) ;

Fig. 7.9 The API for SimpleDB table statistics

MajorId) =40 means that each of the 40 departments has had at least one major at
some point.

The SimpleDB class StatMgr manages this statistical information. The data-
base engine holds one StatMgr object. This object has a method getStatInfo,
which returns a StatInfo object for a specified table. The StatInfo object
holds the statistics for that table and has methods blocksAccessed,
recordsOutput, and distinctValues, which, respectively, implement the
statistical functions B(T), R(T), and V(T,F). The API for these classes appears in
Fig. 7.9.

198 7 Metadata Management

SimpleDB db = ...

Transaction tx = db.newTx () ;

TableMgr tblmgr = ...

StatMgr statmgr = new StatMgr (tblmgr, tx);

Layout layout = tblmgr.getLayout ("student", tx);

StatInfo si = statmgr.getStatInfo("student", layout, tx);

System.out.println (si.blocksAccessed() + " " +
si.recordsOutput () + "4
si.distinctValues ("majorid"));

tx.commit () ;

Fig. 7.10 Obtaining and printing statistics about a table

The code fragment in Fig. 7.10 illustrates a typical use of these methods. This
code obtains the statistics for the STUDENT table and prints the value of B(STU-
DENT), R(STUDENT), and V(STUDENT, MajorId).

A database engine can manage statistical metadata in one of two ways. One way
is to store the information in the database catalog, updating it whenever the database
changes. The other is to store the information in memory, calculating it when the
engine is initialized.

The first approach corresponds to creating two new catalog tables, called
tblstats and fldstats, having the following fields:

tblstats (TblName, NumBlocks, NumRecords)
fldstats (TblName, F1dName, NumValues)

The tblstats table would have one record for each table T, containing the
values for B(T) and R(T). The fldstat s table would have one record for each field
F of each table T, containing the value for V(T,F). The problem with this approach is
the cost of keeping the statistics up to date. Every call to insert, delete,
setInt, and setString would potentially need to update these tables. Addi-
tional disk accesses would be required to write the modified pages to disk. Moreover,
concurrency would be reduced—every update to table T would xlock the blocks
containing T’s statistical records, which would force the transactions that need to
read T’s statistics (as well as the statistics of the other tables having records on the
same pages) to wait.

One viable solution to this problem is to let transactions read the statistics without
obtaining slocks, as in the read-uncommitted isolation level of Sect. 5.4.7. The loss
of accuracy is tolerable because the database system uses these statistics to compare
the estimated execution times of query plans. The statistics therefore do not need to
be accurate, as long as the estimates they produce are reasonable.

The second implementation strategy is to forget about catalog tables and to store
the statistics directly in memory. The statistical data is relatively small and should fit
easily in main memory. The only problem is that the statistics will need to be
computed from scratch each time the server starts. This calculation requires a scan
of each table in the database to count the number of records, blocks, and values seen.

https://doi.org/10.1007/978-3-030-33836-7_5

7.5 Index Metadata 199

If the database is not too large, this computation will not delay the system startup
too much.

This main-memory strategy has two options for dealing with database updates.
The first option is for each update to the database to update the statistics, as before.
The second option is to leave the statistics un-updated but to recalculate them, from
scratch, every so often. This second option relies again on the fact that accurate
statistical information is not necessary, and so it is tolerable to let the statistics get a
bit out of date before refreshing them.

SimpleDB adopts the second option of the second approach. The class StatMgr
keeps a variable, called tableStats, which holds cost information for each table.
The class has a public method stat Info that returns the cost values for a specified
table, and private methods refreshStatistics and refreshTableStats
that recalculate the cost values. The code for the class appears in Fig. 7.11.

The class StatMgr keeps a counter that is incremented each time statInfo
is called. If the counter reaches a particular value (here, 100), then
refreshStatistics is called to recalculate the cost values for all tables. If
statInfo is called on a table for which there are no known values, then
refreshTableStats is called to calculate the statistics for that table.

The code for refreshStatistics loops through the tblcat table. The
body of the loop extracts the name of a table and calls refreshTableStats to
calculate the statistics for that table. The refreshTableStats method loops
through the contents of that table, counting records, and calls size to determine the
number of blocks used. For simplicity, the method does not count field values.
Instead, the Stat Info object makes a wild guess at the number of distinct values
for a field, based on the number of records in its table.

The code for class StatInfo appears in Fig. 7.12. Note that
distinctValues does not use the field value passed into it, because it naively
assumes that approximately 1/3 of the values of any field are distinct. Needless to
say, this assumption is pretty bad. Exercise 7.12 asks you to rectify the situation.

7.5 Index Metadata

The metadata for an index consists of its name, the name of the table it is indexing,
and the list of its indexed fields. The index manager is the system component that
stores and retrieves this metadata. The SimpleDB index manager consists of two
classes, IndexMgr and IndexInfo. Their API appears in Fig. 7.13.

An index’s metadata consists of its name, the name of the table being indexed,
and the field it is indexed on. The IndexMgr method createIndex stores this
metadata in the catalog. The get IndexInfo method retrieves the metadata for all
indexes on a specified table. In particular, it returns a map of Indexinfo objects,
keyed by the indexed field. The map’s keyset method tells you the fields of the
table having an available index. The IndexInfo methods provide statistical
information about a chosen index, similar to the class StatInfo. The method

200 7 Metadata Management

class StatMgr {
private TableMgr tblMgr;
private Map<String,StatInfo> tablestats;
private int numcalls;

public StatMgr (TableMgr tblMgr, Transaction tx) {
this.tblMgr = tblMgr;
refreshStatistics (tx);

public synchronized StatInfo getStatInfo(String tblname,
Layout layout, Transaction tx) {
numcalls++;

if (numcalls > 100)
refreshStatistics (tx);

StatInfo si = tablestats.get (tblname);

if (si == null) {
si = calcTableStats (tblname, layout, tx);
tablestats.put (tblname, si);

}

return si;

private synchronized void refreshStatistics (Transaction tx) {
tablestats = new HashMap<String,StatInfo>();
numcalls = 0;
Layout tcatlayout = tblMgr.getLayout ("tblcat", tx);
TableScan tcat = new TableScan(tx, "tblcat", tcatlayout);
while (tcat.next ()) {
String tblname = tcat.getString("tblname");
Layout layout = tblMgr.getlLayout (tblname, tx);
StatInfo si = calcTableStats(tblname, layout, tx);
tablestats.put (tblname, si);
}

tcat.close();

private synchronized StatInfo calcTableStats (String tblname,
Layout layout, Transaction tx) {
int numRecs = 0;
int numblocks = 0;
TableScan ts = new TableScan(tx, tblname, layout);
while (ts.next()) {
numRecs++;
numblocks = ts.getRid() .blockNumber () + 1;
}
ts.close();
return new StatInfo (numblocks, numRecs);

Fig. 7.11 The code for the SimpleDB class StatMgr

7.5 Index Metadata 201

public class StatInfo {
private int numBlocks;
private int numRecs;

public StatInfo(int numblocks, int numrecs) {
this.numBlocks = numblocks;
this.numRecs = numrecs;

public int blocksAccessed() {
return numBlocks;

public int recordsOutput () {
return numRecs;

public int distinctValues (String fldname) {
return 1 + (numRecs / 3); // This is wildly inaccurate.

Fig. 7.12 The code for the SimpleDB class StatInfo

IndexMgr
public IndexMgr (boolean isnew, TableMgr tmgr, StatMgr smgr,
Transaction tx);
public createlIndex(String iname, String tname, String fname,
Transaction tx);
public Map (String, IndexInfo> getIndexInfo (String tblname,
Transaction tx);

IndexInfo
public IndexInfo(String iname, String tname, String fname,
Transaction tx);
public int blocksAccessed();
public int recordsOutput () ;
public int distinctValues (String fldname) ;
public Index open();

Fig. 7.13 The API for SimpleDB index metadata

blocksAccessed returns the number of block accesses required to search the
index (not the size of the index). Methods recordsOutput and
distinctValues return the number of records in the index and the number of
distinct values of the indexed field, which are the same values as in the indexed table.

An IndexInfo object also has the method open, which returns the Index
object for the index. The class Index contains methods to search the index, and is
discussed in Chap. 12.

https://doi.org/10.1007/978-3-030-33836-7_12

202 7 Metadata Management

SimpleDB db = ...

Transaction tx = db.newTx () ;

TableMgr tblmgr = ...

StatMgr statmgr = new StatMgr (tblmgr, tx);

IndexMgr idxmgr = new IndexMgr (true, tblmgr, statmgr, tx);
idxmgr.createIndex("sidIdx", "student", "sid");
idxmgr.createIndex ("snameIdx", "student", "sname");

Map<String, IndexInfo> indexes = idxmgr.getIndexInfo ("student", tx);
for (String fldname : indexes.keySet()) {

IndexInfo ii = indexes.get(fldname);

System.out.println (fldname + "\t" + ii.blocksAccessed (fldname)) ;

Fig. 7.14 Using the SimpleDB index manager

The code fragment of Fig. 7.14 illustrates the use of these methods. The code
creates two indexes on the STUDENT table. It then retrieves their metadata, printing
the name and search cost of each one.

Figure 7.15 gives the code for IndexMgr. It stores index metadata in the catalog
table idxcat. This table has one record for each index and three fields: the name of
the index, the name of the table being indexed, and the name of the indexed field.

The constructor is called during system startup and creates the catalog table if the
database is new. The code for methods createIndex and getIndexInfo is
straightforward. Both methods open a table scan on the catalog table. The method
createIndex inserts a new record into the table. The method getIndexInfo
searches the table for those records having the specified table name and inserts them
into the map.

The code for the class IndexInfo appears in Fig. 7.16. The constructor receives
the name of the index and the indexed field, as well as variables holding the layout
and statistical metadata of its associated table. This metadata allows the
IndexInfo object to construct the schema for the index record and to estimate
the size of the index file.

The method open opens the index by passing the index name and schema to the
HashIndex constructor. The class HashIndex implements a static hashed index
and is discussed in Chap. 12. To use B-Tree indexing instead, replace this construc-
tor with the commented-out one. The method blocksAccessed estimates the
search cost of the index. It first uses the index’s Layout information to determine
the length of each index record and estimate the records per block (RPB) of the index
and the size of the index file. Then it calls the index-specific method searchCost
to calculate the number of block accesses for that index type. The method
recordsOutput estimates the number of index records matching a search key.
And the method distinctValues returns the same value as in the indexed table.

https://doi.org/10.1007/978-3-030-33836-7_12

7.5 Index Metadata 203

public class IndexMgr {
private Layout layout;
private TableMgr tblmgr;
private StatMgr statmgr;

public IndexMgr (boolean isnew, TableMgr tblmgr, StatMgr statmgr,

Transaction tx) {

if (isnew) {
Schema sch = new Schema () ;
sch.addstringField ("indexname", MAX NAME) ;
sch.addStringField("tablename", MAX NAME) ;
sch.addstringField("fieldname", MAX NAME) ;
tblmgr.createTable ("idxcat", sch, tx);

}

this.tblmgr = tblmgr;

this.statmgr = statmgr;

layout = tblmgr.getLayout ("idxcat", tx);

public void createIndex(String idxname, String tblname,
String fldname, Transaction tx) {

TableScan ts = new TableScan (tx, "idxcat", layout);
ts.insert();
ts.setString ("indexname", idxname) ;
ts.setString("tablename", tblname);
ts.setString("fieldname", fldname) ;
ts.close();

public Map<String, IndexInfo> getIndexInfo (String tblname,
Transaction tx) {
Map<String, IndexInfo> result = new HashMap<String, IndexInfo>();
TableScan ts = new TableScan (tx, "idxcat", layout);
while (ts.next())
if (ts.getString("tablename") .equals (tblname)) {
String idxname = ts.getString("indexname") ;
String fldname = ts.getString("fieldname");
Layout tblLayout = tblmgr.getLayout (tblname, tx);
StatInfo tblsi = statmgr.getStatInfo(tblname, tbllayout, tx);
IndexInfo ii = new IndexInfo (idxname, fldname,
tblLayout.schema (), tx, tblsi);
result.put (fldname, ii);
}
ts.close();
return result;

Fig. 7.15 The code for the SimpleDB index manager

204 7 Metadata Management

public class IndexInfo {
private String idxname, fldname;
private Transaction tx;
private Schema tblSchema;
private Layout idxLayout;
private StatInfo si;

public IndexInfo(String idxname, String fldname, Schema tblSchema,
Transaction tx, StatInfo si) {
this.idxname = idxname;
this.fldname = fldname;
this.tx = tx;
this.idxLayout = createldxLayout();

this.si = si;

public Index open() {

Schema sch = schemal();
return new HashIndex(tx, idxname, idxLayout);
// return new BTreelIndex (tx, idxname, idxLayout);

public int blocksAccessed() {
int rpb = tx.blockSize() / idxLayout.slotSize();
int numblocks = si.recordsOutput() / rpb;
return HashIndex.searchCost (numblocks, rpb);
// return BTreeIndex.searchCost (numblocks, rpb);

public int recordsOutput () {
return si.recordsOutput() / si.distinctValues (fldname) ;

public int distinctValues (String fname) {
return fldname.equals(fname) ? 1 : si.distinctValues (fldname);

private Layout createIdxLayout () {
Schema sch = new Schema();
sch.addIntField ("block");
sch.addIntField("id");

if (layout.schema () .type (fldname) == INTEGER)
sch.addIntField ("dataval");
else {

int fldlen = layout.schema () .length (fldname) ;
sch.addStringField("dataval", fldlen);
}

return new Layout (sch);

Fig. 7.16 The code for the SimpleDB class IndexInfo

7.6 Implementing the Metadata Manager 205

MetadataMgr
public void createTable (String tblname, Schema sch,
Transaction tx);
public Layout getLayout (String tblname, Transaction tx);

public void createView (String viewname, String viewdef,

Transaction tx);
public String getViewDef (String viewname, Transaction tx);

public void createlIndex (String idxname, String tblname,
String fldname, Transaction tx);
public Map<String,IndexInfo> getIndexinfo (String tblname,
Transaction tx);
public StatInfo getStatInfo(String tblname, Layout layout,
Transaction tx);

Fig. 7.17 The API for the SimpleDB metadata manager

7.6 Implementing the Metadata Manager

SimpleDB simplifies the client interface to the metadata manager by hiding the four
separate manager classes TableMgr, ViewMgr, StatMgr, and IndexMgr.
Instead, clients use the class MetadataMgr as the single place to obtain metadata.
The code for MetadataMgr API appears in Fig. 7.17.

This API contains two methods for each type of metadata—one method generates
and saves the metadata, and the other method retrieves it. The only exception is for
statistical metadata, whose generation method is called internally and is thus private.

Figure 7.18 gives the code for the class MetadataMgrTest, which illustrates
the use of these methods.

Part 1 illustrates table metadata. It creates the table MyTable and prints its layout,
as in Fig. 7.2. Part 2 illustrates the statistics manager. It inserts several records into
MyTable and prints the resulting table statistics. Part 3 illustrates the view manager,
creating a view and retrieving the view definition. Part 4 illustrates the index
manager. It creates an index on fields A and B and prints the properties of each index.

The class MetadataMgr is known as a facade class. Its constructor creates the
four manager objects and saves them in private variables. Its methods replicate the
public methods of the individual managers. When a client calls a method on the
metadata manager, that method calls the appropriate local manager to do the work.
Its code appears in Fig. 7.19.

All test programs so far in this book have called the three-argument SimpleDB
constructor. That constructor uses the provided block size and buffer pool size to
customize the system’s FileMgr, LogMgr, and Buf ferMgr objects. Its purpose
is to help debug the low levels of the system and does not create a MetadataMgr
object.

206 7 Metadata Management

public class MetadataMgrTest {
public static void main(String[] args) throws Exception {
SimpleDB db = new SimpleDB ("metadatamgrtest", 400, 8);
Transaction tx = db.newTx();
MetadataMgr mdm = new MetadataMgr (true, tx);

Schema sch = new Schema();
sch.addIntField ("A");
sch.addStringField ("B", 9);

// Part 1: Table Metadata

mdm.createTable ("MyTable", sch, tx);

Layout layout = mdm.getLayout ("MyTable", tx);

int size = layout.slotSize();

Schema sch2 = layout.schema() ;

System.out.println ("MyTable has slot size " + size);
System.out.println("Its fields are:");

for (String fldname : sch2.fields()) {
String type;
if (sch2.type (fldname) == INTEGER)
type = "int";
else {
int strlen = sch2.length(fldname);
type = "varchar (" + strlen + ")";
}
System.out.println(fldname + ": " + type);

// Part 2: Statistics Metadata
TableScan ts = new TableScan(tx, "MyTable", layout);
for (int i=0; 1i<50; i++) {

ts.insert () ;

int n = (int) Math.round(Math.random() * 50);
ts.setInt ("A", n);
ts.setString ("B", "rec"+n);

}
StatInfo si = mdm.getStatInfo("MyTable", layout, tx);

System.out.println ("B (MyTable) = " + si.blocksAccessed());
System.out.println ("R(MyTable) = " + si.recordsOutput()):;
System.out.println("V (MyTable,A) = " + si.distinctValues("A"));
System.out.println("V (MyTable,B) = " + si.distinctValues("B"));

// Part 3: View Metadata

String viewdef = "select B from MyTable where A = 1";
mdm.createView ("viewA", viewdef, tx);

String v = mdm.getViewDef ("viewA", tx);
System.out.println ("View def = " + v);

// Part 4: Index Metadata

mdm.createIndex ("indexA", "MyTable", "A", tx);
mdm.createIndex ("indexB", "MyTable", "B", tx);

Map<String, IndexInfo> idxmap = mdm.getIndexInfo ("MyTable",

Fig. 7.18 Testing the MetadataMgr methods

7.7 Chapter Summary 207

IndexInfo ii = idxmap.get ("A");

System.out.println ("B (indexA) = " + ii.blocksAccessed());
System.out.println ("R(indexA) = " + ii.recordsOutput());
System.out.println ("V(indexA,A) = " + ii.distinctValues ("A"));
System.out.println("V(indexA,B) = " + ii.distinctValues("B"));

ii = idxmap.get ("B");
System.out.println ("B (indexB) =

|
+

ii.blocksAccessed());

(
System.out.println ("R(indexB) = " + ii.recordsOutput()):;
System.out.println("V(indexB,A) = " + ii.distinctValues("A"));
System.out.println("V(indexB,B) = " + ii.distinctValues("B"));

tx.commit () ;

}
Fig. 7.18 (continued)

SimpleDB has another constructor that has one argument, the database name.
This constructor is used for non-debug situations. It first creates the file, log, and
buffer managers using default values. It then calls the recovery manager to recover
the database (in case recovery is needed) and creates the metadata manager (which, if
the database is new, includes creating the catalog files). The code for the two
SimpleDB constructors appears in Fig. 7.20.

With this one-argument constructor, the code for MetadataMgrTest in
Fig. 7.18 can be rewritten more simply, as shown in Fig. 7.21.

7.7 Chapter Summary

* Metadata is the information about a database, apart from its contents. The
metadata manager is the portion of the database system that stores and retrieves
its metadata.

» Database metadata in SimpleDB falls into four categories:

— Table metadata describes the structure of the table’s records, such as the
length, type, and offset of each field.

— View metadata describes the properties of each view, such as its definition and
creator.

— Index metadata describes the indexes that have been defined on the table.

— Statistical metadata describes the size of each table and the distribution of its
field values.

* The metadata manager saves its metadata in the system catalog. The catalog is
often implemented as tables in the database, called catalog tables. Catalog tables
can be queried the same as any other table in the database.

208

public class MetadataMgr {

private static TableMgr tblmgr;
private static ViewMgr viewmgr;
private static StatMgr statmgr;
private static IndexMgr idxmgr;

public MetadataMgr (boolean isnew,

7 Metadata Management

Transaction tx) {

tblmgr = new TableMgr (isnew, tx);

viewmgr = new ViewMgr (isnew, tblmgr, tx);

statmgr = new StatMgr (tblmgr, tx);

idxmgr = new IndexMgr (isnew, tblmgr, statmgr, tx);

public void createTable(String tblname,
Transaction tx) {
tx);

tblmgr.createTable (tblname, sch,

public Layout getLayout (String tblname,

return tblmgr.getlLayout (tblname, tx);

public void createView (String viewname,
Transaction tx) {

viewmgr.createView (viewname, viewdef,

public String getViewDef (String viewname,

return viewmgr.getViewDef (viewname, tx);

public void createlIndex (String idxname,
String fldname,
idxmgr.createIndex (idxname, tblname,

fldname,

Schema sch,

Transaction tx) {

String viewdef,

tx);

Transaction tx) {

String tblname,
Transaction tx) {

tx);

public Map<String, IndexInfo> getIndexInfo (String tblname,
Transaction tx)

{return idxmgr.getIndexInfo (tblname, tx);

public StatInfo getStatInfo(String tblname,

{return statmgr.getStatInfo (tblname,

}

Fig. 7.19 The code for the SimpleDB class MetadataMgr

Layout layout,
Transaction tx)
layout,

tx);

7.7 Chapter Summary

public SimpleDB(String dirname, int blocksize, int buffsize)
String homedir = System.getProperty (HOME DIR);
File dbDirectory = new File (homedir, dirname);
fm = new FileMgr (dbDirectory, blocksize);
Im = new LogMgr (fm, LOG_FILE);
bm = new BufferMgr (fm, 1lm, buffsize);

public SimpleDB(String dirname) {
this (dirname, BLOCK_SIZE, BUFFER_SIZE) ;
Transaction tx = new Transaction(fm, 1m, bm);
boolean isnew = fm.isNew () ;
if (isnew)
System.out.println("creating new database");
else {
System.out.println("recovering existing database");
tx.recover();
}
mdm = new MetadataMgr (isnew, tx);
tx.commit () ;

}

Fig. 7.20 The two SimpleDB constructors

public class MetadataMgrTest {
public static void main(String[] args) throws Exception {
SimpleDB db = new SimpleDB ("metadatamgrtest");
MetadataMgr mdm = db.mdMgr () ;
Transaction tx = db.newTx();

Fig. 7.21 Using the one-argument SimpleDB constructor

{

209

* Table metadata can be stored in two catalog tables—one table stores table
information (such as the slot size), and the other table stores field information

(such as the name, length, and type of each field).

e View metadata consists primarily of the view definition and can be saved in its
own catalog table. The view definition will be an arbitrarily long string, so a

variable-length representation is appropriate.

¢ Statistical metadata holds information about the size and value distribution of
each table in the database. Commercial database systems tend to maintain
detailed, comprehensive statistics, such as value and range histograms for each
field in each table, and correlation information between fields in different tables.

¢ A basic set of statistics consists of three functions:

— B(T) returns the number of blocks used by table T.
— R(T) returns the number of records in table T.
— V(T,F) returns the number of distinct F-values in T.

210 7 Metadata Management

» Statistics can be stored in catalog tables, or they can be calculated from scratch
each time the database restarts. The former option avoids the long startup time but
can slow down the execution of transactions.

¢ Index metadata holds information on the name of each index, the table it is
indexed on, and the indexed fields.

7.8 Suggested Reading

The catalog tables used in SimpleDB are about as small as possible and similar to
those used in the early INGRES system (Stonebraker et al. 1976). On the other side
of the spectrum, Oracle currently has such an extensive catalog that a 60-page book
has been written to describe it (Kreines 2003).

Standard SQL defines a standard set of views that provide access to the database
metadata. These views are called the information schema of the database. There are
over 50 defined view tables, which expand upon the metadata described in this
chapter. For example, there are views to display information on triggers, assertions,
constraints, user-defined types, and so on. There are also several views that hold
information about privileges and roles. The idea is that each database system can
store this metadata any way that it chooses, but it is obligated to provide a standard
interface to this metadata. Details can be found in Chap. 16 of Gulutzan and Pelzer
(1999).

Accurate and detailed statistical metadata is critical for good query planning. The
approach taken in this chapter is crude, and commercial systems use much more
sophisticated techniques. The article Gibbons et al. (2002) describes the use of
histograms and shows how they can be maintained efficiently in the face of frequent
updates. Histogram information can be determined in various ways, one of the more
interesting being via wavelet techniques (Matias et al. 1998). It is even possible to
collect statistics on previously run queries, which can then be used to plan related
queries (Bruno and Chaudhuri 2004).

Bruno, N., & Chaudhuri, S. (2004). Conditional selectivity for statistics on query
expressions. In Proceedings of the ACM SIGMOD Conference (pp. 311-322).
Gibbons, P., Matias, Y., & Poosala, V. (2002). Fast incremental maintenance of
incremental histograms. ACM Transactions on Database Systems, 27(3),
261-298.

Gulutzan, P., & Pelzer, T. (1999). SQL-99 complete, really. Lawrence, KA: R&D
Books.

Kreines, D. (2003). Oracle data dictionary pocket reference. Sebastopol, CA:
O’Reilly.

Matias, Y., Vitter, J., & Wang, M. (1998). Wavelet-based histograms for selectivity
estimation. In Proceedings of the ACM SIGMOD Conference (pp. 448—459).
Stonebraker, M., Kreps, P., Wong, E., & Held, G. (1976). The design and
implementation of INGRES. ACM Transactions on Database Systems, 1(3),

189-222.

7.9 Exercises 211

7.9

Exercises

Conceptual Exercises

7.1.

7.2.

7.3.

Give the tblcat and fldcat records that SimpleDB creates for the tblcat
and fldcat tables. (Hint: Examine the code for TableMgr.)

Suppose that the only thing transaction T1 does is create table X, and the only
thing transaction T2 does is create table Y.

(a) What possible concurrent schedules can these transactions have?
(b) Could T1 and T2 ever deadlock? Explain.

Standard SQL also allows a client to add a new field to an existing table. Give
a good algorithm to implement this functionality.

Programming Exercises

74.

7.5.

7.6.

7.7.

Standard SQL allows a client to remove a field from an existing table. Suppose
that this functionality is implemented in a method of TableMgr called
removeField.

(a) One way to implement this method is to simply modify the field’s record
in fldcat to have a blank fieldname. Write the code for this method.

(b) In part (a), none of the table’s records are changed. What happens to their
deleted field values? Why can’t they ever be accessed?

(c) Another way to implement this method is to remove the field’s record
from fldcat and modify all of the existing data records in the table. This
is considerably more work than in (a). Is it ever worth it? Explain the
trade-offs.

In the SimpleDB catalog tables, the field tblname of tblcat is its key, and
the field tblname of fldcat is the corresponding foreign key. Another way
to implement these tables would be to use an artificial key (say, tb1Id) for
tblcat, with a corresponding foreign key in fldcat (say, named
tableId).

(a) Implement this design in SimpleDB.
(b) Is this design better than the original one? (Does it save space? Does it
save block accesses?)

Suppose that SimpleDB crashes while the catalog tables for a new database are
being created.

(a) Describe what will occur when the database is recovered after system
restart. What problem arises?
(b) Revise the SimpleDB code to fix this problem.

Write SimpleDB clients to do each of the following tasks, by querying the
tblcat and fldcat tables directly:

212

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

7.14.

7.15.

7 Metadata Management

(a) Print the names and fields of all tables in the database (e.g., in the form of
“T(A, B)”).

(b) Reconstruct and print the text of the SQL create table statement used
to create a particular table (e.g., in the form of “create table T (A integer, B
varchar(7))”).

What happens when the method getLayout is called with a nonexistent
table name? Revise the code so that null is returned instead.

What problem can occur when a client creates a table with the same name as a
table already in the catalog? Revise the code to prevent this from happening.
Revise TableMgr to have the method dropTable, which removes the
table from the database. Do you need to modify the file manager also?
Revise the SimpleDB code so that statistics are stored in the catalog tables and
updated each time the database is changed.

Revise the SimpleDB code so that V(T, F) is computed for each table T and
field F. (Hint: Keeping track of the count of each field can be memory-
intensive, as the number of distinct values may be unbounded. A reasonable
idea is to count values for a portion of the table and extrapolate. For example,
one might count how many records are required to read 1000 different values.)
Suppose that a client creates a table, inserts some records into it, and then does
a rollback.

(a) What happens to the table’s metadata in the catalog?

(b) What happens to the file containing the data? Explain what problem could
occur if a client subsequently creates a table with the same name but a
different schema.

(c) Fix the SimpleDB code so that this problem is solved.

Modify the index manager so that it also saves the type of the index in the
catalog. Assume that there are two types of index, in classes BTreeIndex
and HashIndex. The class constructor and static method searchCost
have the same arguments in each of these classes.

The SimpleDB index manager uses the table idxcat to hold index informa-
tion. Another design possibility is to keep index information in the catalog
table fldcat.

(a) Compare the two possibilities. What are the advantages of each way?
(b) Implement this alternative way.

Chapter 8 .)
Query Processing S

The next three chapters examine how database engines execute SQL queries. The
issue is that an SQL query specifies what data to return but not how to get it. The
solution is for the engine to implement a set of data-retrieval operators, known as
relational algebra. The engine can translate an SQL query to a relational algebra
query which can then be executed. This chapter introduces relational algebra queries
and their implementation. The following two chapters will examine the translation of
SQL into relational algebra.

8.1 Relational Algebra

Relational algebra consists of a set of operators. Each operator performs one
specialized task, taking one or more tables as input and producing one output
table. Complex queries can be constructed by composing these operators in
various ways.

The SimpleDB version of SQL can be implemented using three operators:

* select, whose output table has the same columns as its input table but with some
rows removed

* project, whose output table has the same rows as its input table but with some
columns removed

» product, whose output table consists of all possible combinations of records from
its two input tables

These operators are examined in the following subsections.

© Springer Nature Switzerland AG 2020 213
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_8

214 8 Query Processing
8.1.1 Select

The select operator takes two arguments: an input table and a predicate. The output
table consists of the input records that satisfy the predicate. A select query always
returns a table having the same schema as the input table but with a subset of the
records.

For example, query QI returns a table listing those students who graduated in
2019.

Q1 = select (STUDENT, GradYear=2019)
A predicate can be any boolean combination of terms and corresponds to a
where clause in SQL. For example, query Q2 finds those students who graduated

in 2019 and whose major was either in department 10 or 20.

Q2 = select (STUDENT, GradYear=2019 and (MajorId=10 or MajorId=20))

The output table of one query can be the input to another query. For example,
queries Q3 and Q4 are each equivalent to Q2:

03 = select (select (STUDENT, GradYear=2019), MajorId=10 or MajorId=20)

Q4 = select (Q1l, MajorId=10 or MajorId=20)

In Q3, the first argument of the outermost query is another query, identical to Q1,
which finds the students who graduated in 2019. The outer query retrieves, from
those records, the students in department 10 or 20. Query Q4 is similar, except that it
uses the name of Q1 in place of its definition.

A relational algebra query can be expressed pictorially, as a query tree. A query
tree contains a node for each table and operator mentioned in the query. The table
nodes are the leaves of the tree, and the operator nodes are non-leaves. An operator
node has a child for each of its input tables. For example, the query tree for Q3
appears in Fig. 8.1.

| Select: Majorld = 10 or Majorld = 20 |

| Select: GradYear = 2019 |

STUDENT

Fig. 8.1 A query tree for Q3

8.1 Relational Algebra 215

I Project: {SName} ‘

| Select: Majorid = 10 |

STUDENT

Fig. 8.2 A query tree for Q6

8.1.2 Project

The project operator takes two arguments: an input table and a set of field names.
The output table has the same records as the input table, but its schema contains only
those specified fields. For example, query QS5 returns the name and graduation year
of all students:

Q5 = project (STUDENT, {SName, GradYear})

A query can be composed of both project and select operators. Query Q6 returns a
table listing the name of all students majoring in department 10:

Q6 = project (select (STUDENT, MajorId=10), {SName})

The query tree for Q6 appears in Fig. 8.2.

The output table of a project query may have duplicate records. For example, if
there are three students named “pat” having major 10, then the output of Q6 will
contain “pat” three times.

Not all compositions of operators are meaningful. For example, consider the
query you get by inverting Q6:

Q7 = select (project (STUDENT, {SName}), MajorId=10) // Not legal!

This query does not make sense, because the output table of the inner query does
not contain a MajorId field to select on.

8.1.3 Product

The select and project operators act upon a single table. The product operator makes
it possible to combine and compare information from multiple tables. This operator
takes two input tables as arguments. Its output table consists of all combinations of
records from the input tables, and its schema consists of the union of the fields in the
input schemas. The input tables must have disjoint field names so that the output
table will not have two fields with the same name.

216

8 Query Processing

Q8 SId SName

Majorld GradYear DId

DName

joe
joe
joe
amy
amy
amy
max
max
max
sue
sue
sue
bob
bob
bob
kim
kim
kim
art
art
art
pat
pat
pat
lee

lee

O O O 0 0 0 I 2 9N N Lk Bl R R WWWLWNDND N = =

lee

10
10

10
20
20
20
10
10
10
20
20
20
30
30
30
20
20
20
30
30
30
20
20
20
10
10
10

2021
2021

2021
2020
2020
2020
2022
2022
2022
2022
2022
2022
2020
2020
2020
2020
2020
2020
2021
2021
2021
2019
2019
2019
2021
2021
2021

10
20

30
10
20
30
10
20
30
10
20
30
10
20
30
10
20
30
10
20
30
10
20
30
10
20
30

compsci

math
drama
compsci
math
drama
compsci
math
drama
compsci
math
drama
compsci
math
drama
compsci
math
drama
compsci
math
drama
compsci
math
drama
compsci
math

drama

Fig. 8.3 The output of query Q8

Query Q8 returns the product of the STUDENT and DEPT tables:

Q8 = product (STUDENT, DEPT)

The university database of Fig. 1.1 showed nine records in STUDENT and three
records in DEPT. Figure 8.3 depicts the output of Q8 given those input tables. The

https://doi.org/10.1007/978-3-030-33836-7_1

8.2 Scans 217

| Select: Majorld = DId |

| STUDENT H DEPT |

Fig. 8.4 The query tree for Q9

output table contains 27 records, 1 record for each pairing of a student record with a
department record. In general, if there are N records in STUDENT and M records in
DEPT, then the output table will contain N*M records (which, by the way, is the
reason why the operator is called “product”).

Query Q8 is not especially meaningful, as it does not take into consideration the
major of each student. This meaning can be expressed in a selection predicate, as
shown in query Q9 and Fig. 8.4:

Q9 = select (product (STUDENT, DEPT), MajorId=Did)

The output table for this query contains only the combinations of records from
STUDENT and DEPT that satisfy the predicate. Thus out of the 27 possible com-
binations, the only combinations that will remain are those for which the student’s
major ID is the same as the department’s ID—in other words, the result table will
consist of students and their major departments. Instead of 27 records, the output
table now has 9 records.

8.2 Scans

A scan is an object that represents the output of a relational algebra query. Scans in
SimpleDB implement the interface Scan; see Fig. 8.5. The Scan methods are a
subset of the TableScan methods, and they have the same behavior. This corre-
spondence should not be surprising—the output of a query is a table, and so it is
natural for queries and tables to be accessed the same way.

For an example, consider the method printNameAndGradYear in Fig. 8.6.
This method iterates through its scan, printing the values of the fields sname and
gradyear for each record.

public interface Scan {

public void beforeFirst () ;
public boolean next();
public int getInt (String fldname) ;

public String getString (String fldname) ;
public Constant getVal (String fldname);
public boolean hasField(String fldname) ;
public void close () ;

}

Fig. 8.5 The SimpleDB Scan interface

218 8 Query Processing

The point of this example is that the method has no idea what query (or table) the
scan represents. It could represent the STUDENT table, or perhaps a query that
selects the students having a particular major, or the students who took a course with
Professor Einstein. The only requirement is that the scan’s output table contains a
student name and a graduation year.

A Scan object corresponds to a node in a query tree. SimpleDB contains a Scan
class for each relational operator. Objects from those classes constitute the internal
nodes of the query tree, and TableScan objects denote the leaves of the tree.
Figure 8.7 shows the scan constructors for tables and the three basic operators
supported by SimpleDB.

The SelectScan constructor takes two arguments: an underlying scan and a
predicate. The underlying scan is the input to the select operator. Since Scan is an
interface, the SelectScan object does not know if its input is a stored table or the
output of another query. This situation corresponds to the fact that the input to a
relational operator can be any table or query.

The selection predicate passed into the SelectScan constructor is of type
Predicate. Section 8.6 discusses the details of how SimpleDB handles predi-
cates; until then, I shall remain somewhat vague on the issue.

Query trees are built by composing scans. There will be a scan for each node of
the tree. For example, Fig. 8.8 gives the SimpleDB code for the query tree of Fig. 8.2
(omitting the details on the selection predicate). The Scan variables s1, s2, and s3
each correspond to a node in the query tree. The tree is built bottom-up: First the
table scan is created, then the select scan, and finally the project scan. Variable s3
holds the final query tree. The while-loop traverses s3, printing each student name.

Figure 8.9 gives the SimpleDB code corresponding to the query tree of Fig. 8.4.
The code contains four scans because the query tree has four nodes. Variable s4
holds the final query tree. Note how the while-loop is nearly identical to the previous

public static void printNameAndGradyear (Scan s) {
s.beforeFirst();
while (s.next()) {
String sname = s.getString("sname");
String gradyr = s.getInt ("gradyear");
System.out.println (sname + "\t" + gradyr);
}

s.close();

}

Fig. 8.6 Printing the name and graduation year of a scan’s records

Scan
public TableScan (Transaction tx, String filename, Layout layout);
public SelectScan(Scan s, Predicate pred);
public ProjectScan(Scan s, List<String> fldlist);
public ProductScan(Scan sl, Scan s2);

Fig. 8.7 The API of the SimpleDB constructors that implement Scan

8.2 Scans 219

Transaction tx = db.newTx();
MetadataMgr mdm = db.MetadataMgr () ;

// the STUDENT node
Layout layout = mdm.getLayout ("student", tx);
Scan sl = new TableScan (tx, "student", layout);

// the Select node
Predicate pred = new Predicate(. . .); // majorid=10
Scan s2 = new SelectScan(sl, pred);

// the Project node
List<String> ¢ = Arrays.asList ("sname");
Scan s3 = new ProjectScan(s2, c);

while (s3.next())
System.out.println(s3.getString("sname")) ;
s3.close();

Fig. 8.8 Representing Fig. 8.2 as a scan

Transaction tx = db.newTx();
MetadataMgr mdm = db.MetadataMgr () ;

// the STUDENT node
Layout layoutl = mdm.getLayout ("student", tx);
Scan sl = new TableScan (tx, "student", layoutl);

// the DEPT node
Layout layout2 = mdm.getLayout ("dept", tx);
Scan s2 = new TableScan(tx, "dept", layout2);

// the Product node
Scan s3 = new ProductScan(sl, s2);

// the Select node
Predicate pred = new Predicate(. . .); //majorid=did
Scan s4 = new SelectScan(s3, pred);

while (s4.next())
System.out.println (sd4.getString ("sname")
+ ", " + sd.getString("gradyear")
+ ", " 4+ sd.getString("dname"));
s4.close();

Fig. 8.9 Representing Fig. 8.4 as a scan

one. In the interest of saving space, the loop only prints three field values for each
output record, but it can easily be modified to include all six field values.

220 8 Query Processing

Finally, note that the close method gets called only on the outermost scan of a
query tree. Closing a scan automatically closes its underlying scans.

8.3 Update Scans

A query defines a virtual table. The Scan interface has methods that allow clients to
read from this virtual table but not update it. Not all scans can be meaningfully
updated. A scan is updatable if every output record r in the scan has a corresponding
record r’ in an underlying database table. In this case, an update to r is defined as an
update to r'.

Updatable scans support the interface UpdateScan; see Fig. 8.10. The first five
methods of the interface are basic modification operations. The other two methods
involve the identifier of the stored record underlying the scan’s current record. The
getRid method returns this identifier, and moveToRid positions the scan at the
specified stored record.

The only two classes in SimpleDB that implement UpdateScan are
TableScan and SelectScan. As an example of their use, consider Fig. 8.11.
Part (a) shows an SQL statement that changes the grade of every student who took
section 53, and part (b) gives the code that implements this statement. The code first
creates a select scan of all enrollment records for section 53; it then iterates through
the scan, changing the grade of each record.

Variable s2 calls the method setString, so it must be declared as an update
scan. On the other hand, the first argument to the SelectScan constructor is a
scan, which means that it need not be declared as an update scan. Instead, the code
for s2’s setString method will cast its underlying scan (i.e., s1) to an update
scan; if that scan is not updatable, a ClassCastException will be thrown.

public interface UpdateScan extends Scan {
public void setInt (String fldname, int wval);
public void setString(String fldname, String wval);
public void setVal (String fldname, Constant val);
public void insert();
public void delete();

public RID getRid();
public void moveToRid (RID rid);

Fig. 8.10 The SimpleDB UpdateScan interface

8.4 Implementing Scans 221

update ENROLL
set Grade = 'C' where SectionId = 53

(@)

Transaction tx = db.newTx();
MetadataMgr mdm = db.MetadataMgr () ;

Layout layout = mdm.getLayout ("enroll", tx);
Scan sl = new TableScan (tx, "enroll", layout);

Predicate pred = new Predicate(. . .); // SectionId=53
UpdateScan s2 = new SelectScan(sl, pred);

while (s2.next())
s2.setString("grade", "C");
s2.close();

()

Fig. 8.11 Representing an SQL update statement as an update scan. (a) An SQL statement to
modify the grades of students in section 53, (b) the SimpleDB code corresponding to the statement

8.4 Implementing Scans

The SimpleDB engine contains four Scan classes: the class TableScan and a
class for the operators select, project, and product. Chapter 6 examined
TableScan. The following subsections discuss the three operator classes.

8.4.1 Select Scans

The code for SelectScan appears in Fig. 8.12. The constructor holds the scan of
its underlying input table. A scan’s current record is the same as the current record of
its underlying scan, which means that most methods can be implemented by simply
calling the corresponding method of that scan.

The only nontrivial method is next. The job of this method is to establish a new
current record. The code loops through the underlying scan, looking for a record that
satisfies the predicate. If such a record is found then it becomes the current record,
and the method returns true. If there is no such record then the while loop will
complete, and the method will return false.

Select scans are updatable. The UpdateScan methods assume that the under-
lying scan is also updatable; in particular, they assume that they can cast the
underlying scan to UpdateScan without causing a ClassCastException.
Since the scans created by the SimpleDB update planner only involve table scans
and select scans, an occurrence of such an exception should not occur.

https://doi.org/10.1007/978-3-030-33836-7_6

222 8 Query Processing

public class SelectScan implements UpdateScan {
private Scan s;
private Predicate pred;

public SelectScan(Scan s, Predicate pred) {
this.s = s;
this.pred = pred;

// Scan methods

public void beforeFirst () {
s.beforeFirst () ;

public boolean next() {
while (s.next())
if (pred.isSatisfied(s))
return true;
return false;

public int getInt(String fldname) {
return s.getInt (fldname);

public String getString(String fldname) {
return s.getString (fldname) ;

public Constant getVal (String fldname) {
return s.getVal (fldname) ;

public boolean hasField(String fldname) {
return s.hasField(fldname);

public void close() {
s.close();
// UpdateScan methods
public void setInt (String fldname, int wval) {

UpdateScan us = (UpdateScan) s;
us.setInt (fldname, wval);

Fig. 8.12 The code for the SimpleDB class SelectScan

8.4 Implementing Scans

}

public void setString(String fldname,

UpdateScan us = (UpdateScan) s;
us.setString(fldname, val);

public void setVal (String fldname,
UpdateScan us = (UpdateScan) s;
us.setVal (fldname, val);

public void delete() {
UpdateScan us = (UpdateScan) s;
us.delete();

public void insert () {
UpdateScan us = (UpdateScan) s;
us.insert();

public RID getRid() {
UpdateScan us = (UpdateScan) s;
return us.getRid();

}

public void moveToRid (RID rid) {
UpdateScan us = (UpdateScan) s;
us.moveToRid (rid) ;

Fig. 8.12 (continued)

8.4.2 Project Scans

Constant wval)

String val)

{

223

The code for ProjectScan appears in Fig. 8.13. The list of output fields is passed
into the constructor and is used to implement the method hasField. The other
methods simply forward their requests to the corresponding method of the underly-
ing scan. The getVal, getInt, and getString methods check to see if the

specified fieldname is in the field list; if not, an exception is generated.

The class ProjectScan does not implement UpdateScan, even though
projections are updatable. Exercise 8.12 asks you to complete the implementation.

8.4.3 Product Scans

The code for ProductScan appears in Fig. 8.14. A product scan needs to be able
to iterate through all possible combinations of records from its underlying scans s1

224

public class ProjectScan implements Scan {
private Scan s;
private Collection<String> fieldlist;

public ProjectScan(Scan s, List<String> fieldlist)
this.s = s;
this.fieldlist = fieldlist;

public void beforeFirst () {
s.beforeFirst () ;

public boolean next () {
return s.next();

public int getInt(String fldname) {
if (hasField(fldname))
return s.getInt (fldname);
else

8 Query Processing

{

throw new RuntimeException("field not found.");

public String getString(String fldname) {
if (hasField(fldname))
return s.getString(fldname) ;
else

throw new RuntimeException("field not found.");

public Constant getVal (String fldname) {
if (hasField(fldname))
return s.getVal (fldname);
else

throw new RuntimeException("field not found.");

public boolean hasField(String fldname) {
return fieldlist.contains (fldname) ;

public void close() {
s.close();

Fig. 8.13 The code for the SimpleDB class ProjectScan

8.4 Implementing Scans 225

public class ProductScan implements Scan {
private Scan sl, s2;
public ProductScan(Scan sl, Scan s2) {
this.sl = sl;
this.s2 = s2;
sl.next ();
}
public void beforeFirst() {
sl.beforeFirst();
sl.next ();
s2.pbeforeFirst () ;
}
public boolean next() {
if (s2.next())
return true;
else {
s2.beforeFirst () ;
return s2.next() && sl.next();

}
public int getInt(String fldname) {
if (sl.hasField(fldname))
return sl.getInt (fldname);
else
return s2.getInt (fldname);
}
public String getString(String fldname) {
if (sl.hasField(fldname))
return sl.getString(fldname) ;
else
return s2.getString(fldname) ;
}
public Constant getVal (String fldname) {
if (sl.hasField(fldname))
return sl.getVal (fldname) ;
else
return s2.getVal (fldname) ;
}
public boolean hasField(String fldname) {
return sl.hasField(fldname) || s2.hasField(fldname) ;
}
public void close() {
sl.close();
s2.close();

}

Fig. 8.14 The code for the SimpleDB class ProductScan

226 8 Query Processing

and s2. It does so by starting at the first record of s1 and iterating through each
record of s2, then moving to the second record of s1 and iterating through s2, etc.
Conceptually, it is like having a nested loop with the outer loop iterating s1 and the
inner loop iterating s2.

The method next implements this “nested loops™ idea as follows. Each call to
next moves to the next record of s2. If s2 has such a record, then it can return
true. If not, then the iteration of s2 is complete, so the method moves to the next
record of s1 and the first record of s2. If this is possible, then it returns true; if
there are no more records of s1, then the scan is complete and next returns false.

The getVal, getInt, and get St ring methods simply access the field of the
appropriate underlying scan. Each method checks to see if the specified field is in
scan s1. If so, then it accesses the field using s1; otherwise, it accesses the field
using s2.

8.5 Pipelined Query Processing

The implementations of these three relational algebra operators have two character-
istics in common:

* They generate their output records one at a time, as needed.
e They do not save their output records, nor do they save any intermediate
computation.

Such implementations are called pipelined. This section analyzes pipelined
implementations and their properties.

Consider a TableScan object. It holds a record page, which holds a buffer,
which holds a page containing the current record. The current record is just a location
in that page. The record doesn’t need to be removed from its page; if a client requests
the value of a field, then the record manager simply extracts that value from the page
and sends it back to the client. Each call to next positions the table scan at its next
record, which may cause it to hold a different record page.

Now consider a SelectScan object. Each call to its next method repeatedly
calls next on its underlying scan until the current record of the underlying scan
satisfies the predicate. But of course, there is no actual “current record”—if the
underlying scan is a table scan, then the current record is just a location in the page
held by the table scan. And if the underlying scan is another kind of scan (such as the
product scan in Figs. 8.4 and 8.9), then the values of the current record are
determined from the current records of the table scans that are in that node’s subtree.

Each time a pipelined scan processes another call to next, it starts its search from
where it left off. As a result, the scan requests only as many records as its needs from
its underlying scan to determine the next output record.

A pipelined scan does not keep track of the records it has selected. Consequently,
if the client asks for the records a second time, the scan will need to perform the
entire search all over again.

8.5 Pipelined Query Processing 227

‘ Project: {SName} ‘
v
| Select: GradYear = 2020 ‘

v
| Select: Majorld =10 |

STUDENT

Fig. 8.15 A query tree containing multiple select nodes

The term “pipelined” refers to the flow of the method calls down the query tree
and the flow of result values back up the tree. For example, consider a call to the
method getInt. Each node in the tree passes that call down to one of its child
nodes until a leaf node is reached. That leaf node (which is a table scan) extracts the
desired value from its page and returns the value back up the tree. Or consider a call
to the method next. Each node makes one or more calls to next (and possibly
beforeFirst, in the case of a product node) on its child nodes until it is satisfied
that its children contain the contents of the next record. It then returns success to its
parent node (or failure, if no such record exists).

Pipelined implementations can be exceptionally efficient. For example, consider
the query tree of Fig. 8.15, which retrieves the names of the students graduating in
2020 with major 10.

The project and select nodes in this tree incur no additional block accesses to the
STUDENT table beyond those needed for the table scan. To see why, first consider
the project node. Each call to next on that node will simply call next on its child
node and pass back the return value of that node. In other words, the project node
doesn’t change the number of block accesses performed by the rest of the query.

Now consider the select nodes. A call to next on the outer select node will call
next on the inner select node. The inner node will repeatedly call next on its child
until the current record satisfies the predicate “Majorld = 10.” The inner select node
then returns true, and the outer select node examines the current record. If its grad
year is not 2020, then the outer node will call next on the inner node again and
await another current record. The only way for the outer select node to return true
is if that record satisfies both predicates. This process continues each time the outer
node calls next, with the underlying table scan continually moving to its next
record until both predicates are satisfied. When the table scan recognizes that there
are no more STUDENT records, its next method will return false, and the value
of false will propagate up the tree. In other words, STUDENT is scanned only
once, which is exactly the same as if the query had executed just a table scan. It
follows that the select nodes in this query are cost-free.

Although pipelined implementations are very efficient in these cases, there are
other cases when they are not so good. Once such case is when a select node is on the
right side of a product node, where it will get executed multiple times. Instead of
performing the selection over and over, it may be better to use an implementation
that materializes the output records and stores them in a temporary table. Such
implementations are the topic of Chap. 13.

https://doi.org/10.1007/978-3-030-33836-7_13

228 8 Query Processing

8.6 Predicates

A predicate specifies a condition that returns true or false for each row of a given
scan. If the condition returns true, the row is said to satisfy the predicate. An SQL
predicate is structured as follows:

* A predicate is a term or the boolean combination of terms.

* A term is a comparison between two expressions.

* An expression consists of operations on constants and field names.

e A constant is a value from a predetermined set of types, such as integers and
strings.

For example, consider the following predicate in standard SQL.:

(GradYear>2021 or MOD (GradYear, 4) =0) and MajorId=DId

This predicate consists of three terms (shown in bold). The first two terms
compare the field name GradYear (or a function of GradYear) against a con-
stant, and the third term compares two field names. Each term contains two expres-
sions. For example, the second term contains the expressions MOD (GradYear, 4)
and 0.

SimpleDB greatly simplifies the allowable constants, expressions, terms, and
predicates. A SimpleDB constant can only be an integer or string, an expression
can only be a constant or a field name, a term can compare expressions only for
equality, and a predicate can create only conjuncts of terms. Exercises 8.7-8.9 ask
you to extend SimpleDB predicates to be more expressive.

Consider the following predicate:

SName = 'joe' and MajorId = DId

The code fragment of Fig. 8.16 shows how to create this predicate in SimpleDB.
Note how the predicate is created inside out, starting with the constant and expres-
sions, then the terms, and finally the predicates.

Figure 8.17 gives the code for the class Constant. Each Constant object
contains an Integer variable and a String variable. Only one of these variables
will be non-null, depending on which constructor was called. The methods equals,
compareTo, hasCode, and toString use whichever variable is non-null.

The code for the class Expression appears in Fig. 8.18. It also has two
constructors, one for a constant expression and one for a field name expression.
Each constructor assigns a value to its associated variable. The method
isFieldName provides a convenient way to determine if the expression denotes
a field name or not. The method evaluate returns the value of the expression with
respect to a scan’s current output record. If the expression is a constant, then the scan
is irrelevant, and the method simply returns the constant. If the expression is a field,

8.7 Chapter Summary 229

Expression lhsl = new Expression ("SName");
Constant ¢ = new Constant ("joe");

Expression rhsl = new Expression(c);

Term tl = new Term(lhsl, rhsl);

Expression lhs2 = new Expression ("MajorId");
Expression rhs2 = new Expression ("DId");
Term t2 = new Term(lhs2, rhs2);

Predicate predl = new Predicate(tl);

Predicate pred2 = new Predicate(t2);
predl.conjoinWith (pred2) ;

Fig. 8.16 SimpleDB code to create a predicate

then the method returns the field’s value from the scan. The appliesTo method is
used by the query planner to determine the scope of the expression.

Terms in SimpleDB are implemented by the interface Term, whose code appears
in Fig. 8.19. Its constructor takes two arguments, which denote the left-side and
right-side expressions. The most important method is i sSat isfied, which returns
true if both expressions evaluate to the same value in the given scan. The remaining
methods help the query planner determine the effect and scope of the term. For
example, the method reductionFactor determines the expected number of
records that will satisfy the predicate and will be discussed in more detail in
Chap. 10. The methods equatesWithConstant and equatesWithField
help the query planner decide when to use indexing and will be discussed in
Chap. 15.

The code for class Predicate appears in Fig. 8.20. A predicate is implemented
as a list of terms, and a predicate responds to its methods by calling the
corresponding methods on each of its terms. The class has two constructors. One
constructor has no arguments and creates a predicate having no terms. Such a
predicate is always satisfied and corresponds to the predicate frue. The other
constructor creates a predicate having a single term. The method conjoinWith
adds the terms from the argument predicate to the specified predicate.

8.7 Chapter Summary

* A relational algebra query is composed of operators. Each operator performs one
specialized task. The composition of the operators in a query can be written as a
query tree.

* The chapter describes the three operators that are useful for understanding and
translating the SimpleDB version of SQL. They are:

— select, whose output table has the same columns as its input table but with
some rows removed

https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_15

230

8 Query Processing

public class Constant implements Comparable<Constant> {

private Integer ival = null;
private String sval = null;

public Constant (Integer ival) {

this.ival = ival;

public Constant (String sval) {
this.sval = sval;

public int asInt() {
return ival;

public String asString() {
return sval;

public boolean equals (Object obj) {
Constant ¢ = (Constant) obj;

return (ival != null) ? ival.equals(c.ival)
sval.equals(c.sval);

public int compareTo (Constant c) {

return (ival!=null) ? ival.compareTo(c.ival)
sval.compareTo (c.sval);

public int hashCode () {
return (ival != null) ? ival.hashCode ()

public String toString() {
return (ival != null) ? ival.toString/()

Fig. 8.17 The class Constant

sval.hashCode () ;

sval.toString();

— project, whose output table has the same rows as its input table but with some

columns removed

— product, whose output table consists of all possible combinations of records

from its two input tables

* A scan is an object that represents a relational algebra query tree. Each relational
operator has a corresponding class that implements the Scan interface; obje