
Database
Design and
Implementation

Edward Sciore

Second Edition

Data-Centric Systems and Applications

Data-Centric Systems and Applications

Editorial Board Members

Anastasia Ailamaki
Shivnath Babu
Philip A. Bernstein
Johann-Christoph Freytag
Alon Halevy
Jiawei Han
Donald Kossmann
Gerhard Weikum
Kyu-Young Whang
Jeffrey Xu Yu

Series editors

Michael J. Carey
Stefano Ceri

More information about this series at http://www.springer.com/series/5258

http://www.springer.com/series/5258

Edward Sciore

Database Design
and Implementation
Second Edition

Edward Sciore
Boston College
Chestnut Hill, MA, USA

ISSN 2197-9723 ISSN 2197-974X (electronic)
Data-Centric Systems and Applications
ISBN 978-3-030-33835-0 ISBN 978-3-030-33836-7 (eBook)
https://doi.org/10.1007/978-3-030-33836-7

The first edition of this book was published by John Wiley & Sons, Inc.

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-33836-7

Preface

A database system is a common, visible tool in the corporate world—employees
frequently interact directly with database systems to submit data or create reports.
Database systems are also common, but invisible, as components of software
systems. For example, consider an e-commerce website that uses a server-side
database to hold customer, product, and sales information. Or consider a GPS
navigation system that uses an embedded database to manage the road maps. In
both of these examples, the presence of the database system is hidden from the user;
the application code performs all of the database interaction.

From the point of view of a software developer, learning to use a database directly
is rather mundane, because modern database systems contain sophisticated front
ends that make the creation of queries and reports straightforward. On the other
hand, the possibility of incorporating database functionality into a software applica-
tion is exciting, because it opens up a wealth of new and unexplored opportunities.

But what does “incorporating database functionality” mean? A database system
provides many things, such as persistence, transactional support, and query
processing. Which of these features are needed, and how should they be integrated
into the software? Suppose, for example, that a programmer is asked to modify an
existing application, say to add the ability to save state, or to increase reliability, or to
improve the efficiency of file access. The programmer is faced with several archi-
tectural options. She could:

• Purchase a full-featured general-purpose database system and then modify the
application to connect to the database as a client

• Obtain a more specialized system that contains only the desired features and
whose code can be embedded directly into the application

• Write the necessary functionality herself

In order to make the proper choice, the programmer needs to understand what
each of these options entail. She needs to know not only what database systems do
but also how they do it and why.

v

This text examines database systems from the point of view of the software
developer. This perspective allows us to investigate why database systems are the
way they are. It is, of course, important to be able to write queries, but it is equally
important to know how they are processed. We don’t want to just use JDBC, we
want to know why the API contains the classes and methods that it does. We need a
sense of how hard is it to write a disk cache or logging facility. And what exactly is a
database driver, anyway?

Organization of the Text

The first two chapters provide a quick overview of database systems and their use.
Chapter 1 discusses the purpose and features of a database system and introduces
you to the Derby and SimpleDB systems. Chapter 2 explains how to write a database
application using Java. It presents the basics of JDBC, which is the fundamental API
for Java programs that interact with a database.

Chapters 3–11 examine the internals of a typical database engine. Each of its
chapters covers a different database component, starting with the lowest level of
abstraction (the disk and file manager) and ending with the highest (the JDBC client
interface). The chapter for each component explains the issues and considers possi-
ble design decisions. As a result, you can see exactly what services each component
provides and how it interacts with the other components in the system. By the end of
this part, you will have witnessed the gradual development of a simple but
completely functional system.

The remaining four chapters focus on efficient query processing. They examine
the sophisticated techniques and algorithms that can replace the simple design
choices described earlier. Topics include indexing, sorting, intelligent buffer
usage, and query optimization.

Text Prerequisites

This text is intended for upper-level undergraduate or beginning graduate courses in
computer science. It assumes that the reader is comfortable with basic Java pro-
gramming; for example, it uses the classes in java.util extensively, particularly
collections and maps. Advanced Java concepts (such as RMI and JDBC) are fully
explained in the text.

The material in this book is typically studied as a second course in database
systems. However, I have had success teaching it to students with no database
experience. To that end, this book assumes no prior database knowledge other
than a passing acquaintance with SQL. And students without such knowledge of
SQL will find it easy to pick up what they need.

vi Preface

https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_11

The SimpleDB Software

In my experience, it is much easier for students to grasp conceptual ideas (such as
concurrency control, buffer management, and query optimization algorithms) than to
grasp how these ideas interact. Ideally, a student should write an entire database
system as part of his coursework, just as the student would write an entire compiler
in a compiler course. However, a database system is much more complex than a
compiler, so that approach is not practical. My solution was to write a simple but
fully functional database system, called SimpleDB. Students can apply their concep-
tual knowledge by examining SimpleDB code and modifying it.

SimpleDB “looks” like a commercial database system, both in its function and
structure. Functionally, it is a multiuser, transaction-oriented database server that
executes SQL statements and interacts with clients via JDBC. Structurally, it con-
tains the same basic components as a commercial system, with similar APIs. Each
component of SimpleDB has a corresponding chapter in the text, which discusses the
component’s code and the design decisions behind it.

SimpleDB is a useful educational tool because its code is small, easily readable,
and easily modifiable. It omits all unnecessary functionality, implements only a tiny
portion of SQL, and uses only the simplest (and often very impractical) algorithms.
There consequently are numerous opportunities for students to extend the system
with additional features and more efficient algorithms; many of these extensions
appear as end-of-chapter exercises.

SimpleDB can be downloaded from the http://cs.bc.edu/~sciore/simpledb.
Details on installing and using SimpleDB appear on that web page and in Chap. 1.
I welcome suggestions for improving the code, as well as reports of any bugs. You
can email me at sciore@bc.edu.

End-of-Chapter Readings

This text is motivated by two questions: What functionality do database systems
provide? What algorithms and design decisions will best implement this function-
ality? Entire shelves can be filled with books that address different aspects of these
questions. Since there is no way that a single text could hope to be comprehensive, I
have chosen to present only those algorithms and techniques that most clearly
illustrate the issues involved. My overriding goal is to teach the principles behind
a technique, even if it means omitting (or reducing) discussion of the most commer-
cially viable version of it. Instead, the end of each chapter contains a “suggested
readings” section. Those sections discuss interesting ideas and research directions
that went unmentioned in the text and provide references to relevant web pages,
research articles, reference manuals, and books.

Preface vii

http://www.cs.bc.edu/~sciore/simpledb
https://doi.org/10.1007/978-3-030-33836-7_1

End-of-Chapter Exercises

The end of each chapter contains numerous exercises. Some exercises are of the
pencil-and-paper variety, designed to reinforce concepts taught in the chapter. Other
exercises suggest interesting modifications to SimpleDB, and many of them make
excellent programming projects. I have written solutions to most of the exercises. If
you are the instructor of a course using this textbook and would like a copy of the
solution manual, please email me at sciore@bc.edu.

viii Preface

Contents

1 Database Systems . 1
1.1 Why a Database System? . 1
1.2 The Derby Database System . 6
1.3 Database Engines . 8
1.4 The SimpleDB Database System . 10
1.5 The SimpleDB Version of SQL . 11
1.6 Chapter Summary . 12
1.7 Suggested Reading . 13
1.8 Exercises . 13

2 JDBC . 15
2.1 Basic JDBC . 15
2.2 Advanced JDBC . 27
2.3 Computing in Java vs. SQL . 41
2.4 Chapter Summary . 44
2.5 Suggested Reading . 46
2.6 Exercises . 46

3 Disk and File Management . 49
3.1 Persistent Data Storage . 49
3.2 The Block-Level Interface to the Disk 60
3.3 The File-Level Interface to the Disk . 61
3.4 The Database System and the OS . 65
3.5 The SimpleDB File Manager . 66
3.6 Chapter Summary . 71
3.7 Suggested Reading . 75
3.8 Exercises . 75

4 Memory Management . 79
4.1 Two Principles of Database Memory Management 79
4.2 Managing Log Information . 81

ix

https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec1
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec7
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec8
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec9
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec10
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec11
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec12
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_1#Sec13
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec1
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec8
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec15
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec16
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec17
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_2#Sec18
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec1
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec9
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec10
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec11
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec12
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec15
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec16
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_3#Sec17
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec1
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2
https://doi.org/10.1007/978-3-030-33836-7_4#Sec2

4.3 The SimpleDB Log Manager . 83
4.4 Managing User Data . 88
4.5 The SimpleDB Buffer Manager . 93
4.6 Chapter Summary . 98
4.7 Suggested Reading . 101
4.8 Exercises . 102

5 Transaction Management . 105
5.1 Transactions . 105
5.2 Using Transactions in SimpleDB . 108
5.3 Recovery Management . 110
5.4 Concurrency Management . 123
5.5 Implementing SimpleDB Transactions 145
5.6 Chapter Summary . 145
5.7 Suggested Reading . 150
5.8 Exercises . 151

6 Record Management . 159
6.1 Designing a Record Manager . 159
6.2 Implementing a File of Records . 165
6.3 SimpleDB Record Pages . 170
6.4 SimpleDB Table Scans . 178
6.5 Chapter Summary . 184
6.6 Suggested Reading . 185
6.7 Exercises . 186

7 Metadata Management . 189
7.1 The Metadata Manager . 189
7.2 Table Metadata . 190
7.3 View Metadata . 193
7.4 Statistical Metadata . 195
7.5 Index Metadata . 199
7.6 Implementing the Metadata Manager 205
7.7 Chapter Summary . 207
7.8 Suggested Reading . 210
7.9 Exercises . 211

8 Query Processing . 213
8.1 Relational Algebra . 213
8.2 Scans . 217
8.3 Update Scans . 220
8.4 Implementing Scans . 221
8.5 Pipelined Query Processing . 226
8.6 Predicates . 228
8.7 Chapter Summary . 229
8.8 Suggested Reading . 233
8.9 Exercises . 236

x Contents

https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec3
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec6
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec10
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec13
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec14
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_4#Sec15
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec1
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec2
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec3
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec17
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec33
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec36
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec37
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_5#Sec38
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec1
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec6
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec11
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec16
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec19
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec20
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_6#Sec21
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec1
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec2
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec3
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec4
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec5
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec6
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec7
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec8
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_7#Sec9
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec1
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec5
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec6
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec7
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec11
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec12
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec13
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec14
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15
https://doi.org/10.1007/978-3-030-33836-7_8#Sec15

9 Parsing . 239
9.1 Syntax Versus Semantics . 239
9.2 Lexical Analysis . 240
9.3 The SimpleDB Lexical Analyzer . 241
9.4 Grammars . 246
9.5 Recursive-Descent Parsers . 249
9.6 Adding Actions to the Parser . 250
9.7 Chapter Summary . 260
9.8 Suggested Reading . 262
9.9 Exercises . 262

10 Planning . 267
10.1 Verification . 267
10.2 The Cost of Evaluating a Query Tree 268
10.3 Plans . 274
10.4 Query Planning . 277
10.5 Update Planning . 281
10.6 The SimpleDB Planner . 284
10.7 Chapter Summary . 288
10.8 Suggested Reading . 289
10.9 Exercises . 289

11 JDBC Interfaces . 295
11.1 The SimpleDB API . 295
11.2 Embedded JDBC . 297
11.3 Remote Method Invocation . 300
11.4 Implementing the Remote Interfaces . 305
11.5 Implementing the JDBC Interfaces . 306
11.6 Chapter Summary . 309
11.7 Suggested Reading . 309
11.8 Exercises . 310

12 Indexing . 313
12.1 The Value of Indexing . 313
12.2 SimpleDB Indexes . 316
12.3 Static Hash Indexes . 319
12.4 Extendable Hash Indexes . 322
12.5 B-Tree Indexes . 327
12.6 Index-Aware Operator Implementations 345
12.7 Index Update Planning . 353
12.8 Chapter Summary . 356
12.9 Suggested Reading . 357
12.10 Exercises . 358

13 Materialization and Sorting . 363
13.1 The Value of Materialization . 363
13.2 Temporary Tables . 364

Contents xi

https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec1
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec2
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec3
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec4
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec5
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec6
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec14
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec15
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_9#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec1
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec2
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec8
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec9
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec12
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec16
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec17
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec18
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_10#Sec19
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec1
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec2
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec3
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec7
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec8
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec9
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec10
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_11#Sec11
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec1
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec2
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec3
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec6
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec9
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec17
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec20
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec21
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec22
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_12#Sec23
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec1
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2
https://doi.org/10.1007/978-3-030-33836-7_13#Sec2

13.3 Materialization . 364
13.4 Sorting . 369
13.5 Grouping and Aggregation . 379
13.6 Merge Joins . 387
13.7 Chapter Summary . 389
13.8 Suggested Reading . 393
13.9 Exercises . 394

14 Effective Buffer Utilization . 397
14.1 Buffer Usage in Query Plans . 397
14.2 Multibuffer Sorting . 398
14.3 Multibuffer Product . 400
14.4 Determining Buffer Allocation . 402
14.5 Implementing Multibuffer Sorting . 403
14.6 Implementing Multibuffer Product . 404
14.7 Hash Joins . 406
14.8 Comparing the Join Algorithms . 412
14.9 Chapter Summary . 414
14.10 Suggested Reading . 415
14.11 Exercises . 416

15 Query Optimization . 419
15.1 Equivalent Query Trees . 419
15.2 The Need for Query Optimization . 426
15.3 The Structure of a Query Optimizer . 430
15.4 Finding the Most Promising Query Tree 430
15.5 Finding the Most Efficient Plan . 440
15.6 Combining the Two Stages of Optimization 441
15.7 Merging Query Blocks . 449
15.8 Chapter Summary . 450
15.9 Suggested Reading . 452
15.10 Exercises . 452

Index . 455

xii Contents

https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec3
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec7
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec13
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec14
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec17
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec18
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_13#Sec19
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec1
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec2
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec3
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec4
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec5
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec6
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec7
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec11
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec12
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec13
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_14#Sec14
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec1
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec7
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec8
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec9
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec16
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec17
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec20
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec21
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec22
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23
https://doi.org/10.1007/978-3-030-33836-7_15#Sec23

About the Author

Edward Sciore is a recently retired associate professor in the Computer Science
Department at Boston College. He is the author of numerous research articles about
database systems, which span both theory and practice. His favorite activity, how-
ever, is to teach database courses to captive students. These teaching experiences,
accumulated over a 35-year period, are what led to the writing of this text.

xiii

Chapter 1
Database Systems

Database systems play an important role in the computer industry. Some database
systems (such as Oracle) are enormously complex and typically run on large, high-
end machines. Others (such as SQLite) are small, streamlined, and intended for the
storage of application-specific data. Despite their wide range of uses, all database
systems have similar features. This chapter examines the issues that a database
system must address and the capabilities it is expected to have. It also introduces
the Derby and SimpleDB database systems, which will be discussed in this book.

1.1 Why a Database System?

A database is a collection of data stored on a computer. The data in a database is
typically organized into records, such as employee records, medical records, sales
records, etc. Figure 1.1 depicts a database that holds information about students in a
university and the courses they have taken. This database will be used as a running
example throughout the book. The database of Fig. 1.1 contains five types of
records:

• There is a STUDENT record for each student that has attended the university.
Each record contains the student’s ID number, name, graduation year, and ID of
the student’s major department.

• There is a DEPT record for each department in the university. Each record
contains the department’s ID number and name.

• There is a COURSE record for each course offered by the university. Each record
contains the course’s ID number, title, and the ID of the department that offers it.

• There is a SECTION record for each section of a course that has ever been given.
Each record contains the section’s ID number, the year the section was offered,
the ID of the course, and the professor teaching that section.

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_1

• There is an ENROLL record for each course taken by a student. Each record
contains the enrollment ID number, the ID numbers of the student and the section
of the course taken, and the grade the student received for the course.

Figure 1.1 is just a conceptual picture of some records. It does not indicate
anything about how the records are stored or how they are accessed. There are
many available software products, called database systems, which provide an
extensive set of features for managing records.

What does it mean to “manage” records? What features must a database system
have, and which features are optional? The following five requirements seem
fundamental:

• Databases must be persistent. Otherwise, the records would disappear as soon as
the computer is turned off.

• Databases can be shared. Many databases, such as our university database, are
intended to be shared by multiple concurrent users.

• Databases must be kept accurate. If users cannot trust the contents of a database,
it becomes useless and worthless.

• Databases can be very large. The database of Fig. 1.1 contains only 29 records,
which is ridiculously small. It is not unusual for a database to contain millions
(or even billions) of records.

• Databases must be usable. If users are not able to easily get at the data they want,
their productivity will suffer, and they will clamor for a different product.

STUDENT SId SName GradYear MajorId

1 joe 2021 10

2 amy 2020 20

3 max 2022 10

4 sue 2022 20

5 bob 2020 30

6 kim 2020 20

7 art 2021 30

8 pat 2019 20

9 lee 2021 10

DEPT DId DName

10 compsci

20 math

30 drama

COURSE CId Title DeptId

12 db systems 10

22 compilers 10

32 calculus 20

42 algebra 20

52 acting 30

62 elocution 30ENROLL EId StudentId SectionId Grade

14 1 13 A

24 1 43 C

34 2 43 B+

44 4 33 B

54 4 53 A

64 6 53 A

SECTION SectId CourseId Prof YearOffered

13 12 turing 2018

23 12 turing 2016

33 32 newton 2017

43 32 einstein 2018

53 62 brando 2017

Fig. 1.1 Some records for a university database

2 1 Database Systems

The following subsections examine the implications of these requirements. Each
requirement forces the database system to contain increasingly more features,
resulting in more complexity than you might have expected.

1.1.1 Record Storage

A common way to make a database persistent is to store its records in files. The
simplest and most straightforward approach is for a database system to store records
in text files, one file per record type; each record could be a line of text, with its
values separated by tabs. Figure 1.2 depicts the beginning of the text file for the
STUDENT records.

This approach has the advantage that a user could examine and modify the files
with a text editor. Unfortunately, the approach is too inefficient to be useful, for two
reasons.

The first reason is that large text files take too long to update. Suppose, for
example, that someone deletes Joe’s record from the STUDENT file. The database
system would have no choice but to rewrite the file beginning at Amy’s record,
moving each succeeding record to the left. Although the time required to rewrite a
small file is negligible, rewriting a 1 gigabyte file could easily take several minutes,
which is unacceptably long. A database system needs to be much more clever about
how it stores records, so that updates to the file require only small, local rewrites.

The second reason is that large text files take too long to read. Consider searching
the STUDENT file for the students in the class of 2019. The onlyway is to scan the file
sequentially. Sequential scanning can be very inefficient. You probably know several
in-memory data structures, such as trees and hash tables, which enable fast searching.
A database system needs to use analogous data structures to implement its files. For
example, a database system might organize the records in a file using a structure that
facilitates one particular type of search (e.g., on student name, graduation year or
major), or it might create multiple auxiliary files, each facilitating a different type of
search. These auxiliary files are called indexes and are the subject of Chap. 12.

1.1.2 Multi-user Access

When many users share a database, there is a good chance that they will be accessing
some of its data files concurrently. Concurrency is a good thing, because each user
can be served quickly without having to wait for the other users to finish. But too

Fig. 1.2 Implementing the STUDENT records in a text file

1.1 Why a Database System? 3

https://doi.org/10.1007/978-3-030-33836-7_12

much concurrency is bad, because it can cause the database to become inaccurate.
For example, consider a travel-planning database. Suppose that two users try to
reserve a seat on a flight that has 40 seats remaining. If both users concurrently read
the same flight record, they both will see the 40 available seats. They both then
modify the record so that the flight now has 39 available seats. Oops. Two seats have
been reserved, but only one reservation has been recorded in the database.

A solution to this problem is to limit concurrency. The database system should
allow the first user to read the flight record and see the 40 available seats and then
block the second user until the first user finishes. When the second user resumes, it
will see 39 available seats and modify it to 38, as it should. In general, a database
system must be able to detect when a user is about to perform an action that conflicts
with an action of another user and then (and only then) block that user from
executing until the first user has finished.

Users also may need to undo database updates they have made. For example,
suppose that a user has searched the travel-planning database for a trip to Madrid and
found a date for which there is both an available flight and a hotel with a vacancy.
Now suppose that the user reserves the flight, but while the reservation process is
occurring, all of the hotels for that date fill up. In this case, the user may need to undo
the flight reservation and try for a different date.

An update that is undoable should not be visible to the other users of the database.
Otherwise, another user may see the update, think that the data is “real,” and make a
decision based on it. The database system must therefore provide users with the
ability to specify when their changes are permanent; the user is said to commit the
changes. Once a user commits, the changes become visible and cannot be undone.
Chapter 5 examines these issues.

1.1.3 Dealing with Catastrophe

Suppose that you are running a program that gives a pay raise to all professors, when
the database system unexpectedly crashes. After the system restarts, you realize that
some of the professors have a new salary, but others don’t. What should you do?
You can’t just rerun the program because that would give some professors a double
pay raise. Instead, you need the database system to recover gracefully from the crash,
undoing the updates of all programs that were running when the crash occurred. The
mechanism for doing so is interesting and nontrivial, and is examined in Chap. 5.

1.1.4 Memory Management

Databases need to be stored in persistent memory, such as disk drives or flash drives.
Flash drives are about 100 times faster than disk drives but are also significantly
more expensive. Typical access times are about 6 ms for disk and 60 μs for flash.
However, both of these times are orders of magnitude slower than main memory

4 1 Database Systems

https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_5

(or RAM), which has access times of about 60 ns. That is, RAM is about 1000 times
faster than flash and 100,000 times faster than disk.

To see the effect of this performance difference and the consequent problems
faced by a database system, consider the following analogy. Suppose you crave a
chocolate chip cookie. There are three ways to get one: from your kitchen, at the
neighborhood grocery store, or via mail order. In this analogy, your kitchen corre-
sponds to RAM, the neighborhood store corresponds to a flash drive, and the mail
order company corresponds to a disk. Suppose that it takes 5 seconds to get the
cookie from your kitchen. Getting the cookie from the analogous store would require
5000 seconds, which is over an hour. This means going to the store, waiting in a very
long line, buying the cookie, and returning. And getting the cookie from the
analogous mail order company would require 500,000 seconds, which is over
5 days. That means ordering the cookie online and having it shipped using standard
delivery. From this point of view, flash and disk memory look terribly slow.

Wait! It gets worse. Database support for concurrency and reliability slows things
down even more. If someone else is using the data you want, then you may be forced
to wait until the data is released. In our analogy, this corresponds to arriving at the
grocery store and discovering that the cookies are sold out, forcing you to wait until
they are restocked.

In other words, a database system is faced with the following conundrum: It must
manage more data than main memory systems, using slower devices, with multiple
people fighting over access to the data, and make it completely recoverable, all the
while maintaining a reasonable response time.

A large part of the solution to this conundrum is to use caching. Whenever the
database system needs to process a record, it loads it into RAM and keeps it there for
as long as possible. Main memory will thus contain the portion of the database that is
currently in use. All reading and writing occur in RAM. This strategy has the
advantage that fast main memory is used instead of slow persistent memory but
has the disadvantage that the persistent version of the database can become out of
date. The database system needs to implement techniques for keeping the persistent
version of the database synchronized with the RAM version, even in the face of a
system crash (when the contents of RAM is destroyed). Chapter 4 considers various
caching strategies.

1.1.5 Usability

A database is not very useful if its users cannot easily extract the data they want. For
example, suppose that a user wants to know the names of all students who graduated
in 2019. In the absence of a database system, the user would be forced to write a
program to scan the student file. Figure 1.3 gives the Java code for such a program,
assuming that the file is stored as text. Note that most of the Java code deals with
decoding the file, reading each record and splitting it into an array of values to be
examined. The code to determine the desired student names (in bold) is hidden
within the uninteresting file-manipulation code.

1.1 Why a Database System? 5

https://doi.org/10.1007/978-3-030-33836-7_4

Consequently, most database systems support a query language, so that users can
easily specify their desired data. The standard query language for relational data-
bases is SQL. The code of Fig. 1.3 can be expressed by the single SQL statement:

select SName from STUDENT where GradYear = 2019

This SQL statement is much shorter and clearer than the Java program, primarily
because it specifies the values to be extracted from the file without having to specify
how to retrieve them.

1.2 The Derby Database System

Learning database concepts is much more effective if you can use a database system
to follow along interactively. Although there are a wide variety of available database
systems, I suggest that you use Derby database system because it is Java-based, free,
easy to install, and easy to use. The latest version of Derby can be downloaded from
the downloads tab at the URL db.apache.org/derby. The downloaded
distribution file unpacks to a folder containing several directories. For example,
the docs directory contains reference documentation, the demo directory contains a
sample database, and so on. The full system contains many more features than can be
covered here; the interested reader can peruse the various guides and manuals in the
docs directory.

Derby has many features that are not needed in this book. In fact, you only need to
add four files from Derby’s lib directory to your classpath: derby.jar,
derbynet.jar, derbyclient.jar, and derbytools.jar. There are
many ways to change your classpath, depending on your Java platform and operat-
ing system. I will explain how to do it using the Eclipse development platform. If
you are not familiar with Eclipse, you can download its code and documentation

public static List<String> getStudents2019() {
List<String> result = new ArrayList<>();
FileReader rdr = new FileReader("students.txt");
BufferedReader br = new BufferedReader(rdr);
String line = br.readLine();
while (line != null) {

String[] vals = line.split("\t");
String gradyear = vals[2];
if (gradyear.equals("2019"))

result.add(vals[1]);
line = br.readLine();

}
return result;

}

Fig. 1.3 Retrieving the name of students graduating in 2019

6 1 Database Systems

http://db.apache.org/derby

from eclipse.org. If you use a different development platform, then you should
be able to adapt my Eclipse directions to fit your environment.

First, create an Eclipse project for Derby. Then configure its build path, as
follows. From the Properties window, select “Java Build Path.” Click on the
“Libraries” tab and then “Add External JARS,” and use the file chooser to select the
four jar files you need. That’s it.

The Derby distribution contains an application, called ij, which enables you to
create and access Derby databases. Because Derby is written completely in Java, ij
is actually the name of a Java class, located in the package org.apache.derby.
tools. You run ij by executing its class. To execute the class from Eclipse, go to
“Run Configurations” in the Run menu. Add a new configuration to your Derby
project; call it “Derby ij.” In the field for the configuration’s main class, enter “org.
apache.derby.tools.ij.” When you run the configuration, ij displays a console
window that asks for input.

Input to ij is a sequence of commands. A command is a string that ends with a
semicolon. Commands can be split over several lines of text; the ij client will not
execute a command until it encounters a line ending in a semicolon. Any SQL
statement is a legal command. In addition, ij supports commands to connect and
disconnect from a database and to exit the session.

The connect command specifies the database that ij should connect to, and
the disconnect command disconnects from it. A given session can connect and
disconnect multiple times. The exit command ends the session. Figure 1.4 shows
an example ij session. The session has two parts. In the first part, the user connects
to a new database, creates a table, inserts a record into that table, and disconnects. In
the second part, the user reconnects to that database, retrieves the inserted values,
and disconnects.

The argument to the connect command is called its connection string. The
connection string has three substrings, separated by colons. The first two substrings
are “jdbc” and “derby,” indicating that you want to connect to a Derby database
using the JDBC protocol. (JDBC is the topic of Chap. 2.) The third substring

ij> connect 'jdbc:derby:ijtest;create=true';
ij> create table T(A int, B varchar(9));
0 rows inserted/updated/deleted
ij> insert into T(A,B) values(3, 'record3');
1 row inserted/updated/deleted
ij> disconnect;
ij> connect 'jdbc:derby:ijtest';
ij> select * from T;
A |B

3 |record3

1 row selected
ij> disconnect;
ij> exit;

Fig. 1.4 An example ij session

1.2 The Derby Database System 7

http://eclipse.org
https://doi.org/10.1007/978-3-030-33836-7_2

identifies the database. The string “ijtest” is the name of the database; its files will be
in a folder named “ijtest”, located in the directory from which the ij program was
launched. For example, if you ran the program from Eclipse, the database folder will
be in the project directory. The string “create ¼ true” tells Derby to create a new
database; if it is omitted (as in the second connection command), then Derby expects
to find an existing database.

1.3 Database Engines

A database application such as ij is comprised of two independent parts: the user
interface (or UI), and the code to access the database. This latter code is called the
database engine. Separating the UI from the database engine is good system design,
as it simplifies the development of the application. A well-known example of this
separation occurs in the Microsoft Access database system. It has a graphical UI that
allows a user to interact with the database by clicking the mouse and filling in values,
and an engine that handles the data storage. When the UI determines that it needs
information from the database, it constructs a request and sends it to the engine. The
engine then executes the request and sends values back to the UI.

This separation also adds flexibility to the system: an application designer can use
the same user interface with different database engines or build different user
interfaces for the same database engine. Microsoft Access provides an example of
each case. A form built using the Access UI can connect to the Access engine or any
other database engine. And the cells in an Excel spreadsheet can contain formulas
that query the Access engine.

A UI accesses a database by connecting to the desired engine and then calling
methods from the engine’s API. As an example, note that the Derby ij program is
really just a UI. Its connect command establishes a connection to the specified
database engine, and each SQL command sends the SQL statement to the engine,
retrieves the results, and displays them.

Database engines typically support multiple standard APIs. When a Java program
connects to an engine, the API of choice is called JDBC. Chapter 2 discusses JDBC
in detail and shows how to write an ij-like application using JDBC.

A connection from a UI to a database engine can be embedded or server-based. In
an embedded connection, the code for the database engine runs in the same process
as the code for the UI, which gives the UI exclusive access to the engine. An
application should use an embedded connection only when the database “belongs”
to that application and is stored on the same machine as the application. Other
applications need to use server-based connections.

In a server-based connection, the code for the database engine executes inside a
dedicated server program. This server program is always running, waiting for client
connections, and need not be on the same machine as its clients. After a client
establishes a connection with the server, the client sends JDBC requests to it and
receives responses.

8 1 Database Systems

https://doi.org/10.1007/978-3-030-33836-7_2

A server can be connected to multiple clients simultaneously. While the server is
processing one client’s request, other clients can be sending their own requests. The
server contains a scheduler, which queues up requests waiting for service and
determines when they get executed. Each client is unaware of the other clients and
(apart from delays due to scheduling) has the pleasant illusion that the server is
dealing with it exclusively.

The ij session of Fig. 1.4 used an embedded connection. It created the database
“ijtest” on the machine that was running the session, and no server was involved. To
execute an analogous server-based ij session, two things must change: the Derby
engine must run as a server, and the connect command must be modified so that it
identifies the server.

The code for the Derby server is in the Java class NetworkServerControl,
in the package org.apache.derby.drda. To run the server from Eclipse, go to
“Run Configurations” in the Run menu. Add a new configuration to your Derby
project and call it “Derby Server.” In the field for the main class, enter “org.apache.
derby.drda.NetworkServerControl.” In the Arguments tab, enter the program argu-
ment “start -h localhost.” Each time you run the configuration, a console window
should appear indicating that the Derby server is running.

What is the purpose of the program argument “start -h localhost”? The first word
is the command “start,” which tells the class to start the server. You can stop the
server by executing the same class with the argument “shutdown” (or you can simply
terminate the process from the console window). The string “-h localhost” tells the
server to only accept requests from clients on the same machine. If you replace
“localhost” by a domain name or IP address, then the server will only accept requests
from that machine. Using the IP address “0.0.0.0” tells the server to accept requests
from anywhere.1

A connection string for a server-based connection must specify the network or IP
address of the server machine. In particular, consider the following ij connect
commands:

ij> connect 'jdbc:derby:ijtest'
ij> connect 'jdbc:derby://localhost/ijtest'
ij> connect 'jdbc:derby://cs.bc.edu/ijtest'

The first command establishes an embedded connection to the “ijtest” database.
The second command establishes a server-based connection to “ijtest” using the
server running on the machine “localhost,” that is, on the local machine. The third
command establishes a server-based connection to “ijtest” using the server running
on the machine “cs.bc.edu.”

Note how the connect string completely encapsulates the decision to use an
embedded or server-side connection. For example, consider again Fig. 1.4. You
can modify the session to use server-side connections instead of embedded ones by

1Of course, if you allow clients to connect from anywhere, then you expose the database to hackers
and other unscrupulous users. Typically, you would either place such a server inside of a firewall,
enable Derby’s authentication mechanism, or both.

1.3 Database Engines 9

simply changing the connect commands. The other commands in the session are
unaffected.

1.4 The SimpleDB Database System

Derby is a sophisticated, full-featured database system. This complexity, however,
means that its source code is not readily understandable or modifiable. I wrote the
SimpleDB database system to be the opposite of Derby—its code is small, easily
readable, and easily modifiable. It omits all unnecessary functionality, implements
only a tiny portion of SQL, and uses only the simplest (and often very impractical)
algorithms. Its purpose is to give you a clear look at each component of a database
engine and how these components interact.

The latest version of SimpleDB can be downloaded from its website at the URL
cs.bc.edu/~sciore/simpledb. The downloaded file unpacks to the folder
SimpleDB_3.x; this folder contains directories simpledb, simpleclient,
and derbyclient. The simpledb folder contains code for the database engine.
Unlike Derby, this code is not packed into a jar file; instead, every file is explicit
within the folder.

To install the SimpleDB engine, you must add the simpledb folder to your
classpath. To do so using Eclipse, first, create a new project; call it “SimpleDB
Engine.” Then from the operating system, copy the subfolder of your
SimpleDB_3.x folder named “simpledb” to the src folder of the project. Finally,
refresh the project from Eclipse, using the refresh command in the File menu.

The derbyclient folder contains example programs that call the Derby
engine. Use the operating system to copy the contents of this folder (not the folder
itself) to the src folder of your Derby project, and refresh it. These client programs
will be discussed in Chap. 2.

The simpleclient folder contains example programs that call the SimpleDB
engine. You should create a new project for them; call it “SimpleDB Clients.” To
ensure that the example programs can find the SimpleDB engine code, you should
add the SimpleDB Engine project to the build path of SimpleDB Clients.
Then use the operating system to copy the contents of simpleclient into the
src directory of SimpleDB Clients.

SimpleDB supports both embedded and server-based connections. One of the
programs in the simpleclient folder is SimpleIJ, which is a simplified
version of the Derby ij program. One difference from ij is that you can only
connect once, at the beginning of the session. When you execute the program, it asks
you for a connection string. The syntax of the connection string is similar to that in
ij. For example, consider the following SimpleDB connection strings:

jdbc:simpledb:testij
jdbc:simpledb://localhost
jdbc:simpledb://cs.bc.edu

10 1 Database Systems

http://www.cs.bc.edu/~sciore/simpledb
https://doi.org/10.1007/978-3-030-33836-7_2

The first connection string specifies an embedded connection to the “testij”
database. Like Derby, the database will be located in the directory of the executing
program, which is the SimpleDB Clients project. Unlike Derby, SimpleDB will
create the database if it does not exist, so there is no need for an explicit
“create ¼ true” flag.

The second and third connection strings specify a server-based connection to a
SimpleDB server running on the local machine or on cs.bc.edu. Unlike Derby,
the connection string does not specify a database. The reason is that the SimpleDB
engine can handle only one database at a time, which is specified when the server is
started.

SimpleIJ repeatedly prints a prompt asking you to enter a single line of text
containing an SQL statement. Unlike Derby, the line must contain the entire
statement, and no semicolon is needed at the end. The program then executes that
statement. If the statement is a query, then the output table is displayed. If the
statement is an update command, then the number of affected records is printed. If
the statement is ill-formed, then an error message will be printed. SimpleDB
understands a very limited subset of SQL, and SimpleIJ will throw an exception
if given an SQL statement that the engine does not understand. These limitations are
described in the next section.

The SimpleDB engine can be run as a server. The main class is StartServer in the
package simpledb.server. To run the server from Eclipse, go to “Run Configura-
tions” in the Run menu. Add a new configuration to your SimpleDB Engine
project called “SimpleDB Server.” In the field for the main class, enter “simpledb.
server.StartServer.”Use the Arguments tab to enter the name of the desired database.
For convenience, the server will use the database named “studentdb” if you omit the
argument. When you run the configuration, a console window should appear indi-
cating that the SimpleDB server is running.

The SimpleDB server accepts client connections from anywhere, corresponding
to Derby’s “-h 0.0.0.0” command-line option. The only way to shut down the server
is to kill its process from the console window.

1.5 The SimpleDB Version of SQL

Derby implements nearly all of standard SQL. SimpleDB, on the other hand,
implements only a tiny subset of standard SQL and imposes restrictions not present
in the SQL standard. This section briefly indicates these restrictions. Other chapters
of the book explain them in more detail, and many end-of-chapter exercises will ask
you to implement some of the omitted features.

A query in SimpleDB consists only of select-from-where clauses in which the
select clause contains a list of field names (without the AS keyword), and the
from clause contains a list of table names (without range variables).

The terms in the optional where clause can be connected only by the boolean
operator and. Terms can only compare constants and fieldnames for equality.

1.5 The SimpleDB Version of SQL 11

Unlike standard SQL, there are no other comparison operators, no other boolean
operators, no arithmetic operators or built-in functions, and no parentheses. Conse-
quently, nested queries, aggregation, and computed values are not supported.

Because there are no range variables and no renaming, all field names in a query
must be disjoint. And because there are no group by or order by clauses,
grouping and sorting are not supported. Other restrictions are:

• The “�” abbreviation in the select clause is not supported.
• There are no null values.
• There are no explicit joins or outer joins in the from clause.
• The union keyword is not supported.
• An insert statement takes explicit values only. That is, an insertion cannot be

specified by a query.
• An update statement can have only one assignment in the set clause.

1.6 Chapter Summary

• A database is a collection of data stored on a computer. The data in a database is
typically organized into records. A database system is software that manages the
records in a database.

• A database system must be able to handle large shared databases, storing its data
on slow persistent memory. It must provide a high-level interface to its data and
ensure data accuracy in the face of conflicting user updates and system crashes.
Database systems meet these requirements by having the following features:

– The ability to store records in a file, using a format that can be accessed more
efficiently than the file system typically allows

– Complex algorithms for indexing data in files, to support fast access
– The ability to handle concurrent accesses from multiple users over a network,

blocking users when necessary
– Support for committing and rolling back changes
– The ability to cache database records in main memory and to manage the

synchronization between the persistent and main-memory versions of the
database, restoring the database to a reasonable state if the system crashes

– A language compiler/interpreter, for translating user queries on tables to
executable code on files

– Query optimization strategies, for transforming inefficient queries into more
efficient ones

• The database engine is the component of the database system that maintains the
data. A database application is responsible for user input and output; it calls the
database engine to obtain the data it needs.

• A connection to the database engine can be either embedded or server-based. A
program having an embedded connection has exclusive access to the database

12 1 Database Systems

engine. A program having a server-based connection shares the engine with other
concurrent programs.

• Two Java-based database systems are Derby and SimpleDB. Derby implements
the full SQL standard, whereas SimpleDB implements only a limited subset of
SQL. SimpleDB is useful because its code is easy to understand. The rest of this
book starting in Chap. 3 will examine this code in detail.

1.7 Suggested Reading

Database systems have undergone dramatic changes over the years. A good account
of these changes can be found in Chap. 6 of National Research Council (1999) and in
Haigh (2006). The Wikipedia entry at en.wikipedia.org/wiki/Data
base_management_system#History is also interesting.

The client-server paradigm is useful in numerous areas of computing, not just
databases. A general overview of the field can be found in Orfali et al. (1999).
Documentation on the various features and configuration options of the Derby server
can be found at the URL db.apache.org/derby/manuals/index.html.

Haigh, T. (2006). “A veritable bucket of facts”. Origins of the data base management
system. ACM SIGMOD Record, 35(2), 33–49.

National Research Council Committee on Innovations in Computing and Commu-
nications. (1999). Funding a revolution. National Academy Press. Available from
www.nap.edu/read/6323/chapter/8#159

Orfali, R., Harkey, D., & Edwards, J. (1999). Client/server survival guide (3rd ed.).
Wiley.

1.8 Exercises

Conceptual Exercises

1.1. Suppose that an organization needs to manage a relatively small number of
shared records (say, 100 or so).

(a) Would it make sense to use a commercial database system to manage these
records?

(b) What features of a database system would not be required?
(c) Would it be reasonable to use a spreadsheet to store these records? What are

the potential problems?

1.2. Suppose you want to store a large amount of personal data in a database. What
features of a database system wouldn’t you need?

1.3. Consider some data that you typically manage without a database system (such
as a shopping list, address book, checking account info, etc.).

1.8 Exercises 13

https://doi.org/10.1007/978-3-030-33836-7_3
http://en.wikipedia.org/wiki/Database_management_system#History
http://en.wikipedia.org/wiki/Database_management_system#History
http://db.apache.org/derby/manuals/index.html
http://www.nap.edu/read/6323/chapter/8#159

(a) How large would the data have to get before you would break down and
store it in a database system?

(b) What changes to how you use the data would make it worthwhile to use a
database system?

1.4. If you know how to use a version control system (such as Git or Subversion),
compare its features to those of a database system.

(a) Does a version control system have a concept of a record?
(b) How does check-in/checkout correspond to database concurrency control?
(c) How does a user perform a commit? How does a user undo uncommitted

changes?
(d) Many version control systems save updates in difference files, which are

small files that describe how to transform the previous version of the file
into the new one. If a user needs to see the current version of the file, the
system starts with the original file and applies all of the difference files to
it. How well does this implementation strategy satisfy the needs of a
database system?

Project-Based Exercises

1.5. Investigate whether your school administration or company uses a database
system. If so:

(a) What employees explicitly use the database system in their job?
(As opposed to those employees who run “canned” programs that use the
database without their knowledge.) What do they use it for?

(b) When a user needs to do something new with the data, does the user write
his own query, or does someone else do it?

1.6. Install and run the Derby and SimpleDB servers.

(a) Run the ij and SimpleIJ programs from the server machine.
(b) If you have access to a second machine, modify the demo clients and run

them remotely from that machine as well.

14 1 Database Systems

Chapter 2
JDBC

A database application interacts with a database engine by calling the methods of its
API. The API used by Java applications is called JDBC (for Java DataBase Con-
nectivity). The JDBC library consists of five Java packages, most of which implement
advanced features useful only in large commercial applications. This chapter is
interested in the core JDBC functionality found in the package java.sql. This
core functionality can be divided into two parts: basic JDBC, which contains the
classes and methods required for rudimentary usage, and advanced JDBC, which
contains optional features that provide added convenience and flexibility.

2.1 Basic JDBC

The basic functionality of JDBC is embodied in five interfaces: Driver, Con-
nection, Statement, ResultSet, and ResultSetMetadata. Moreover,
only a very few methods of these interfaces are essential. Figure 2.1 lists these
methods.

The example programs of this section illustrate the use of these methods. The first
example program is CreateTestDB, which illustrates how a program connects to
and disconnects from a Derby engine. Its code appears in Fig. 2.2, with the JDBC-
related code highlighted in bold. The following subsections examine this code in
detail.

2.1.1 Connecting to a Database Engine

Each database engine will have its own (and possibly proprietary) mechanism for
making connections with clients. Clients, on the other hand, want to be as server
independent as possible. That is, a client doesn’t want to know the nitty-gritty details

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_2

Driver
public Connection connect(String url, Properties prop)

Connection
public Statement createStatement() throws SQLException;
public void close() throws SQLException;

Statement
public ResultSet executeQuery(String qry) throws SQLException;
public int executeUpdate(String cmd) throws SQLException;
public void close() throws SQLException;

ResultSet
public boolean next() throws SQLException;
public int getInt() throws SQLException;
public String getString() throws SQLException;
public void close() throws SQLException;
public ResultSetMetaData getMetaData() throws SQLException;

ResultSetMetaData
public int getColumnCount() throws SQLException;
public String getColumnName(int column) throws SQLException;
public int getColumnType(int column) throws SQLException;
public int getColumnDisplaySize(int column) throws SQLException;

 throws SQLException;

Fig. 2.1 The APIs for basic JDBC

import org.apache.derby.jdbc.ClientDriver;

public class CreateTestDB {
public static void main(String[] args) {

String url = "jdbc:derby://localhost/testdb;create=true";
Driver d = new ClientDriver();
try {

Connection conn = d.connect(url, null);
System.out.println("Database Created");
conn.close();

}
catch(SQLException e) {

e.printStackTrace();
}

}

import java.sql.Driver;
import java.sql.Connection;

}

Fig. 2.2 The JDBC code for the CreateTestDB client

16 2 JDBC

of how to connect to an engine; it simply wants the engine to provide a class for the
client to call. Such a class is called a driver.

JDBC driver classes implement the interface Driver. Derby and SimpleDB
each have two driver classes: one for server-based connections and one for embed-
ded connections. A server-based connection to the Derby engine uses the class
ClientDriver, whereas an embedded connection uses EmbeddedDriver;
both classes are in package org.apache.derby.jdbc. A server-based connec-
tion to the SimpleDB engine uses the class NetworkDriver (in package
simpledb.jdbc.network), whereas an embedded connection uses
EmbeddedDriver (in package simpledb.jdbc.embedded).

A client connects to a database engine by calling a Driver object’s connect
method. For example, the following three lines of Fig. 2.2 make a server-based
connection to a Derby database:

String url = "jdbc:derby://localhost/testdb;create=true";
Driver d = new ClientDriver();
Connection conn = d.connect(url, null);

The connect method takes two arguments. The first argument to the method is
a URL that identifies the driver, the server (for server-based connections), and the
database. This URL is called the connection string and has the same syntax as the ij
(or SimpleIJ) server-based connection strings of Chap. 1. The connection string
in Fig. 2.2 consists of four parts:

• The substring “jdbc:derby:” describes the protocol used by the client. Here, the
protocol says that this client is a Derby client that speaks JDBC.

• The substring “//localhost” describes the machine where the server is located.
Instead of localhost, you could substitute any domain name or IP address.

• The substring “/testdb” describes the path to the database on the server. For a
Derby server, the path begins at the current directory of the user that started the
server. The end of the path (here, “testdb”) is the directory where all data files for
this database will be stored.

• The remainder of the connection string consists of property values to be sent to
the engine. Here, the substring is “;create ¼ true”, which tells the engine to create
a new database. In general, several property values can be sent to a Derby engine.
For example, if the engine requires user authentication, then values for the
properties username and password would also be specified. The connection
string for the user “einstein” might look like this:

"jdbc:derby://localhost/testdb;create=true;user=einstein;
password=emc2"

The second argument to connect is an object of type Properties. This
object provides another way to pass property values to the engine. In Fig. 2.2, the
value of this argument is null because all properties are specified in the connection
string. Alternatively, you could have put the property specification into the second
argument, as follows:

2.1 Basic JDBC 17

https://doi.org/10.1007/978-3-030-33836-7_1

String url = "jdbc:derby://localhost/testdb";
Properties prop = new Properties();
prop.put("create", "true");
prop.put("username", "einstein");
prop.put("password", "emc2");
Driver d = new ClientDriver();
Connection conn = d.connect(url, prop);

Each database engine has its own connection string syntax. A server-based
connection string for SimpleDB differs from Derby in that it contains only a protocol
and machine name. (It doesn’t make sense for the string to contain the name of the
database, because the database is specified when the SimpleDB server is started. And
the connection string doesn’t specify properties because the SimpleDB server
doesn’t support any.) For example, the following three lines of code make a
connection to a SimpleDB server:

String url = "jdbc:simpledb://localhost";
Driver d = new NetworkDriver();
conn = d.connect(url, null);

Although the driver class and connection string syntax are vendor-specific, the
rest of a JDBC program is completely vendor-neutral. For example, consider the
variables d and conn in Fig. 2.2. Their corresponding JDBC types, Driver and
Connection, are interfaces. You can tell from the code that variable d is assigned
to a ClientDriver object. However, conn is assigned to the Connection
object returned by the method connect, and there is no way to know its actual
class. This situation is true for all JDBC programs. Apart from the name of the driver
class and its connection string, a JDBC program only knows about and cares about
the vendor-neutral JDBC interfaces. Consequently, a basic JDBC client will import
from two packages:

• The built-in package java.sql, to obtain the vendor-neutral JDBC interface
definitions

• The vendor-supplied package that contains the driver class

2.1.2 Disconnecting from a Database Engine

During the time that a client is connected to a database engine, the engine may
allocate resources for the client’s use. For example, a client may request locks from
its server that keep other clients from accessing portions of the database. Even the
ability to connect to an engine can be a resource. A company may have a site license
with a commercial database system that restricts the number of simultaneous con-
nections, which means that holding a connection could deprive another client from
connecting. Because connections hold valuable resources, clients are expected to
disconnect from the engine as soon as the database is no longer needed. A client

18 2 JDBC

program disconnects from its engine by calling the close method of its Connec-
tion object. This call to close can be seen in Fig. 2.2.

2.1.3 SQL Exceptions

The interaction between a client and database engine can generate exceptions for
many reasons. Examples are as follows:

• The client asks the engine to execute a badly formed SQL statement or an SQL
query that accesses a nonexistent table or that compares two incompatible values.

• The engine aborts the client because of a deadlock between it and a concurrent
client.

• There is a bug in the engine code.
• The client cannot access the engine (for a server-based connection). Perhaps the

host name is wrong, or the host has become unreachable.

Different database engines have their own internal way of dealing with these
exceptions. SimpleDB, for example, throws a RemoteException on a network
problem, a BadSyntaxException on an SQL statement problem, a
BufferAbortException or LockAbortException on a deadlock, and a
generic RuntimeException on a server problem.

In order to make exception handling vendor independent, JDBC provides its own
exception class, called SQLException. When a database engine encounters an
internal exception, it wraps it in an SQL exception and sends it to the client program.

The message string associated with an SQL exception identifies the internal
exception that caused it. Each database engine is free to provide its own messages.
Derby, for example, has nearly 900 error messages, whereas SimpleDB lumps all of
the possible problems into six messages: “network problem,” “illegal SQL state-
ment,” “server error,” “operation not supported,” and two forms of “transaction
abort.”

Most JDBC methods (and all of the methods in Fig. 2.1) throw an SQL exception.
SQL exceptions are checked, which means that clients must explicitly deal with them
either by catching them or throwing them onward. The two JDBC methods in
Fig. 2.2 are performed inside a try block; if either causes an exception, the code
prints a stack trace and returns.

Note that the code of Fig. 2.2 has a problem, namely, that its connection is not
closed when an exception is thrown. This is an example of a resource leak—the
engine cannot easily reclaim the connection’s resources after the client dies. One
way to fix the problem is to close the connection within the catch block. However,
the close method needs to be called from within a try block, which means the
catch block of Fig. 2.2 really ought to look like this:

2.1 Basic JDBC 19

catch(SQLException e) {
e.printStackTrace();
try {

conn.close();
}
catch (SQLException ex) {}

}

This is starting to look ugly. Moreover, what should the client do if the close
method throws an exception? The above code ignores it, but that doesn’t seem quite
right.

A better solution is to let Java close the connection automatically, via its try-with-
resources syntax. To use it, you create the Connection object within parentheses
after the try keyword. When the try block ends (either normally or via exception),
Java will implicitly call the object’s close method. The improved try block for
Fig. 2.2 looks like this:

try (Connection conn = d.connect(url, null)) {
System.out.println("Database Created");

}
catch (SQLException e) {
e.printStackTrace();

}

This code handles all exceptions properly, without losing the simplicity of
Fig. 2.2.

2.1.4 Executing SQL Statements

A connection can be thought of as a “session” with the database engine, during
which the engine executes SQL statements for the client. JDBC supports this idea as
follows.

A Connection object has the method createStatement, which returns a
Statement object. The Statement object has two ways to execute SQL state-
ments: the methods executeQuery and executeUpdate. It also has the
method close, for deallocating resources held by the object.

Figure 2.3 shows a client program that calls executeUpdate to modify the
MajorId value of Amy’s STUDENT record. The argument to the method is a
string denoting the SQL update statement; the method returns the number of records
that were updated.

The Statement object, like the Connection object, needs to be closed. The
easiest solution is to autoclose both objects in the try block.

The specification of the SQL command illustrates an interesting point. Since the
command is stored as a Java string, it is encased in double quotes. On the other hand,
strings in SQL use single quotes. This distinction makes your life easy, because you

20 2 JDBC

don’t have to worry about a quote character having two different meanings—SQL
strings use single quotes, and Java strings use double quotes.

The ChangeMajor code assumes that a database named “studentdb” exists. The
SimpleDB distribution contains the class CreateStudentDB, which creates the
database and populates it with the tables of Fig. 1.1. It should be the first program
called when using the university database. Its code appears in Fig. 2.4. The code
executes SQL statements to create five tables and insert records into them. For
brevity, only the code for STUDENT is shown.

2.1.5 Result Sets

A statement’s executeQuery method executes an SQL query. The argument to
this method is a string denoting an SQL query, and it returns an object of type
ResultSet. A ResultSet object represents the query’s output records. The
client can search through the result set to examine these records.

For an example program that illustrates the use of result sets, consider the class
StudentMajor shown in Fig. 2.5. Its call to executeQuery returns a result set
containing the name and major of each student. The subsequent while loop prints
each record in the result set.

Once a client obtains a result set, it iterates through the output records by calling
the method next. This method moves to the next record, returning true if the
move is successful and false if there are no more records. Typically, a client uses a
loop to move through all the records, processing each one in turn.

A new ResultSet object is always positioned before the first record, and so
you need to call next before you can look at the first record. Because of this
requirement, the typical way to loop through the records looks like this:

public class ChangeMajor {
public static void main(String[] args) {

String url = "jdbc:derby://localhost/studentdb";
String cmd = "update STUDENT set MajorId=30 where SName='amy'";

Driver d = new ClientDriver();
try (Connection conn = d.connect(url, null);

Statement stmt = conn.createStatement()) {
int howmany = stmt.executeUpdate(cmd);
System.out.println(howmany + " records changed.");

}
catch(SQLException e) {

e.printStackTrace();
}

}
}

Fig. 2.3 JDBC code for the ChangeMajor client

2.1 Basic JDBC 21

https://doi.org/10.1007/978-3-030-33836-7_1

String qry = "select ...";
ResultSet rs = stmt.executeQuery(qry);
while (rs.next()) {
... // process the record

}

An example of such a loop appears in Fig. 2.5. During the nth pass through this
loop, variable rs will be positioned at the nth record of the result set. The loop will
end when there are no more records to process.

When processing a record, a client uses the methods getInt and getString
to retrieve the values of its fields. Each of the methods takes a field name as argument
and returns the value of that field. In Fig. 2.5, the code retrieves and prints the values
of fields SName and DName for each record.

public class CreateStudentDB {
public static void main(String[] args) {

String url = "jdbc:derby://localhost/studentdb;create=true";
Driver d = new ClientDriver();
try (Connection conn = d.connect(url, null);

Statement stmt = conn.createStatement()) {

String s = "create table STUDENT(SId int,
SName varchar(10), MajorId int, GradYear int)";

stmt.executeUpdate(s);
System.out.println("Table STUDENT created.");

s = "insert into STUDENT(SId, SName,

String[] studvals = {"(1, 'joe', 10, 2021)",
"(2, 'amy', 20, 2020)",
"(3, 'max', 10, 2022)",
"(4, 'sue', 20, 2022)",
"(5, 'bob', 30, 2020)",
"(6, 'kim', 20, 2020)",
"(7, 'art', 30, 2021)",
"(8, 'pat', 20, 2019)",
"(9, 'lee', 10, 2021)"};

for (int i=0; i<studvals.length; i++)
stmt.executeUpdate(s + studvals[i]);

System.out.println("STUDENT records inserted.");

...

}
catch(SQLException e) {

e.printStackTrace();
}

}
}

MajorId, GradYear) values ";

Fig. 2.4 JDBC code for the CreateStudentDB client

22 2 JDBC

Result sets tie up valuable resources on the engine. The method close releases
these resources and makes them available for other clients. A client should therefore
strive to be a “good citizen” and close result sets as soon as possible. One option is to
call close explicitly, typically at the end of the above while-loop. Another option,
used in Fig. 2.5, is to use the Java autoclose mechanism.

2.1.6 Using Query Metadata

The schema of a result set is defined to be the name, type, and display size of
each field. This information is made available through the interface
ResultSetMetaData.

When a client executes a query, it usually knows the schema of the output table.
For example, hardcoded into the StudentMajor client is the knowledge that its
result set contains the two string fields SName and DName.

However, suppose that a client program allows users to submit queries as input.
The program can call the method getMetaData on the query’s result set, which
returns an object of type ResultSetMetaData. It can then call the methods of
this object to determine the output table’s schema. For example, the code in Fig. 2.6
uses ResultSetMetaData to print the schema of an argument result set.

public class StudentMajor {
public static void main(String[] args) {

String url = "jdbc:derby://localhost/studentdb";
String qry = "select SName, DName from DEPT, STUDENT "

+ "where MajorId = DId";

Driver d = new ClientDriver();
try (Connection conn = d.connect(url, null);

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(qry)) {

System.out.println("Name\tMajor");
while (rs.next()) {

String sname = rs.getString("SName");
String dname = rs.getString("DName");
System.out.println(sname + "\t" + dname);

}
}
catch(SQLException e) {

e.printStackTrace();
}

}
}

Fig. 2.5 JDBC code for the StudentMajor client

2.1 Basic JDBC 23

This code illustrates the typical use of a ResultSetMetaData object. It first
calls the method getColumnCount to return the number of fields in the result set;
it then calls the methods getColumnName, getColumnType, and
getColumnDisplaySize to determine the name, type, and size of the field at
each column. Note that column numbers start at 1, not 0 as you might expect.

The method getColumnType returns an integer that encodes the field type.
These codes are defined as constants in the JDBC class Types. This class contains
codes for 30 different types, which should give you an idea of how extensive the
SQL language is. The actual values for these types are not important, because a
JDBC program should always refer to the codes by name, not value.

A good example of a client that requires metadata knowledge is a command
interpreter. The program SimpleIJ from Chap. 1 is such a program; its code
appears in Fig. 2.7. As this is your first example of a nontrivial JDBC client, you
should examine its code closely.

The main method begins by reading a connection string from the user and using it
to determine the proper driver to use. The code looks for the characters “//” in the
connection string. If those characters appear, then the string must be specifying a
server-based connection, and otherwise an embedded connection. The method then
establishes the connection by passing the connection string into the appropriate
driver’s connect method.

The main method processes one line of text during each iteration of its while
loop. If the text is an SQL statement, the method doQuery or doUpdate is called,
as appropriate. The user can exit the loop by entering “exit,” at which point the
program exits.

void printSchema(ResultSet rs) throws SQLException {
ResultSetMetaData md = rs.getMetaData();
for(int i=1; i<=md.getColumnCount(); i++) {

String name = md.getColumnName(i);
int size = md.getColumnDisplaySize(i);
int typecode = md.getColumnType(i);
String type;
if (typecode == Types.INTEGER)

type = "int";
else if (typecode == Types.VARCHAR)

type = "string";
else

type = "other";
System.out.println(name + "\t" + type + "\t" + size);

}
}

Fig. 2.6 Using ResultSetMetaData to print the schema of a result set

24 2 JDBC

https://doi.org/10.1007/978-3-030-33836-7_1

public class SimpleIJ {
public static void main(String[] args) {

Scanner sc = new Scanner(System.in);
System.out.println("Connect> ");
String s = sc.nextLine();
Driver d = (s.contains("//")) ? new NetworkDriver()

: new EmbeddedDriver();

try (Connection conn = d.connect(s, null);
Statement stmt = conn.createStatement()) {

System.out.print("\nSQL> ");
while (sc.hasNextLine()) {

// process one line of input
String cmd = sc.nextLine().trim();
if (cmd.startsWith("exit"))

break;
else if (cmd.startsWith("select"))

doQuery(stmt, cmd);
else

doUpdate(stmt, cmd);
System.out.print("\nSQL> ");

}
}
catch (SQLException e) {

e.printStackTrace();
}
sc.close();

}

private static void doQuery(Statement stmt, String cmd) {
try (ResultSet rs = stmt.executeQuery(cmd)) {

ResultSetMetaData md = rs.getMetaData();
int numcols = md.getColumnCount();
int totalwidth = 0;

// print header
for(int i=1; i<=numcols; i++) {

String fldname = md.getColumnName(i);
int width = md.getColumnDisplaySize(i);
totalwidth += width;
String fmt = "%" + width + "s";
System.out.format(fmt, fldname);

}

Fig. 2.7 The JDBC code for the SimpleIJ client

2.1 Basic JDBC 25

The method doQuery executes the query and obtains the result set and metadata
of the output table. Most of the method is concerned with determining proper
spacing for the values. The calls to getColumnDisplaySize return the space
requirements for each field; the code uses these numbers to construct a format
string that will allow the field values to line up properly. The complexity of this
code illustrates the maxim “the devil is in the details.” That is, the conceptually
difficult tasks are easily coded, thanks to the ResultSet and
ResultSetMetaData methods, whereas the trivial task of lining up the data
takes most of the coding effort.

System.out.println();
for(int i=0; i<totalwidth; i++)

System.out.print("-");
System.out.println();

// print records
while(rs.next()) {

for (int i=1; i<=numcols; i++) {
String fldname = md.getColumnName(i);
int fldtype = md.getColumnType(i);
String fmt = "%" + md.getColumnDisplaySize(i);
if (fldtype == Types.INTEGER) {

int ival = rs.getInt(fldname);
System.out.format(fmt + "d", ival);

}
else {

String sval = rs.getString(fldname);
System.out.format(fmt + "s", sval);

}
}
System.out.println();

}
}
catch (SQLException e) {

System.out.println("SQL Exception: " + e.getMessage());
}

}

private static void doUpdate(Statement stmt, String cmd) {
try {

int howmany = stmt.executeUpdate(cmd);
System.out.println(howmany + " records processed");

}
catch (SQLException e) {

System.out.println("SQL Exception: " + e.getMessage());
}

}
}

Fig. 2.7 (continued)

26 2 JDBC

The methods doQuery and doUpdate trap exceptions by printing an error
message and returning. This error-handling strategy allows the main loop to continue
to accept statements until the user enters the “exit” command.

2.2 Advanced JDBC

Basic JDBC is relatively simple to use, but it provides a fairly limited set of ways to
interact with the database engine. This section considers some additional features of
JDBC that give the client more control over how the database is accessed.

2.2.1 Hiding the Driver

In basic JDBC, a client connects to a database engine by obtaining an instance of a
Driver object and calling its connect method. A problem with this strategy is
that it places vendor-specific code into the client program. JDBC contains two
vendor-neutral classes for keeping driver information out of client programs:
DriverManager and DataSource. Let’s consider each in turn.

Using DriverManager
The class DriverManager holds a collection of drivers. It contains static methods
to add a driver to the collection and to search the collection for a driver that can
handle a given connection string. Two of these methods appear in Fig. 2.8.

The idea is that a client repeatedly calls registerDriver to register the driver
for each database that it might use. When the client wants to connect to a database, it
only needs to call the getConnection method and provide it with a connection
string. The driver manager tries the connection string on each driver in its collection
until one of them returns a non-null connection.

For example, consider the code of Fig. 2.9. The first two lines register the server-
based Derby and SimpleDB drivers with the driver manager. The last two lines
establish a connection to the Derby server. The client does not need to specify the
driver when it calls getConnection; it only specifies the connection string. The
driver manager determines which of its registered drivers to use.

static public void registerDriver(Driver driver)

static public Connection getConnection(String url, Properties p)
throws SQLException;

throws SQLException;

Fig. 2.8 Two methods of the DriverManager class

2.2 Advanced JDBC 27

The use of DriverManager in Fig. 2.9 is not especially satisfying, because the
driver information hasn’t been hidden—it is right there in the calls to
registerDriver. JDBC resolves this issue by allowing the drivers to be spec-
ified in the Java system-properties file. For example, the Derby and SimpleDB
drivers can be registered by adding the following line to the file:

jdbc.drivers=
org.apache.derby.jdbc.ClientDriver:simpledb.remote.NetworkDriver

Placing the driver information in the properties file is an elegant way to remove
driver specifications from client code. By changing this one file, you can revise the
driver information used by all JDBC clients without having to recompile any code.

Using DataSource
Although the driver manager can hide the drivers from the JDBC clients, it cannot
hide the connection string. In particular, the connection string in the above example
contains “jdbc:derby,” so it is evident which driver is intended. A more recent
addition to JDBC is the interface DataSource in the package javax.sql.
This is currently the preferred strategy for managing drivers.

A DataSource object encapsulates both the driver and the connection
string, thereby enabling a client to connect to an engine without knowing any
connection details. To create data sources in Derby, you need the Derby-supplied
classes ClientDataSource (for server-based connections) and
EmbeddedDataSource (for embedded connections), both of which implement
DataSource. The client code might look like this:

ClientDataSource ds = new ClientDataSource();
ds.setServerName("localhost");
ds.setDatabaseName("studentdb");
Connection conn = ds.getConnection();

Each database vendor supplies its own classes that implement DataSource.
Since these classes are vendor-specific, they can encapsulate the details of its driver,
such as the driver name and the syntax of the connection string. A program that uses
them only needs to specify the requisite values.

The nice thing about using a data source is that the client no longer needs to know
the name of the driver or the syntax of the connection string. Nevertheless, the class
is still vendor-specific, and so client code is still not completely vendor independent.
This problem can be addressed in various ways.

One solution is for the database administrator to save the DataSource object in
a file. The DBA can create the object and use Java serialization to write it to the file.
A client can then obtain the data source by reading the file and de-serializing it back

DriverManager.registerDriver(new ClientDriver());
DriverManager.registerDriver(new NetworkDriver());
String url = "jdbc:derby://localhost/studentdb";
Connection c = DriverManager.getConnection(url);

Fig. 2.9 Connecting to a Derby server using DriverManager

28 2 JDBC

to a DataSource object. This solution is similar to using a properties file. Once the
DataSource object is saved in the file, it can be used by any JDBC client. And the
DBA can make changes to the data source by simply replacing the contents of
that file.

A second solution is to use a name server (such as a JNDI server) instead of a file.
The DBA places the DataSource object on the name server, and clients then
request the data source from the server. Given that name servers are a common part
of many computing environments, this solution is often easy to implement, although
the details are beyond the scope of this book.

2.2.2 Explicit Transaction Handling

Each JDBC client runs as a series of transactions. Conceptually, a transaction is a
“unit of work,” meaning that all its database interactions are treated as a unit. For
example, if one update in a transaction fails, the engine will ensure that all updates
made by that transaction will fail.

A transaction commits when its current unit of work has completed successfully.
The database engine implements a commit by making all modifications permanent
and releasing any resources (e.g., locks) that were assigned to that transaction. Once
the commit is complete, the engine starts a new transaction.

A transaction rolls back when it cannot commit. The database engine implements
a rollback by undoing all changes made by that transaction, releasing locks, and
starting a new transaction. A transaction that has committed or rolled back is said to
have completed.

Transactions are implicit in basic JDBC. The database engine chooses the
boundaries of each transaction, deciding when a transaction should be committed
and whether it should be rolled back. This situation is called autocommit.

During autocommit, the engine executes each SQL statement in its own transac-
tion. The engine commits the transaction if the statement successfully completes and
rolls back the transaction otherwise. An update command completes as soon as the
executeUpdate method has finished, and a query completes when the query’s
result set is closed.

A transaction accrues locks, which are not released until the transaction has
committed or rolled back. Because these locks can cause other transactions to
wait, shorter transactions enable more concurrency. This principle implies that
clients running in autocommit mode should close their result sets as soon as possible.

Autocommit is a reasonable default mode for JDBC clients. Having one transac-
tion per SQL statement leads to short transactions and often is the right thing to
do. However, there are circumstances when a transaction ought to consist of several
SQL statements.

One situation where autocommit is undesirable is when a client needs to have two
statements active at the same time. For example, consider the code fragment of
Fig. 2.10. This code first executes a query that retrieves all courses. It then loops

2.2 Advanced JDBC 29

through the result set, asking the user whether each course should be deleted. If so, it
executes an SQL deletion statement to do so.

The problem with this code is that the deletion statement will be executed while
the record set is still open. Because a connection supports only one transaction at a
time, it must preemptively commit the query’s transaction before it can create a new
transaction to execute the deletion. And since the query’s transaction has committed,
it doesn’t really make sense to access the remainder of the record set. The code will
either throw an exception or have unpredictable behavior.1

Autocommit is also undesirable when multiple modifications to the database need
to happen together. The code fragment of Fig. 2.11 provides an example. The intent
of the code is to swap the professors teaching sections 43 and 53. However, the
database will become incorrect if the engine crashes after the first call to
executeUpdate but before the second one. This code needs both SQL statements

DataSource ds = ...
Connection conn = ds.getConnection();
Statement stmt1 = conn.createStatement();
Statement stmt2 = conn.createStatement();
ResultSet rs = stmt1.executeQuery("select * from COURSE");
while (rs.next()) {

String title = rs.getString("Title");
boolean goodCourse = getUserDecision(title);
if (!goodCourse) {

int id = rs.getInt("CId");
stmt2.executeUpdate("delete from COURSE where CId =" + id);

}
}
rs.close();

Fig. 2.10 Code that could behave incorrectly in autocommit mode

DataSource ds = ...
Connection conn = ds.getConnection();
Statement stmt = conn.createStatement();
String cmd1 = "update SECTION set Prof= 'brando' where SectId = 43";
String cmd2 = "update SECTION set Prof= 'einstein' where SectId = 53";
stmt.executeUpdate(cmd1);
// suppose that the engine crashes at this point
stmt.executeUpdate(cmd2);

Fig. 2.11 More code that could behave incorrectly in autocommit mode

1The actual behavior of this code depends on the holdability of the result set, whose default value is
engine dependent. If the holdability is CLOSE_CURSORS_AT_COMMIT, then the result set will
become invalid, and an exception will be thrown. If the holdability is
HOLD_CURSORS_OVER_COMMIT, then the result set will stay open, but its locks will be released.
The behavior of such a result set is unpredictable and similar to the read-uncommitted isolation
mode to be discussed in Sect. 2.2.3.

30 2 JDBC

to occur in the same transaction, so that they are either committed together or rolled
back together.

Autocommit mode can also be inconvenient. Suppose that your program is
performing multiple insertions, say by loading data from a text file. If the engine
crashes while the program is running, then some of the records will be inserted and
some will not. It could be tedious and time-consuming to determine where the
program failed and to rewrite it to insert only the missing records. A better alternative
is to place all the insertion commands in the same transaction. Then all of them
would get rolled back after a system crash, and it would be possible to simply rerun
the client.

The Connection interface contains three methods that allow the client to handle
its transactions explicitly. Figure 2.12 gives their API. A client turns off autocommit
by calling setAutoCommit(false). The client completes the current transaction
and starts a new one by calling commit or rollback, as desired.

When a client turns off autocommit, it takes on the responsibility for rolling back
failed SQL statements. In particular, if an exception gets thrown during a transaction,
then the client must roll back that transaction inside its exception-handling code.

For an example, consider again the incorrect code fragment of Fig. 2.10. A
corrected version appears in Fig. 2.13. The code calls setAutoCommit immedi-
ately after the connection is created and calls commit immediately after the
statements have completed. The catch block contains the call to rollback.
This call needs to be placed inside its own try block, in case it throws an exception.

At first glance, an exception during rollback seems like it could corrupt the
database, as in Fig. 2.11. Fortunately, database rollback algorithms are designed to
handle such possibilities; Chap. 5 contains the remarkable details. Thus, the code in
Fig. 2.13 can legitimately ignore a failed rollback, knowing that the database engine
will make things right.

2.2.3 Transaction Isolation Levels

A database server typically has several clients active at the same time, each running
their own transaction. By executing these transactions concurrently, the server can
improve their throughput and response time. Thus, concurrency is a good thing.
However, uncontrolled concurrency can cause problems, because a transaction can
interfere with another transaction by modifying the data used by that other transac-
tion in unexpected ways. Here are three examples that demonstrate the kinds of
problems that can occur.

public void setAutoCommit(boolean ac) throws SQLException;
public void commit() throws SQLException;
public void rollback() throws SQLException;

Fig. 2.12 The Connection methods for explicit transaction handling

2.2 Advanced JDBC 31

https://doi.org/10.1007/978-3-030-33836-7_5

Example 1: Reading Uncommitted Data
Consider again the code for Fig. 2.11 that swaps the professors of two sections and
assume that it runs as a single transaction (i.e., with autocommit turned off). Call this
transaction T1. Suppose also that the university has decided to give bonuses to its
professors, based on the number of sections taught; it therefore executes a transac-
tion T2 that counts the sections taught by each professor. Furthermore, suppose that
these two transactions happen to run concurrently—in particular, suppose that T2
begins and executes to completion immediately after the first update statement of T1.
The result is that Professors Brando and Einstein will get credited, respectively, with
one extra and one fewer course than they deserve, which will affect their bonuses.

What went wrong? Each of the transactions is correct in isolation, but together they
cause the university to give out the wrong bonuses. The problem is that T2 incorrectly
assumed that the records it read were consistent, that is, that theymade sense together.
However, data written by an uncommitted transaction may not always be consistent.
In the case of T1, the inconsistency occurred at the point where only one of the two
modifications was made. When T2 read the uncommitted modified records at that
point, the inconsistency caused it to make incorrect calculations.

Example 2: Unexpected Changes to an Existing Record
For this example, assume that the STUDENT table contains a field MealPlanBal,
which denotes how much money the student has for buying food in the cafeteria.

DataSource ds = ...
try (Connection conn = ds.getConnection()) {

conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from COURSE");
while (rs.next()) {

String title = rs.getString("Title");
boolean goodCourse = getUserDecision(title);
if (!goodCourse) {

int id = rs.getInt("CId");
stmt.executeUpdate("delete from COURSE where CId =" + id);

}
}
rs.close();
stmt.close();
conn.commit();

}
catch (SQLException e) {

e.printStackTrace();
try {

if (conn != null)
conn.rollback();

}
catch (SQLException e2) {}

}

Fig. 2.13 A revision of Fig. 2.10 that handles transactions explicitly

32 2 JDBC

Consider the two transactions of Fig. 2.14. Transaction T1 executed when Joe
bought a $10 lunch. The transaction runs a query to find out his current balance,
verifies that the balance is sufficient, and decrements his balance appropriately.
Transaction T2 executed when Joe’s parents sent in a check for $1000 to be added
to his meal plan balance. That transaction simply runs an SQL update statement to
increment Joe’s balance.

Now suppose that these two transactions happen to run concurrently at a time
when Joe has a $50 balance. In particular, suppose that T2 begins and executes to
completion immediately after T1 calls rs.close. Then T2, which commits first,
will modify the balance to $1050. However, T1 is unaware of this change and still
thinks that the balance is $50. It thus modifies the balance to $40 and commits. The
result is that the $1000 deposit is not credited to his balance, that is, the update got
“lost.”

DataSource ds = ...
Connection conn = ds.getConnection();
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select MealPlanBal from STUDENT "

+ "where SId = 1");
rs.next();
int balance = rs.getInt("MealPlanBal");
rs.close();

int newbalance = balance 10;
if (newbalance < 0)

throw new NoFoodAllowedException("You cannot afford this meal");

stmt.executeUpdate("update STUDENT "
+ "set MealPlanBal = " + newbalance
+ " where SId = 1");

conn.commit();

(a)

DataSource ds = ...
Connection conn = ds.getConnection();
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
stmt.executeUpdate("update STUDENT "

+ "set MealPlanBal = MealPlanBal + 1000 "
+ "where SId = 1");

conn.commit();

(b)

Fig. 2.14 Two concurrent transactions that can manage to “lose” an update. (a) Transaction T1
decrements the meal plan balance, (b) Transaction T2 increments the meal plan balance

2.2 Advanced JDBC 33

The problem here is that transaction T1 incorrectly assumed that the value of the
meal plan balance would not change between the time that T1 read the value and the
time that T1 modified the value. Formally, this assumption is called repeatable read,
because the transaction assumes that repeatedly reading an item from the database
will always return the same value.

Example 3: Unexpected Changes to the Number of Records
Suppose that the university dining services made a profit of $100,000 last year. The
university feels bad that it overcharged its students, so it decides to divide the profit
equally among them. That is, if there are 1000 current students, then the university
will add $100 to each meal plan balance. The code appears in Fig. 2.15.

The problem with this transaction is that it assumes that the number of current
students will not change between the calculation of the rebate amount and the
updating of the STUDENT records. But suppose that several new STUDENT
records got inserted into the database between the closing of the record set and the
execution of the update statement. These new records will incorrectly get the
precalculated rebate, and the university will wind up spending more than $100,000
on rebates. These new records are known as phantom records, because they myste-
riously appear after the transaction has started.

These examples illustrate the kind of problems that can arise when two trans-
actions interact. The only way to guarantee that an arbitrary transaction will not have
problems is to execute it in complete isolation from the other transactions. This form
of isolation is called serializability and is discussed in considerable detail in Chap. 5.

Unfortunately, serializable transactions can run very slowly, because they require
the database engine to significantly reduce the amount of concurrency it allows.
JDBC therefore defines four isolation levels, which allow clients to specify how
much isolation a transaction should have:

DataSource ds = ...
Connection conn = ds.getConnection();
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
String qry = "select count(SId) as HowMany from STUDENT "

+ "where GradYear >= extract(year, current_date)"
ResultSet rs = stmt.executeQuery(qry);
rs.next();
int count = rs.getInt("HowMany");
rs.close();

int rebate = 100000 / count;
String cmd = "update STUDENT "

+ "set MealPlanBalance = MealPlanBalance + " + rebate
+ " where GradYear >= extract(year, current_date)";

stmt.executeUpdate(cmd);
conn.commit();

Fig. 2.15 A transaction that could give out more rebates than expected

34 2 JDBC

https://doi.org/10.1007/978-3-030-33836-7_5

• Read-Uncommitted isolation means no isolation at all. Such a transaction could
suffer any of the problems from the above three examples.

• Read-Committed isolation forbids a transaction from accessing uncommitted
values. Problems related to nonrepeatable reads and phantoms are still possible.

• Repeatable-Read isolation extends read-committed so that reads are always
repeatable. The only possible problems are due to phantoms.

• Serializable isolation guarantees that no problems will ever occur.

A JDBC client specifies the isolation level it wants by calling the Connection
method setTransactionIsolation. For example, the following code frag-
ment sets the isolation level to serializable:

DataSource ds = ...
Connection conn = ds.getConnection();
conn.setAutoCommit(false);
conn.setTransactionIsolation(

Connection.TRANSACTION_SERIALIZABLE);

These four isolation levels exhibit a trade-off between execution speed and
potential problems. That is, the faster you want your transaction to run, the greater
the risk you must accept that the transaction might run incorrectly. This risk can be
mitigated by a careful analysis of the client.

For example, you might be able to convince yourself that phantoms and
nonrepeatable reads will not be a problem. This would be the case, for example, if
your transaction performs only insertions, or if it deletes specific existing records
(as in “delete from STUDENT where SId ¼ 1”). In this case, an isolation level of
read-committed will be fast and correct.

For another example, you might convince yourself that any potential problems
are uninteresting. Suppose that your transaction calculates, for each year, the average
grade given during that year. You decide that even though grade changes can occur
during the execution of the transaction, those changes are not likely to affect the
resulting statistics significantly. In this case, you could reasonably choose the
isolation level of read-committed or even read-uncommitted.

The default isolation level for many database servers (including Derby, Oracle,
and Sybase) is read-committed. This level is appropriate for the simple queries posed
by naïve users in autocommit mode. However, if your client programs perform
critical tasks, then it is equally critical that you carefully determine the most
appropriate isolation level. A programmer that turns off autocommit mode must be
very careful to choose the proper isolation level of each transaction.

2.2.4 Prepared Statements

Many JDBC client programs are parameterized, in the sense that they accept an
argument value from the user and execute an SQL statement based on that argument.
An example of such a client is the demo client FindMajors, whose code appears
in Fig. 2.16.

2.2 Advanced JDBC 35

This client begins by asking the user for a department name. It then incorporates
this name into the SQL query that it executes. For example, suppose that the user
entered the value “math.” Then the generated SQL query would be as follows:

select SName, GradYear from STUDENT, DEPT
where DId = MajorId and DName = 'math'

Note how the code explicitly adds the single quotes surrounding the department
name when it generates the query. Instead of generating an SQL statement dynam-
ically this way, the client can use a parameterized SQL statement. A parameterized
statement is an SQL statement in which ‘?’ characters denote missing parameter
values. A statement can have several parameters, all denoted by ‘?’. Each parameter
has an index value that corresponds to its position in the string. For example, the
following parameterized statement deletes all students having a yet-unspecified
graduation year and major. The value for GradYear is assigned index 1, and the
value for MajorId is assigned index 2.

sc.close();
String qry = "select sname, gradyear from student, dept "

+ "where did = majorid and dname = '" + major + "'";

ClientDataSource ds = new ClientDataSource();
ds.setServerName("localhost");
ds.setDatabaseName("studentdb");
try (Connection conn = ds.getConnection();

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(qry)) {

System.out.println("Here are the " + major + " majors");
System.out.println("Name\tGradYear");
while (rs.next()) {

String sname = rs.getString("sname");
int gradyear = rs.getInt("gradyear");
System.out.println(sname + "\t" + gradyear);

}
}
catch(Exception e) {

e.printStackTrace();
}

}

public class FindMajors {
public static void main(String[] args) {
System.out.print("Enter a department name: ");
Scanner sc = new Scanner(System.in);
String major = sc.next();

}

Fig. 2.16 The JDBC code for the FindMajors client

36 2 JDBC

delete from STUDENT where GradYear = ? and MajorId = ?

The JDBC class PreparedStatement handles parameterized statements. A
client processes a prepared statement in three steps:

• It creates a PreparedStatement object for a specified parameterized SQL
statement.

• It assigns values to the parameters.
• It executes the prepared statement.

For example, Fig. 2.17 revises the FindMajors client to use prepared state-
ments. Changes are in bold. The last three statements in bold correspond to the above
three bullet points. First, the client creates the PreparedStatement object by
calling the method prepareStatement and passing the parameterized SQL
statement as an argument. Second, the client calls the setStringmethod to assign
a value to the first (and only) parameter. Third, the method calls executeQuery to
execute the statement.

public class PreparedFindMajors {
public static void main(String[] args) {

System.out.print("Enter a department name: ");
Scanner sc = new Scanner(System.in);
String major = sc.next();
sc.close();
String qry = "select sname, gradyear from student, dept "

+ "where did = majorid and dname = ?";
ClientDataSource ds = new ClientDataSource();
ds.setServerName("localhost");
ds.setDatabaseName("studentdb");
try (Connection conn = ds.getConnection();

PreparedStatement pstmt = conn.prepareStatement(qry)) {
pstmt.setString(1, major);
ResultSet rs = pstmt.executeQuery();
System.out.println("Here are the " + major + " majors");
System.out.println("Name\tGradYear");
while (rs.next()) {

String sname = rs.getString("sname");
int gradyear = rs.getInt("gradyear");
System.out.println(sname + "\t" + gradyear);

}
rs.close();

}
catch(Exception e) {

e.printStackTrace();
}

}
}

Fig. 2.17 Revising the FindMajors client to use prepared statements

2.2 Advanced JDBC 37

Figure 2.18 gives the API for the most common PreparedStatement
methods. The methods executeQuery and executeUpdate are similar to the
corresponding methods in Statement; the difference is that they do not require
any arguments. The methods setInt and setString assign values to parame-
ters. In Fig. 2.17, the call to setString assigned a department name to the first
index parameter. Note that the setString method automatically inserts the single
quotes around its value, so that the client doesn’t have to.

Most people find it more convenient to use prepared statements than to create the
SQL statements explicitly. Prepared statements are also the more efficient option
when statements are generated in a loop, as shown in Fig. 2.19. The reason is that the
database engine is able to compile a prepared statement without knowing its
parameter values. It compiles the statement once and then executes it repeatedly
inside of the loop without further recompilation.

2.2.5 Scrollable and Updatable Result Sets

Result sets in basic JDBC are forward-only and non-updatable. Full JDBC also
allows result sets to be scrollable and updatable. Clients can position such result sets
at arbitrary records, update the current record, and insert new records. Figure 2.20
gives the API for these additional methods.

The method beforeFirst positions the result set before the first record, and
the method afterLast positions the result set after the last record. The method
absolute positions the result set at exactly the specified record and returns false

public ResultSet executeQuery() throws SQLException;
public int executeUpdate() throws SQLException;
public void setInt(int index, int val) throws SQLException;
public void setString(int index, String val) throws SQLException;

Fig. 2.18 Part of the API for PreparedStatement

// Prepare the query
String qry = "select SName, GradYear from STUDENT, DEPT "

+ "where DId = MajorId and DName = ?";
PreparedStatement pstmt = conn.prepareStatement(qry);

// Repeatedly get parameters and execute the query
String major = getUserInput();
while (major != null) {

pstmt.setString(1, major);
ResultSet rs = pstmt.executeQuery();
displayResultSet(rs);
major = getUserInput();

}

Fig. 2.19 Using a prepared statement in a loop

38 2 JDBC

if there is no such record. The method relative positions the result set a relative
number of rows. In particular, relative(1) is identical to next, and
relative(-1) is identical to previous.

The methods updateInt and updateString modify the specified field of
the current record on the client. However, the modification is not sent to the database
until updateRow is called. The need to call updateRow is somewhat awkward,
but it allows JDBC to batch updates to several fields of a record into a single call to
the engine.

Insertions are handled by the concept of an insert row. This row does not exist in
the table (e.g., you cannot scroll to it). Its purpose is to serve as a staging area for new
records. The client calls moveToInsertRow to position the result set at the insert
row, then the updateXXX methods to set the values of its fields, then updateRow
to insert the record into the database, and finally moveToCurrentRow to reposi-
tion the record set to where it was before the insertion.

By default, record sets are forward-only and non-updatable. If a client wants a
more powerful record set, it specifies so in the createStatement method of
Connection. In addition to the no-arg createStatement method of basic
JDBC, there is also a two-arg method in which the client specifies scrollability and
updatability. For example, consider the following statement:

Statement stmt =
conn.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

All result sets generated from this statement will be scrollable and updatable. The
constant TYPE_FORWARD_ONLY specifies a non-scrollable result set, and
CONCUR_READ_ONLY specifies a non-updatable result set. These constants
can be mixed and matched to obtain the desired scrollability and updatability.

For an example, recall the code of Fig. 2.10, which allowed a user to iterate
through the COURSE table, deleting desired records. Figure 2.21 revises that code to

Methods used by scrollable result sets
public void beforeFirst() throws SQLException;
public void afterLast() throws SQLException;
public boolean previous() throws SQLException;
public boolean next() throws SQLException;
public boolean absolute(int pos) throws SQLException;
public boolean relative(int offset) throws SQLException;

Methods used by updatable result sets
public void updateInt(String fldname, int val) throws SQLException;
public void updateString(String fldname, String val)

public void updateRow() throws SQLException;
public void deleteRow() throws SQLException;
public void moveToInsertRow() throws SQLException;
public void moveToCurrentRow() throws SQLException;

 throws SQLException;

Fig. 2.20 Part of the API for ResultSet

2.2 Advanced JDBC 39

use updatable result sets. Note that a deleted row remains current until the call to
next.

A scrollable result set has limited use, because most of the time the client
knows what it wants to do with the output records and doesn’t need to examine
them twice. A client would typically need a scrollable result set only if it allowed
users to interact with the result of a query. For example, consider a client that
wants to display the output of a query as a Swing JTable object. The JTable
will display a scrollbar when there are too many output records to fit on the
screen and allow the user to move back and forth through the records by clicking
on the scrollbar. This situation requires the client to supply a scrollable result set
to the JTable object, so that it can retrieve previous records when the user
scrolls back.

2.2.6 Additional Data Types

In addition to integer and string values, JDBC also contains methods to manipulate
numerous other types. For example, consider the interface ResultSet. In addition
to the methods getInt and getString, there are also methods getFloat,
getDouble, getShort, getTime, getDate, and several others. Each of these
methods will read the value from the specified field of the current record and convert
it (if possible) to the indicated Java type. In general, of course, it makes most sense to
use numeric JDBC methods (such as getInt, getFloat, etc.) on numeric SQL
fields and so on. But JDBC will attempt to convert any SQL value to the Java type
indicated by the method. In particular, it is always possible to convert any SQL value
to a Java string.

DataSource ds = ...
Connection conn = ds.getConnection();
conn.setAutocommit(false);

Statement stmt = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("select * from COURSE");
while (rs.next()) {

String title = rs.getString("Title");
boolean goodCourse = getUserDecision(title);
if (!goodCourse)

rs.deleteRow();
}
rs.close();
stmt.close();

conn.commit();

Fig. 2.21 Revising the code of Fig. 2.10

40 2 JDBC

2.3 Computing in Java vs. SQL

Whenever a programmer writes a JDBC client, an important decision must be made:
What part of the computation should be performed by the database engine, and what
part should be performed by the Java client? This section examines these questions.

Consider again the StudentMajor demo client of Fig. 2.5. In that program, the
engine performs all of the computation, by executing an SQL query to compute the
join of the STUDENT and DEPT tables. The client’s only responsibility is to retrieve
the query output and print it.

In contrast, you could have written the client so that it does all of the computation,
as shown in Fig. 2.22. In that code, the engine’s only responsibility is to create result
sets for the STUDENT and DEPT tables. The client does all the rest of the work,
computing the join and printing the result.

Which of these two versions is better? Clearly, the original version is more
elegant. Not only does it have less code, but the code is easier to read. But what
about efficiency? As a rule of thumb, it is always more efficient to do as little as
possible in the client. There are two main reasons:

• There is usually less data to transfer from engine to client, which is especially
important if they are on different machines.

• The engine contains detailed specialized knowledge about how each table is
implemented and the possible ways to compute complex queries (such as
joins). It is highly unlikely that a client can compute a query as efficiently as
the engine.

For example, the code of Fig. 2.22 computes the join by using two nested loops.
The outer loop iterates through the STUDENT records. For each student, the inner
loop searches for the DEPT record matching that student’s major. Although this is a
reasonable join algorithm, it is not particularly efficient. Chapters 13 and 14 discuss
several techniques that lead to much more efficient execution.

Figures 2.5 and 2.22 exemplify the extremes of really good and really bad JDBC
code, and so comparing them was pretty easy. But sometimes, the comparison is
more difficult. For example, consider again the PreparedFindMajors demo client of
Fig. 2.17, which returns the students having a specified major department. That code
asks the engine to execute an SQL query that joins STUDENT and MAJOR.
Suppose that you know that executing a join can be time-consuming. After some
serious thought, you realize that you can get the data you need without using a join.
The idea is to use two single-table queries. The first query scans through the DEPT
table looking for the record having the specified major name and returning its DId-
value. The second query then uses that value to search the MajorID values of
STUDENT records. The code for this algorithm appears in Fig. 2.23.

This algorithm is simple, elegant, and efficient. All it requires is a sequential scan
through each of two tables and ought to be much faster than a join. You can be proud
of your effort.

Unfortunately, your effort is wasted. The new algorithm isn’t really new but just
a clever implementation of a join—in particular, it is a multibuffer product of

2.3 Computing in Java vs. SQL 41

https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_14

public class BadStudentMajor {
public static void main(String[] args) {

ClientDataSource ds = new ClientDataSource();
ds.setServerName("localhost");
ds.setDatabaseName("studentdb");
Connection conn = null;
try {

conn = ds.getConnection();
conn.setAutoCommit(false);
try (Statement stmt1 = conn.createStatement();

Statement stmt2 = conn.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);

ResultSet rs1 = stmt1.executeQuery(

ResultSet rs2 = stmt2.executeQuery(
 "

System.out.println("Name\tMajor");
while (rs1.next()) {

// get the next student
String sname = rs1.getString("SName");
String dname = null;
rs2.beforeFirst();
while (rs2.next())

// search for the major department of that student
if (rs2.getInt("DId") == rs1.getInt("MajorId")) {

dname = rs2.getString("DName");
break;

}
System.out.println(sname + "\t" + dname);

}
}
conn.commit();
conn.close();

}
catch(SQLException e) {

e.printStackTrace();
try {

if (conn != null) {
conn.rollback();
conn.close();

}
}
catch (SQLException e2) {}

}
}

}

"select * from STUDENT");

select * from DEPT")) {

Fig. 2.22 An alternative (but bad) way to code the StudentMajor client

42 2 JDBC

Chap. 14 with a materialized inner table. A well-written database engine would
know about this algorithm (among several others) and would use it to compute the
join if it turned out to be most efficient. All of your cleverness has thus been
preempted by the database engine. The moral is the same as with the
StudentMajor client: Letting the engine do the work tends to be the most
efficient strategy (as well as the easiest one to code).

One of the mistakes that beginning JDBC programmers make is that they try to do
too much in the client. The programmer might think that he or she knows a really
clever way to implement a query in Java. Or the programmer might not be sure how
to express a query in SQL and feels more comfortable coding the query in Java. In

public static void main(String[] args) {
String major = args[0];
String qry1 = "select DId from DEPT where DName = ?";
String qry2 = "select * from STUDENT where MajorId = ?";

ClientDataSource ds = new ClientDataSource();
ds.setServerName("localhost");
ds.setDatabaseName("studentdb");
try (Connection conn = ds.getConnection()) {

PreparedStatement stmt1 = conn.prepareStatement(qry1);
stmt1.setString(1, major);
ResultSet rs1 = stmt1.executeQuery();
rs1.next();

rs1.close();
stmt1.close();

PreparedStatement stmt2 = conn.prepareStatement(qry2);
stmt2.setInt(1, deptid);
ResultSet rs2 = stmt2.executeQuery();
System.out.println("Here are the " + major + " majors");
System.out.println("Name\tGradYear");
while (rs2.next()) {

String sname = rs2.getString("sname");
int gradyear = rs2.getInt("gradyear");
System.out.println(sname + "\t" + gradyear);

}
rs2.close();
stmt2.close();

}
catch(Exception e) {

e.printStackTrace();
}

}

public class CleverFindMajors {

}

Fig. 2.23 A clever way to implement the FindMajors client

2.3 Computing in Java vs. SQL 43

https://doi.org/10.1007/978-3-030-33836-7_14

each of these cases, the decision to code the query in Java is almost always wrong.
The programmer must trust that the database engine will do its job.2

2.4 Chapter Summary

• The JDBC methods manage the transfer of data between a Java client and a
database engine.

• Basic JDBC consists of five interfaces: Driver, Connection, Statement,
ResultSet, and ResultSetMetaData.

• A Driver object encapsulates the low-level details for connecting with the
engine. If a client wants to connect to an engine, it must obtain a copy of the
appropriate driver class. The driver class and its connection string are the only
vendor-specific code in a JDBC program. Everything else refers to vendor-neutral
JDBC interfaces.

• Result sets and connections hold resources that other clients might need. A JDBC
client should always close them as soon as it can.

• Every JDBC method can throw an SQLException. A client is obligated to
check for these exceptions.

• The methods of ResultSetMetaData provide information about the schema
of the output table, that is, the name, type, and display size of each field. This
information is useful when the client accepts queries directly from the user, as in
an SQL interpreter.

• A basic JDBC client calls the driver class directly. Full JDBC provides the class
DriverManager and the interface DataSource to simplify the connection
process and make it more vendor-neutral.

• The class DriverManager holds a collection of drivers. A client registers its
drivers with the driver manager, either explicitly or (preferably) via a system
properties file. When the client wants to connect to a database, it provides a
connection string to the driver manager, and it makes the connection for the
client.

• A DataSource object is even more vendor-neutral, because it encapsulates
both the driver and the connection string. A client can therefore connect to a
database engine without knowing any of the connection details. The database
administrator can create various DataSource objects and place them on a
server for clients to use.

• A basic JDBC client ignores the existence of transactions. The database engine
executes these clients in autocommitmode, which means that each SQL statement
is its own transaction.

2At least, you should start by trusting that the engine will be efficient. If you discover that your
application is running slowly because the engine is not executing the join efficiently, then you can
recode the program as in Fig. 2.23. But it is always best to avoid premature cleverness.

44 2 JDBC

• All of the database interactions in a transaction are treated as a unit. A transaction
commits when its current unit of work has completed successfully. A transaction
rolls back when it cannot commit. The database engine implements a rollback by
undoing all changes made by that transaction.

• Autocommit is a reasonable default mode for simple, unimportant JDBC
clients. If a client performs critical tasks, then its programmer should carefully
analyze its transactional needs. A client turns off autocommit by calling
setAutoCommit(false). This call causes the engine to start a new transac-
tion. The client then calls commit or rollback when it needs to complete the
current transaction and begin a new one. When a client turns off autocommit, it
must handle failed SQL statements by rolling back the associated transaction.

• A client can also use the method setTransactionIsolation to specify its
isolation level. JDBC defines four isolation levels:

– Read-Uncommitted isolation means no isolation at all. The transaction could
have problems resulting from reading uncommitted data, nonrepeatable reads,
or phantom records.

– Read-Committed isolation forbids a transaction from accessing uncommitted
values. Problems related to nonrepeatable reads and phantoms are still
possible.

– Repeatable-Read isolation extends read-committed so that reads are always
repeatable. The only possible problems are due to phantoms.

– Serializable isolation guarantees that no problems will ever occur.

• Serializable isolation is clearly to be preferred, but its implementation tends to
cause transactions to run slowly. The programmer must analyze the risk of
possible concurrency errors with the client and choose a less restrictive isolation
level only if the risk seems tolerable.

• A prepared statement has an associated SQL statement, which can have place-
holders for parameters. The client can then assign values to the parameters at a
later time and then execute the statement. Prepared statements are a convenient
way to handle dynamically generated SQL statements. Moreover, a prepared
statement can be compiled before its parameters are assigned, which means that
executing a prepared statement multiple times (such as in a loop) will be very
efficient.

• Full JDBC allows result sets to be scrollable and updatable. By default, record
sets are forward-only and non-updatable. If a client wants a more powerful record
set, it specifies so in the createStatement method of Connection.

• The rule of thumb when writing a JDBC client is to let the engine do as much work
as possible. Database engines are remarkably sophisticated and usually know the
most efficient way to obtain the desired data. It is almost always a good idea for the
client to determine an SQL statement that retrieves exactly the desired data and
submit it to the engine. In short, the programmer must trust the engine to do its job.

2.4 Chapter Summary 45

2.5 Suggested Reading

A comprehensive and well-written book on JDBC is Fisher et al. (2003), part of
which exists as an online tutorial at docs.oracle.com/javase/tutorial/
jdbc. In addition, every database vendor supplies documentation explaining the use
of its drivers, as well as other vendor-specific issues. If you intend to write clients for
a specific engine, then it is imperative to be familiar with the documentation.

Fisher, M., Ellis, J., & Bruce, J. (2003). JDBC API tutorial and reference (3rd ed.).
Addison Wesley.

2.6 Exercises

Conceptual Exercises

2.1. The Derby documentation recommends that you turn off autocommit when
executing a sequence of inserts. Explain why you think it makes this
recommendation.

Programming Exercises

2.2. Write some SQL queries for the university database. For each query, write a
program using Derby that executes that query and prints its output table.

2.3. The SimpleIJ program requires each SQL statement to be a single line of
text. Revise it so that a statement can comprise multiple lines and terminate with
a semicolon, similar to Derby’s ij program.

2.4. Write a class NetworkDataSource for SimpleDB that works similarly to
the Derby class ClientDataSource. Add this class to the package
simpledb.jdbc.network. Your code need not implement all of the
methods of the interface javax.sql.DataSource (and its superclasses);
in fact, the only one of those methods that it needs to implement is the no-arg
method getConnection(). What vendor-specific methods should
NetworkDataSource have?

2.5. It is often useful to be able to create a text file that contains SQL commands.
These commands can then be executed in batch by a JDBC program. Write a
JDBC program that reads commands from a specified text file and executes
them. Assume that each line of the file is a separate command.

2.6. Investigate how a result set can be used to populate a Java JTable object.
(Hint: You will need to extend the class AbstractTableModel.) Then
revise the demo client FindMajors to have a GUI interface that displays its
output in a JTable.

2.7. Write JDBC code for the following tasks:

(a) Import data from a text file into an existing table. The text file should have
one record per line, with each field separated by tabs. The first line of the file

46 2 JDBC

http://docs.oracle.com/javase/tutorial/jdbc
http://docs.oracle.com/javase/tutorial/jdbc

should be the names of the fields. The client should take the name of the file
and the name of the table as input, and insert the records into the table.

(b) Export data to a text file. The client should take the name of the file and the
name of the table as input, and write the contents of each record into the file.
The first line of the file should be the names of the fields.

2.8. This chapter has ignored the possibility of null values in a result set. To check
for null values, you use the method wasNull in ResultSet. Suppose you
call getInt or getString to retrieve a field value. If you call wasNull
immediately afterward, it will return true if the retrieved value was null. For
example, the following loop prints out graduation years, assuming that some of
them might be null:

while(rs.next()) {
int gradyr = rs.getInt("gradyear");
if (rs.wasNull())

System.out.println("null");
else

System.out.println(gradyr);
}

(a) Rewrite the code for the StudentMajor demo client under the assump-
tion that student names might be null.

(b) Modify the SimpleIJ demo client so that it connects to Derby (instead of
SimpleDB). Then rewrite the code under the assumption that any field value
might be null.

2.6 Exercises 47

Chapter 3
Disk and File Management

Database engines keep their data on persistent storage devices such as disks and flash
drives. This chapter investigates the properties of these devices and considers tech-
niques (such asRAID) that can improve their speed and reliability. It also examines the
two interfaces that the operating system provides for interacting with these devices—a
block-level interface and a file-level interface—and proposes a combination of the two
interfaces that is most appropriate for a database system. Finally, it considers the
SimpleDB file manager in detail, studying its API and its implementation.

3.1 Persistent Data Storage

The contents of a database must be kept persistent, so that the data will not be lost if
the database system or the computer goes down. This section examines two partic-
ularly useful hardware technologies: disk drives and flash drives. Flash drives are not
yet as widespread as disk drives, although their importance will increase as their
technology matures. Let’s begin with disk drives.

3.1.1 Disk Drives

A disk drive contains one or more rotating platters. A platter has concentric tracks,
and each track consists of a sequence of bytes. Bytes are read from (and written to)
the platter by means of a movable arm with a read/write head. The arm is positioned
at the desired track, and the head can read (or write) the bytes as they rotate under
it. Figure 3.1 depicts the top view of a one-platter disk drive. Of course, this figure is
not drawn to scale, because a typical platter has many thousands of tracks.

Modern disk drives typically have multiple platters. For space efficiency, pairs of
platters are usually joined back-to-back, creating what looks like a two-sided platter;

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_3

but conceptually, each side is still a separate platter. Each platter has its own read/
write head. These heads do not move independently; instead, they are all connected
to a single actuator, which moves them simultaneously to the same track on each
platter. Moreover, only one read/write head can be active at a time, because there is
only one datapath to the computer. Figure 3.2 depicts the side view of a multi-platter
disk drive.

The general performance of a disk drive can be measured by four values: its
capacity, rotation speed, transfer rate, and seek time.

The capacity of a drive is the number of bytes that can be stored. This value
depends on the number of platters, the number of tracks per platter, and the number
of bytes per track. Given that the platters tend to come in more or less standard sizes,
manufacturers increase capacity primarily by increasing the density of a platter, that
is, by squeezing more tracks per platter and more bytes per track. Platter capacities of
over 40 GB are now common.

Fig. 3.1 The top view of a one-platter disk drive

Fig. 3.2 The side view of a multi-platter disk drive

50 3 Disk and File Management

The rotation speed is the rate at which the platters spin and is usually given as
revolutions per minute. Typical speeds range from 5400 rpm to 15,000 rpm.

The transfer rate is the speed at which bytes pass by the disk head, to be
transferred to/from memory. For example, an entire track’s worth of bytes can be
transferred in the time it takes for the platter to make a single revolution. The transfer
rate is thus determined by both the rotation speed and the number of bytes per track.
Rates of 100 MB/s are common.

The seek time is the time it takes for the actuator to move the disk head from its
current location to a requested track. This value depends on how many tracks need to
be traversed. It can be as low as 0 (if the destination track is the same as the starting
track) and as high as 15–20 ms (if the destination and starting tracks are at different
ends of the platter). The average seek time usually provides a reasonable estimate of
actuator speed. Average seek times on modern disks are about 5 ms.

Consider the following example. Suppose that a four-platter disk drive spins at
10,000 rpm with an average seek time of 5 ms. Each platter contains 10,000 tracks,
with each track containing 500,000 bytes. Here are some calculated values1:

The capacity of the drive:
500,000 bytes/track x 10,000 tracks/platter x 4 platters/drive
= 20,000,000,000 bytes, or approximately 20GB

The transfer rate:
500,000 bytes/revolution x 10,000 revolutions/60 seconds
= 83,333,333 bytes/second, or approximately 83MB/s

3.1.2 Accessing a Disk Drive

A disk access is a request to read some bytes from the disk drive into memory or to
write some bytes from memory to disk. These bytes must be on a contiguous portion
of a track on some platter. The disk drive executes a disk access in three stages:

• It moves the disk head to the specified track. This time is called the seek time.
• It waits for the platter to rotate until the first desired byte is beneath the disk head.

This time is called the rotational delay.
• As the platter continues to rotate, it reads each byte (or writes each byte) that

appears under the disk head, until the last desired byte appears. This time is called
the transfer time.

The time required to execute a disk access is the sum of the seek time, rotational
delay, and transfer time. Each of these times is constrained by the mechanical

1Technically, 1 KB ¼ 1024 bytes, 1 MB ¼ 1,048,576 bytes, and 1 GB ¼ 1,073,741,824 bytes. For
convenience, I round them down to one thousand, one million, and one billion bytes, respectively.

3.1 Persistent Data Storage 51

movement of the disk. Mechanical movement is significantly slower than electrical
movement, which is why disk drives are so much slower than RAM. The seek time
and rotational delay are especially annoying. These two times are nothing but
overhead that every disk operation is forced to wait for.

Calculating the exact seek time and rotational delay of a disk access is imprac-
tical, because it requires knowing the previous state of the disk. Instead, you can
estimate these times by using their average. You already know about the average
seek time. The average rotational delay is easily calculated. The rotational delay can
be as low as 0 (if the first byte just happens to be under the head) and as high as the
time for a complete rotation (if the first byte just passed by the head). On the average,
you will have to wait ½ rotation until the platter is positioned where you want
it. Thus the average rotational delay is half of the rotation time.

The transfer time is also easily calculated from the transfer rate. In particular, if
the transfer rate is r bytes/second and you are transferring b bytes, then the transfer
time is b/r seconds.

For an example, consider the disk drive spinning at 10,000 rpm, having an
average seek time of 5 ms and a transfer rate of 83 MB/s. Here are some calculated
costs:

Average rotational delay:
60 seconds/minute x 1 minute/10,000 revolutions x ½ revolution
= 0.003 seconds or 3 ms

Transfer time for 1 byte:
1 byte x 1 second/83,000,000 bytes
= 0.000000012 seconds or 0.000012 ms

Transfer time for 1000 bytes:
1,000 bytes x 1 second/83,000,000 bytes
= 0.000012 seconds or 0.012 ms

Estimated time to access 1 byte:
5 ms (seek) + 3 ms (rotational delay) + 0.000012 ms (transfer)
= 8.000012 ms

Estimated time to access 1000 bytes:
5 ms (seek) + 3 ms (rotational delay) + 0.012 ms (transfer)
= 8.012 ms

Note that the estimated access time for 1000 bytes is essentially the same as for
1 byte. In other words, it makes no sense to access a few bytes from disk. In fact, you
couldn’t even if you wanted to. Modern disks are built so that each track is divided
into fixed-length sectors; a disk read (or write) must operate on an entire sector at a
time. The size of a sector may be determined by the disk manufacturer, or it may be
chosen when the disk is formatted. A typical sector size is 512 bytes.

52 3 Disk and File Management

3.1.3 Improving Disk Access Time

Because disk drives are so slow, several techniques have been developed to help
improve access times. This section considers three techniques: disk caches, cylin-
ders, and disk striping.

Disk Caches
A disk cache is memory that is bundled with the disk drive and is usually large
enough to store the contents of thousands of sectors. Whenever the disk drive reads a
sector from disk, it saves the contents of that sector in its cache; if the cache is full,
the new sector replaces an old sector. When a sector is requested, the disk drive
checks the cache. If the sector happens to be in the cache, it can be returned
immediately to the computer without an actual disk access.

Suppose that an application requests the same sector more than once in a
relatively short period. The first request will bring the sector into the cache and
subsequent requests will retrieve it from the cache, thereby saving on disk accesses.
However, this feature is not particularly useful for a database engine, because it is
already doing its own caching (as you shall see in Chap. 4). If a sector is requested
multiple times, the engine will find the sector in its own cache and not even bother to
go to the disk.

The real value of a disk cache is its ability to pre-fetch sectors. Instead of reading
just a requested sector, the disk drive can read the entire track containing that sector
into the cache, in the hope that other sectors of the track will be requested later. The
point is that reading an entire track is not that much more time-consuming than
reading a single sector. In particular, there is no rotational delay, because the disk can
read the track starting from whatever sector happens to be under the read/write head
and continue reading throughout the rotation. Compare the access times:

Time to read a sector = seek time + ½ rotation time + sector rotation time
Time to read a track = seek time + rotation time

That is, the difference between reading a single sector and a track full of sectors is
less than half the disk rotation time. If the database engine happens to request just
one other sector on the track, then reading the entire track into the cache will have
saved time.

Cylinders
The database system can improve disk access time by storing related information in
nearby sectors. For example, the ideal way to store a file is to place its contents on the
same track of a platter. This strategy is clearly best if the disk does track-based
caching, because the entire file will be read in a single disk access. But the strategy is
good even without caching, because it eliminates seek time—each time another
sector is read, the disk head will already be located at the proper track.2

2A file whose contents are wildly scattered across different tracks of the disk is said to be
fragmented. Many operating systems provide a defragmentation utility that improves access time
by relocating each file so that its sectors are as contiguous as possible.

3.1 Persistent Data Storage 53

https://doi.org/10.1007/978-3-030-33836-7_4

Suppose that a file occupies more than one track. A good idea is to store its
contents in nearby tracks of the platter so that the seek time between tracks is as small
as possible. An even better idea, however, is to store its contents on the same track of
other platters. Since the read/write heads of each platter all move together, all of the
tracks having the same track number can be accessed without any additional
seek time.

The set of tracks having the same track number is called a cylinder, because if you
look at those tracks from the top of the disk, they describe the outside of a cylinder.
Practically speaking, a cylinder can be treated as if it were a very large track, because
all its sectors can be accessed with zero additional seeks.

Disk Striping
Another way to improve disk access time is to use multiple disk drives. Two small
drives are faster than one large drive because they contain two independent actuators
and thus can respond to two different sector requests simultaneously. For example,
two 20 GB disks, working continuously, will be about twice as fast as a single 40 GB
disk. This speedup scales well: in general, N disks will be about N times as fast as a
single disk. (Of course, several smaller drives are also more expensive than a single
large drive, so the added efficiency comes at a cost.)

However, the efficiency of multiple small disks will be lost if they cannot be kept
busy. Suppose, for example, that one disk contains the frequently used files, while
the other disks contain the little-used, archived files. Then the first disk would be
doing all of the work, with the other disks standing idle most of the time. This setup
would have about the same efficiency as a single disk.

So the problem is how to balance the workload among the multiple disks. The
database administrator could try to analyze file usage in order to best distribute the
files on each disk, but that approach is not practical: It is difficult to do, hard to
guarantee, and would have to be continually reevaluated and revised over time.
Fortunately, there is a much better approach, known as disk striping.

The disk striping strategy uses a controller to hide the smaller disks from the
operating system, giving it the illusion of a single large disk. The controller maps
sector requests on the virtual disk to sector requests on the actual disks. The mapping
works as follows. Suppose there are N small disks, each having k sectors. The virtual
disk will have N�k sectors; these sectors are assigned to sectors of the real disks in an
alternating pattern. Disk 0 will contain virtual sectors 0, N, 2N, etc. Disk 1 will
contain virtual sectors 1, N+1, 2N+1, etc., and so on. The term disk striping comes
from the following imagery: If you imagine that each small disk is painted in a
different color, then the virtual disk looks like it has stripes, with its sectors painted
in alternating colors.3 See Fig. 3.3.

3Most controllers allow a user to define a stripe to be of any size, not just a sector. For example, a
track makes a good stripe if the disk drives are also performing track-based disk caching. The
optimal stripe size depends on many factors and is often determined by trial and error.

54 3 Disk and File Management

Disk striping is effective because it distributes the database equally among the
small disks. If a request arrives for a random sector, then that request will be sent to
one of the small disks with equal probability. And if several requests arrive for
contiguous sectors, they will be sent to different disks. Thus the disks are guaranteed
to be working as uniformly as possible.

3.1.4 Improving Disk Reliability by Mirroring

Users of a database expect that their data will remain safe on disk and will not get lost
or become corrupted. Unfortunately, disk drives are not completely reliable. The
magnetic material on a platter can degenerate, causing sectors to become unreadable.
Or a piece of dust or a jarring movement could cause a read/write head to scrape
against a platter, ruining the affected sectors (a “head crash”).

The most obvious way to guard against disk failure is to keep a copy of the disk’s
contents. For example, you could make nightly backups of the disk; when a disk
fails, you simply buy a new disk and copy the backup onto it. The problem with this
strategy is that you lose all of the changes to the disk that occurred between the time
that the disk was backed up and the time when it failed. The only way around this
problem is to replicate every change to the disk at the moment it occurs. In other
words, you need to keep two identical versions of the disk; these versions are said to
be mirrors of each other.

As with striping, a controller is needed to manage the two mirrored disks. When
the database system requests a disk read, the controller can access the specified
sector of either disk. When a disk write is requested, the controller performs the same
write to both disks. In theory, these two disk writes could be performed in parallel,
which would require no additional time. In practice, however, it is important to write
the mirrors sequentially to guard against a system crash. The problem is that if the
system crashes in the middle of a disk write, the contents of that sector are lost. So if
both mirrors are written in parallel, both copies of the sector could be lost, whereas if

Fig. 3.3 Disk striping

3.1 Persistent Data Storage 55

the mirrors are written sequentially, then at least one of the mirrors will be
uncorrupted.

Suppose that one disk from a mirrored pair fails. The database administrator can
recover the system by performing the following procedure:

1. Shut down the system.
2. Replace the failed disk with a new disk.
3. Copy the data from the good disk onto the new disk.
4. Restart the system.

Unfortunately, this procedure is not fool-proof. Data can still get lost if the good
disk fails while it is in the middle of copying to the new disk. The chance of both
disks failing within a couple of hours of each other is small (it is about 1 in 60,000
with today’s disks), but if the database is important, this small risk might be
unacceptable. You can reduce the risk by using three mirrored disks instead of
two. In this case, the data would be lost only if all three disks failed within the
same couple of hours; such a possibility, while nonzero, is so remote that it can
comfortably be ignored.

Mirroring can coexist with disk striping. A common strategy is to mirror the
striped disks. For example, one could store 40 GB of data on four 20 GB drives: Two
of the drives would be striped, and the other two would be mirrors of the striped
drives. Such a configuration is both fast and reliable. See Fig. 3.4.

3.1.5 Improving Disk Reliability by Storing Parity

The drawback to mirroring is that it requires twice as many disks to store the same
amount of data. This burden is particularly noticeable when disk striping is used—if
you want to store 300 GB of data using 15 20 GB drives, then you will need to buy
another 15 drives to be their mirrors. It is not unusual for large database installations
to create a huge virtual disk by striping many small disks, and the prospect of buying

Fig. 3.4 Disk striping with mirrors

56 3 Disk and File Management

an equal number of disks just to be mirrors is unappealing. It would be nice to be able
to recover from a failed disk without using so many mirror disks.

In fact, there is a clever way to use a single disk to back up any number of other
disks. The strategy works by storing parity information on the backup disk. Parity is
defined for a set S of bits as follows:

• The parity of S is 1 if it contains an odd number of 1s.
• The parity of S is 0 if it contains an even number of 1s.

In other words, if you add the parity bit to S, you will always have an even
number of 1s.

Parity has the following interesting and important property: The value of any bit
can be determined from the value of the other bits, as long as you also know the
parity. For example, suppose that S¼ {1, 0, 1}. The parity of S is 0 because it has an
even number of 1s. Suppose you lose the value of the first bit. Because the parity is
0, the set {?, 0, 1} must have had an even number of 1s; thus, you can infer that the
missing bit must be a 1. Similar deductions can be made for each of the other bits
(including the parity bit).

This use of parity extends to disks. Suppose you have N + 1 identically sized
disks. You choose one of the disks to be the parity disk and let the other N disks hold
the striped data. Each bit of the parity disk is computed by finding the parity of the
corresponding bit of all the other disks. If any disk fails (including the parity disk),
the contents of that disk can be reconstructed by looking, bit by bit, at the contents of
the other disks. See Fig. 3.5.

The disks are managed by a controller. Read and write requests are handled
basically the same as with striping—the controller determines which disk holds the
requested sector and performs that read/write operation. The difference is that write
requests must also update the corresponding sector of the parity disk. The controller
can calculate the updated parity by determining which bits of the modified sector
changed; the rule is that if a bit changes, then the corresponding parity bit must also
change. Thus, the controller requires four disk accesses to implement a sector-write

Fig. 3.5 Disk striping with parity

3.1 Persistent Data Storage 57

operation: it must read the sector and the corresponding parity sector (in order to
calculate the new parity bits), and it must write the new contents of both sectors.

This use of parity information is somewhat magical, in the sense that one disk is
able to reliably back up any number of other disks. However, this magic is accom-
panied by two drawbacks.

The first drawback to using parity is that a sector-write operation is more time-
consuming, as it requires both a read and a write from two disks. Experience
indicates that using parity reduces the efficiency of striping by a factor of about 20%.

The second drawback to parity is that the database is more vulnerable to a
non-recoverable multi-disk failure. Consider what happens when a disk fails—all
of the other disks are needed to reconstruct the failed disk, and the failure of any one
of them is disastrous. If the database is comprised of many small disks (say, around
100), then the possibility of a second failure becomes very real. Contrast this
situation with mirroring, in which a recovery from a failed disk only requires that
its mirror not fail, which is much less likely.

3.1.6 RAID

The previous sections considered three ways to use multiple disks: striping to speed
up disk access time, and mirroring and parity to guard against disk failure. These
strategies use a controller to hide the existence of the multiple disks from the
operating system and provide the illusion of a single, virtual disk. The controller
maps each virtual read/write operation to one or more operations on the underlying
disks. The controller can be implemented in software or hardware, although hard-
ware controllers are more widespread.

These strategies are part of a larger collection of strategies known as RAID, which
stands for Redundant Array of Inexpensive Disks. There are seven RAID levels.

• RAID-0 is striping, without any guard against disk failure. If one of the striped
disks fails, then the entire database is potentially ruined.

• RAID-1 is mirrored striping.
• RAID-2 uses bit striping instead of sector striping and a redundancy mechanism

based on error-correcting codes instead of parity. This strategy has proven to be
difficult to implement and has poor performance. It is no longer used.

• RAID-3 and RAID-4 use striping and parity. Their difference is that RAID-3 uses
byte striping, whereas RAID-4 uses sector striping. In general, sector striping
tends to be more efficient because it corresponds to the unit of disk access.

• RAID-5 is similar to RAID-4, except that instead of storing all the parity infor-
mation on a separate disk, the parity information is distributed among the data
disks. That is, if there are N data disks, then every Nth sector of each disk holds
parity information. This strategy is more efficient than RAID-4 because there is
no longer a single parity disk to become a bottleneck. See Exercise 3.5.

58 3 Disk and File Management

• RAID-6 is similar to RAID-5, except that it keeps two kinds of parity information.
This strategy is therefore able to handle two concurrent disk failures but needs
another disk to hold the additional parity information.

The two most popular RAID levels are RAID-1 and RAID-5. The choice between
them is really one of mirroring vs. parity. Mirroring tends to be the more solid choice
in a database installation, first because of its speed and robustness and second
because the cost of the additional disk drives has become so low.

3.1.7 Flash Drives

Disk drives are commonplace in current database systems, but they have an insur-
mountable drawback—their operation depends entirely on the mechanical activity of
spinning platters and moving actuators. This drawback makes disk drives inherently
slow compared to electronic memory and also susceptible to damage from falling,
vibration, and other shocks.

Flash memory is a more recent technology that has the potential to replace disk
drives. It uses semiconductor technology, similar to RAM, but does not require an
uninterrupted power supply. Because its activity is entirely electrical, it can access
data much more quickly than disk drives and has no moving parts to get damaged.

Flash drives currently have a seek time of around 50 microseconds, which is
about 100 times faster than disk drives. The transfer rate of current flash drives
depends on the bus interface is it connected to. Flash drives connected by fast
internal buses are comparable to those of disk drives; however, external USB flash
drives are slower than disk drives.

Flash memory wears out. Each byte can be rewritten a fixed number of times;
attempting to write to a byte that has hit its limit will cause the flash drive to fail.
Currently, this maximum is in the millions, which is reasonably high for most
database applications. High-end drives employ “wear-leveling” techniques that
automatically move frequently written bytes to less-written locations; this technique
allows the drive to operate until all bytes on the drive reach their rewrite limit.

A flash drive presents a sector-based interface to the operating system, which
makes the flash drive look like a disk drive. It is possible to employ RAID techniques
with flash drives, although striping is less important because the seek time of a flash
drive is so low.

The main impediment to flash drive adoption is its price. Prices are currently
about 100 times the price of a comparable disk drive. Although the price of both
flash and disk technology will continue to decrease, eventually flash drives will be
cheap enough to be treated as mainstream. At that point, disk drives may be relegated
to archival storage and the storage of extremely large databases.

Flash memory can also be used to enhance a disk drive by serving as a persistent
front end. If the database fits entirely in the flash memory, then the disk drive will

3.1 Persistent Data Storage 59

never get used. But as the database gets larger, the less frequently used sectors will
migrate to disk.

As far as the database engine is concerned, a flash drive has the same properties as
a disk drive: it is persistent, slow, and accessed in sectors. (It just happens to be less
slow than a disk drive.) Consequently, I shall conform to current terminology and
refer to persistent memory as “the disk” throughout the rest of this book.

3.2 The Block-Level Interface to the Disk

Disks may have different hardware characteristics—for example, they need not have
the same sector size, and their sectors may be addressed in different ways. The
operating system is responsible for hiding these (and other) details, providing its
applications with a simple interface for accessing disks.

The notion of a block is central to this interface. A block is similar to a sector
except that its size is determined by the OS. Each block has the same fixed size for all
disks. The OS maintains the mapping between blocks and sectors. The OS also
assigns a block number to each block of a disk; given a block number, the OS
determines the actual sector addresses.

The contents of a block cannot be accessed directly from the disk. Instead, the
sectors comprising the block must first be read into a memory page and accessed
from there. To modify the contents of a block, a client must read the block into a
page, modify the bytes in the page, and then write the page back to the block on disk.

An OS typically provides several methods to access disk blocks, such as:

• readblock(n,p) reads the bytes at block n of the disk into page p of
memory.

• writeblock(n,p) writes the bytes in page p of memory to block n of
the disk.

• allocate(k,n) finds k contiguous unused blocks on disk, marks them as
used, and returns the block number of the first one. The new blocks should be
located as close to block n as possible.

• deallocate(k,n) marks the k contiguous blocks starting with block n as
unused.

The OS keeps track of which blocks on disk are available for allocation and which
are not. There are two basic strategies that it can adopt: a disk map or a free list.

A disk map is a sequence of bits, one bit for each block on the disk. A bit value of
1 means the block is free, and a 0 means that the block is already allocated. The disk
map is stored on the disk, usually in its first several blocks. The OS can deallocate
block n by simply changing bit n of the disk map to 1. It can allocate k contiguous
blocks by searching the disk map for k bits in a row having the value 1 and then
setting those bits to 0.

A free list is a chain of chunks, where a chunk is a contiguous sequence of
unallocated blocks. The first block of each chunk stores two values: the length of the

60 3 Disk and File Management

chunk and the block number of the next chunk on the chain.4 The first block of the
disk contains a pointer to the first chunk on the chain. When the OS is asked to
allocate k contiguous blocks, it searches the free list for a sufficiently large chunk. It
then has the choice of removing the entire chunk from the free list and allocating it or
of splitting off a piece of length k and allocating only those blocks. When asked to
deallocate a chunk of blocks, the OS simply inserts it into the free list.

Figure 3.6 illustrates these two techniques for a disk that has blocks 0, 1, 3, 4, 8, and
9 allocated. Part (a) shows the disk map stored in block 0 of the disk; a bit value of
0 indicates an allocated block. Part (b) shows the corresponding free list. Block
0 contains the value 2, meaning that the first chunk of the free list begins at block
2. Block 2 contains the two values 1 and 5, indicating that the chunk contains 1 block
and that the next chunk begins at block 5. Similarly, the contents of block 5 indicate
that its chunk is 3 blocks long, and the next chunk is at block 10. The value of �1 in
block 10 indicates that it is the last chunk, which contains all remaining blocks.

The free list technique requires minimal extra space; all you need is to store an
integer in block 0 to point to the first block in the list. On the other hand, the disk map
technique requires space to hold the map. Figure 3.6a assumes that the map can fit
into a single block. In general, however, several blocks may be required; see
Exercise 3.7. The advantage of a disk map is that it gives the OS a better picture
of where the “holes” in the disk are. For example, disk maps are often the strategy of
choice if the OS needs to support the allocation of multiple blocks at a time.

3.3 The File-Level Interface to the Disk

The OS provides another, higher-level interface to the disk, called the file system. A
client views a file as a named sequence of bytes. There is no notion of block at this
level. Instead, a client can read (or write) any number of bytes starting at any position
in the file.

Fig. 3.6 Two ways to keep track of free blocks. (a) A disk map, (b) A free list

4Since the block is unallocated, its contents can be used by the OS for any purpose whatsoever. In
this case, it is a simple matter to use the first 8 bytes of the block to store these two integers.

3.3 The File-Level Interface to the Disk 61

The Java class RandomAccessFile provides a typical API to the file system.
Each RandomAccessFile object holds a file pointer that indicates the byte at
which the next read or write operation will occur. This file pointer can be set
explicitly by a call to seek. A call to the method readInt (or writeInt) will
also move the file pointer past the integer it read (or wrote).

An example is the code fragment in Fig. 3.7, which increments the integer stored
at bytes 7992–7995 of the file “junk”. The call to readInt reads the integer at byte
7992 and moves the file pointer past it, to byte 7996. The subsequent call to seek
sets the file pointer back to byte 7992, so that the integer at that location can be
overwritten.

Note that the calls to readInt and writeInt act as if the disk were being
accessed directly, hiding the fact that disk blocks must be accessed through pages.
An OS typically reserves several pages of memory for its own use; these pages are
called I/O buffers. When a file is opened, the OS assigns an I/O buffer to the file,
unbeknownst to the client.

The file-level interface enables a file to be thought of as a sequence of blocks. For
example, if blocks are 4096 bytes long (i.e., 4K bytes), then byte 7992 is in block
1 of the file (i.e., its second block). Block references like “block 1 of the file” are
called logical block references, because they tell us where the block is with respect to
the file, but not where the block is on disk.

Given a particular file location, the seek method determines the actual disk
block that holds that location. In particular, seek performs two conversions:

• It converts the specified byte position to a logical block reference.
• It converts the logical block reference to a physical block reference.

The first conversion is easy—the logical block number is just the byte position
divided by the block size. For example, assuming 4K-byte blocks, byte 7992 is in
block 1 because 7992/4096 ¼ 1 (integer division).

The second conversion is harder and depends on how a file system is
implemented. The remainder of this section considers three file implementation
strategies: contiguous allocation, extent-based allocation, and indexed allocation.
Each of these three strategies stores its information about file locations on disk, in a
file system directory. The seek method accesses the blocks of this directory when it
converts logical block references to physical block references. You can think of
these disk accesses as a hidden “overhead” imposed by the file system. Operating
systems try to minimize this overhead, but they cannot eliminate it.

RandomAccessFile f = new RandomAccessFile("junk", "rws");
f.seek(7992);
int n = f.readInt();
f.seek(7992);
f.writeInt(n+1);
f.close();

Fig. 3.7 Using the file-system interface to the disk

62 3 Disk and File Management

Continuous Allocation
Contiguous allocation is the simplest strategy, storing each file as a sequence of
contiguous blocks. To implement contiguous allocation, the file system directory
holds the length of each file and the location of its first block. Mapping logical to
physical block references is easy—if the file begins at disk block b, then block N of
the file is in disk block b + N. Figure 3.8 depicts the directory for a file system
containing two files: a 48-block long file named “junk” that begins at block 32 and a
16-block long file named “temp” that begins at block 80.

Contiguous allocation has two problems. The first problem is that a file cannot be
extended if there is another file immediately following it. The file “junk” in Fig. 3.8
is an example of such a file. Thus, clients must create their files with the maximum
number of blocks they might need, which leads to wasted space when the file is not
full. This problem is known as internal fragmentation. The second problem is that as
the disk gets full, it may have lots of small-sized chunks of unallocated blocks, but
no large chunks. Thus, it may not be possible to create a large file, even though the
disk contains plenty of free space. This problem is known as external fragmentation.
In other words:

• Internal fragmentation is the wasted space inside a file.
• External fragmentation is the wasted space is outside all the files.

Extent-Based Allocation
The extent-based allocation strategy is a variation of contiguous allocation that
reduces both internal and external fragmentation. Here, the OS stores a file as a
sequence of fixed-length extents, where each extent is a contiguous chunk of blocks.
A file is extended one extent at a time. The file system directory for this strategy
contains, for each file, a list of the first blocks of each extent of the file.

For example, suppose that the OS stores files in 8-block extents. Figure 3.9
depicts the file system directory for the two files “junk” and “temp.” These files
have the same size as before but are now split into extents. The file “junk” has six
extents, and the file “temp” has two extents.

To find the disk block that holds block N of the file, the seekmethod searches the
file system directory for the extent list for that file; it then searches the extent list to

Name First Block Length

junk 32 48

temp 80 16

Fig. 3.8 A file system directory for contiguous allocation

Name Extents

junk 32, 480, 696, 72, 528, 336

temp 64, 8

Fig. 3.9 A file system directory for extent-based allocation

3.3 The File-Level Interface to the Disk 63

determine the extent that contains block N, from which it can calculate the location of
the block. For example, consider the file directory of Fig. 3.9. The location of block
21 of the file “junk” can be calculated as follows:

1. Block 21 is in extent 2 of the file, because 21/8 ¼ 2 (integer division).
2. Extent 2 begins at logical block 2�8 ¼ 16 of the file.
3. So block 21 is in block 21-16 ¼ 5 of that extent.
4. The file’s extent list says that extent 2 begins at physical block 696.
5. Thus the location of block 21 is 696 + 5 ¼ 701.

Extent-based allocation reduces internal fragmentation because a file can waste
no more than an extent’s worth of space. And external fragmentation is eliminated
because all extents are the same size.

Indexed Allocation
Indexed allocation takes a different approach—it doesn’t even try to allocate files in
contiguous chunks. Instead, each block of the file is allocated individually (in one-
block-long extents, if you will). The OS implements this strategy by allocating a
special index block with each file, which keeps track of the disk blocks allocated to
that file. That is, an index block ib can be thought of as an array of integers, where
the value of ib[N] is the disk block that holds logical block N of the file.
Calculating the location of any logical block is thus trivial—you just look it up in
the index block.

Figure 3.10a depicts the file system directory for the two files “junk” and “temp.”
The index block for “junk” is block 34. Figure 3.10b gives the first few integers in
that block. From this figure, it is easy to see that block 1 of file “junk” is at block
103 of the disk.

This approach has the advantage that blocks are allocated one at a time, so there is
no fragmentation. Its main problem is that files will have a maximum size, because
they can have only as many blocks as there are values in an index block. The UNIX
file system addresses this problem by supporting multiple levels of index block,
thereby allowing the maximum file size to be very large. See Exercises 3.12 and
3.13.

(a)

Name Index Block

junk 34

temp 439

(b)

32 103 16 17 98 ...

Block 34:

Fig. 3.10 A file system directory for indexed allocation. (a) The directory table, (b) The contents of
index block 34

64 3 Disk and File Management

3.4 The Database System and the OS

The OS provides two levels of support for disk access: block-level support and file-
level support. Which level should the implementers of a database engine choose?

Choosing to use block-level support has the advantage of giving the engine
complete control over which disk blocks are used for what purposes. For example,
frequently used blocks can be stored in the middle of the disk, where the seek time
will be less. Similarly, blocks that tend to be accessed together can be stored near
each other. Another advantage is that the database engine is not constrained by OS
limitations on files, allowing it to support tables that are larger than the OS limit or
span multiple disk drives.

On the other hand, the use of the block-level interface has several disadvantages:
such a strategy is complex to implement; it requires that the disk be formatted and
mounted as a raw disk, that is, a disk whose blocks are not part of the file system; and
it requires that the database administrator have extensive knowledge about block
access patterns in order to fine-tune the system.

The other extreme is for the database engine to use the OS file system as much as
possible. For example, every table could be stored in a separate file, and the engine
would access records using file-level operations. This strategy is much easier to
implement, and it allows the OS to hide the actual disk accesses from the database
system. This situation is unacceptable for two reasons. First, the database system
needs to know where the block boundaries are, so that it can organize and retrieve
data efficiently. And second, the database system needs to manage its own pages,
because the OS way of managing I/O buffers is inappropriate for database queries.
You shall encounter these issues in later chapters.

A compromise strategy is for the database system to store all of its data in one or
more OS files, but to treat the files as if they were raw disks. That is, the database
system accesses its “disk” using logical file blocks. The OS is responsible for
mapping each logical block reference to its corresponding physical block, via the
seek method. Because seek may incur disk accesses when it examines the file
system directory, the database system will not be in complete control of the disk.
However, these additional blocks are usually insignificant compared with the large
number of blocks accessed by the database system. Thus the database system is able
to use the high-level interface to the OS while maintaining significant control over
disk accesses.

This compromise strategy is used in many database systems. Microsoft Access
keeps everything in a single .mdb file, whereas Oracle, Derby, and SimpleDB use
multiple files.

3.4 The Database System and the OS 65

Chao Yang

Chao Yang

3.5 The SimpleDB File Manager

The portion of the database engine that interacts with the operating system is called
the file manager. This section examines the file manager for SimpleDB.
Section 3.5.1 examines how clients use the file manager; Sect. 3.5.2 examines its
implementation.

3.5.1 Using the File Manager

A SimpleDB database is stored in several files. There is a file for each table and each
index, as well as a log file and several catalog files. The SimpleDB file manager
provides block-level access to these files, via the package simpledb.file. This
package exposes three classes: BlockId, Page, and FileMgr. Their API appears
in Fig. 3.11.

A BlockId object identifies a specific block by its file name and logical block
number. For example, the statement,

BlockId blk = new BlockId("student.tbl", 23)

BlockId
public BlockId(String filename, int blknum);
public String filename();
public int number();

Page
public Page(int blocksize);
public Page(byte[] b);
public int getInt(int offset);
public byte[] getBytes(int offset);
public String getString(int offset);
public void setInt(int offset, int val);
public void setBytes(int offset, byte[] val);
public void setString(int offset, String val);
public int maxLength(int strlen);

FileMgr
public FileMgr(String dbDirectory, int blocksize);
public void read(BlockId blk, Page p);
public void write(BlockId blk, Page p);
public BlockId append(String filename);
public boolean isNew();
public int length(String filename);
public int blockSize();

Fig. 3.11 The API for the SimpleDB file manager

66 3 Disk and File Management

creates a reference to block 23 of the file student.tbl. The methods
filename and number return its file name and block number.

A Page object holds the contents of a disk block. Its first constructor creates a
page that gets its memory from an operating system I/O buffer; this constructor is
used by the buffer manager. Its second constructor creates a page that gets its
memory from a Java array; this constructor is used primarily by the log manager.
The various get and set methods enable clients to store or access values at
specified locations of the page. A page can hold three value types: ints, strings,
and “blobs” (i.e., arbitrary arrays of bytes). Corresponding methods for additional
types can be added if desired; see Exercise 3.17. A client can store a value at any
offset of the page but is responsible for knowing what values have been stored where.
An attempt to get a value from the wrong offset will have unpredictable results.

The FileMgr class handles the actual interaction with the OS file system. Its
constructor takes two arguments: a string denoting the name of the database and an
integer denoting the size of each block. The database name is used as the name of the
folder that contains the files for the database; this folder is located in the engine’s
current directory. If no such folder exists, then a folder is created for a new database.
The method isNew returns true in this case and false otherwise. This method is
needed for the proper initialization of a new database.

The read method reads the contents of the specified block into the specified
page. The write method performs the inverse operation, writing the contents of a
page to the specified block. The lengthmethod returns the number of blocks in the
specified file.

The engine has one FileMgr object, which is created during system startup. The
class SimpleDB (in package simpledb.server) creates the object, and its
method fileMgr returns the created object.

The class FileTest in Fig. 3.12 illustrates the use of these methods. This code
has three sections. The first section initializes the SimpleDB object; the three
arguments specify that the engine should use the database named “studentdb,”
using 400-byte blocks and a pool of 8 buffers. The 400-byte block size is the default
for SimpleDB. It is artificially small so that you can easily create demo databases
having a lot of blocks. In a commercial database system, this value would be set to
the block size defined by the operating system; a typical block size is 4K bytes. The
buffer pool will be discussed in Chap. 4.

The second section of Fig. 3.12 writes the string “abcdefghijklm” locations 88 of
the second block of the file “testfile.” It then calls the maxLength method to
determine the maximum length of the string, so it can determine the location
following the string. It then writes the integer 345 to that location.

The third section reads this block into another page and extracts the two values
from it.

3.5 The SimpleDB File Manager 67

https://doi.org/10.1007/978-3-030-33836-7_4

3.5.2 Implementing the File Manager

This subsection examines the implementation of the three file manager classes.

The class BlockId
The code for class BlockId appears in Fig. 3.13. In addition to straightforward
implementations of the methods fileName and number, the class also implements
equals, hashCode, and toString.

The class Page
The code to implement class Page appears in Fig. 3.14. Each page is implemented
using a Java ByteBuffer object. A ByteBuffer object wraps a byte array with
methods to read and write values at arbitrary locations of the array. These values can
be primitive values (such as integers) as well as smaller byte arrays. For example,
Page’s setInt method saves an integer in the page by calling the
ByteBuffer’s putInt method. Page’s setBytes method saves a blob as
two values: first the number of bytes in the specified blob and then the bytes
themselves. It calls ByteBuffer’s putInt method to write the integer and the
method put to write the bytes.

The ByteBuffer class does not have methods to read and write strings, so
Page chooses to write string values as blobs. The Java String class has a method
getBytes, which converts a string into a byte array; it also has a constructor that
converts the byte array back to a string. Thus, Page’s setString method calls

public class FileTest {
public static void main(String[] args) throws IOException {
SimpleDB db = new SimpleDB("filetest", 400, 8);
FileMgr fm = db.fileMgr();

BlockId blk = new BlockId("testfile", 2);
Page p1 = new Page(fm.blockSize());
int pos1 = 88;
p1.setString(pos1, "abcdefghijklm");
int size = Page.maxLength("abcdefghijklm".length());
int pos2 = pos1 + size;
p1.setInt(pos2, 345);
fm.write(blk, p1);

Page p2 = new Page(fm.blockSize());
fm.read(blk, p2);
System.out.println("offset " + pos2 +
 " contains " + p2.getInt(pos2));

System.out.println("offset " + pos1 +

}
}

" contains " + p2.getString(pos1));

Fig. 3.12 Testing the SimpleDB file manager

68 3 Disk and File Management

getBytes to convert the string to bytes and then writes those bytes as a blob.
Similarly, Page’s getString method reads a blob from the byte buffer and then
converts the bytes to a string.

The conversion between a string and its byte representation is determined by a
character encoding. Several standard encodings exist, such as ASCII and Unicode-
16. The Java Charset class contains objects that implement many of these
encodings. The constructor for String and its getBytes method take a
Charset argument. In Fig. 3.14 you can see that Page uses the ASCII encoding,
but you can change the CHARSET constant to get an encoding of your preference.

A charset chooses how many bytes each character encodes to. ASCII uses one
byte per character, whereas Unicode-16 uses between 2 bytes and 4 bytes per
character. Consequently, a database engine may not know exactly how many bytes
a given string will encode to. Page’s maxLengthmethod calculates the maximum
size of the blob for a string having a specified number of characters. It does so by
multiplying the number of characters by the max number of bytes per character and
adding 4 bytes for the integer that is written with the bytes.

public class BlockId {
private String filename;
private int blknum;

public BlockId(String filename, int blknum) {
this.filename = filename;
this.blknum = blknum;

}

public String fileName() {
return filename;

}

public int number() {
return blknum;

}

public boolean equals(Object obj) {
BlockId blk = (BlockId) obj;
return filename.equals(blk.filename) && blknum == blk.blknum;

}

public String toString() {
return "[file " + filename + ", block " + blknum + "]";

}

public int hashCode() {
return toString().hashCode();

}
}

Fig. 3.13 The code for the SimpleDB class BlockId

3.5 The SimpleDB File Manager 69

public class Page {
private ByteBuffer bb;
public static final Charset CHARSET = StandardCharsets.US_ASCII;

// A constructor for creating data buffers
public Page(int blocksize) {

bb = ByteBuffer.allocateDirect(blocksize);
}

// A constructor for creating log pages
public Page(byte[] b) {

bb = ByteBuffer.wrap(b);
}

public int getInt(int offset) {
return bb.getInt(offset);

}

public void setInt(int offset, int n) {
bb.putInt(offset, n);

}

public byte[] getBytes(int offset) {
bb.position(offset);
int length = bb.getInt();
byte[] b = new byte[length];
bb.get(b);
return b;

}
public void setBytes(int offset, byte[] b) {

bb.position(offset);
bb.putInt(b.length);
bb.put(b);

}
public String getString(int offset) {

byte[] b = getBytes(offset);
return new String(b, CHARSET);

}

public void setString(int offset, String s) {
byte[] b = s.getBytes(CHARSET);
setBytes(offset, b);

}

public static int maxLength(int strlen) {
float bytesPerChar = CHARSET.newEncoder().maxBytesPerChar();
return Integer.BYTES + (strlen * (int)bytesPerChar);

}

// a package private method, needed by FileMgr
ByteBuffer contents() {

bb.position(0);
return bb;

}
}

Fig. 3.14 The code for the SimpleDB class Page

70 3 Disk and File Management

The byte array that underlies a ByteBuffer object can come either from a Java
array or from the operating system’s I/O buffers. The Page class has two construc-
tors, each corresponding to a different kind of underlying byte array. Since I/O
buffers are a valuable resource, the use of the first constructor is carefully controlled
by the buffer manager and will be discussed in the next chapter. Other components
of the database engine (such as the log manager) use the other constructor.

The class FileMgr
The code for class FileMgr appears in Fig. 3.15. Its primary job is to implement
methods that read and write pages to disk blocks. Its read method seeks to the
appropriate position in the specified file and reads the contents of that block to the
byte buffer of the specified page. The write method is similar. The append
method seeks to the end of the file and writes an empty array of bytes to it, which
causes the OS to automatically extend the file. Note how the file manager always
reads or writes a block-sized number of bytes from a file and always at a block
boundary. In doing so, the file manager ensures that each call to read, write, or
append will incur exactly one disk access.

Each RandomAccessFile object in the map openFiles corresponds to an
open file. Note that files are opened in “rws” mode. The “rw” portion specifies that
the file is open for reading and writing. The “s” portion specifies that the operating
system should not delay disk I/O in order to optimize disk performance; instead,
every write operation must be written immediately to the disk. This feature
ensures that the database engine knows exactly when disk writes occur, which will
be especially important for implementing the data recovery algorithms of Chap. 5.

The methods read, write, and append are synchronized, which means that
only one thread can be executing them at a time. Synchronization is needed to
maintain consistency when methods share updateable objects, such as the
RandomAccessFile objects. For example, the following scenario could occur if
read were not synchronized: Suppose that two JDBC clients, each running in their
own thread, are trying to read different blocks from the same file. Thread A runs first.
It starts to execute read but gets interrupted right after the call to f.seek, that is, it
has set the file position but has not yet read from it. Thread B runs next and executes
read to completion.When thread A resumes, the file position will have changed, but
the thread will not notice it; thus, it will incorrectly read from the wrong block.

There is only one FileMgr object in SimpleDB, which is created by the
SimpleDB constructor in package simpledb.server. The FileMgr construc-
tor determines if the specified database folder exists and creates it if necessary. The
constructor also removes any temporary files that might have been created by the
materialized operators of Chap. 13.

3.6 Chapter Summary

• A disk drive contains one or more rotating platters. A platter has concentric
tracks, and each track consists of sectors. The size of a sector is determined by the
disk manufacturer; a common sector size is 512 bytes.

3.6 Chapter Summary 71

https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_13

public class FileMgr {
private File dbDirectory;
private int blocksize;
private boolean isNew;
private Map<String,RandomAccessFile> openFiles = new HashMap<>();

public FileMgr(File dbDirectory, int blocksize) {
this.dbDirectory = dbDirectory;
this.blocksize = blocksize;
isNew = !dbDirectory.exists();

// create the directory if the database is new
if (isNew)

dbDirectory.mkdirs();

// remove any leftover temporary tables
for (String filename : dbDirectory.list())

if (filename.startsWith("temp"))
new File(dbDirectory, filename).delete();

}

public synchronized void read(BlockId blk, Page p) {
try {

RandomAccessFile f = getFile(blk.fileName());
f.seek(blk.number() * blocksize);
f.getChannel().read(p.contents());

}
catch (IOException e) {

throw new RuntimeException("cannot read block " + blk);
}

}

public synchronized void write(BlockId blk, Page p) {
try {

RandomAccessFile f = getFile(blk.fileName());
f.seek(blk.number() * blocksize);
f.getChannel().write(p.contents());

}
catch (IOException e) {

throw new RuntimeException("cannot write block" + blk);
}

}

public synchronized BlockId append(String filename) {
int newblknum = size(filename);
BlockId blk = new BlockId(filename, newblknum);
byte[] b = new byte[blocksize];
try {

RandomAccessFile f = getFile(blk.fileName());
f.seek(blk.number() * blocksize);
f.write(b);

}

Fig. 3.15 The code for the SimpleDB class FileMgr

72 3 Disk and File Management

• Each platter has its own read/write head. These heads do not move independently;
instead, they are all connected to a single actuator, which moves them simulta-
neously to the same track on each platter.

• A disk drive executes a disk access in three stages:

– The actuator moves the disk head to the specified track. This time is called the
seek time.

– The drive waits for the platter to rotate until the first desired byte is beneath the
disk head. This time is called the rotational delay.

– The bytes rotating under the disk head are read (or written). This time is called
the transfer time.

• Disk drives are slow because their activity is mechanical. Access times can be
improved by using disk caches, cylinders, and disk striping. A disk cache allows

return (int)(f.length() / blocksize);
}
catch (IOException e) {

throw new RuntimeException("cannot access " + filename);
}

}

public boolean isNew() {
return isNew;

}

public int blockSize() {
return blocksize;

}
private RandomAccessFile getFile(String filename)
 throws IOException {

RandomAccessFile f = openFiles.get(filename);
if (f == null) {

File dbTable = new File(dbDirectory, filename);
f = new RandomAccessFile(dbTable, "rws");
openFiles.put(filename, f);

}
return f;

}
}

catch (IOException e) {
throw new RuntimeException("cannot append block" + blk);

}
return blk;

}

public int length(String filename) {
try {

RandomAccessFile f = getFile(filename);

Fig. 3.15 (continued)

3.6 Chapter Summary 73

the disk to pre-fetch sectors by reading an entire track at a time. A cylinder
consists of the tracks on each platter having the same track number. Blocks on the
same cylinder can be accessed with no additional seek time. Disk striping
distributes the contents of a virtual disk among several small disks. Speedup
occurs because the small disks can operate simultaneously.

• RAID techniques can be used to improve disk reliability. The basic RAID levels
are:

– RAID-0 is striping, with no additional reliability. If a disk fails, the entire
database is effectively ruined.

– RAID-1 adds mirroring to the striped disks. Each disk has an identical mirror
disk. If a disk fails, its mirror can be used to reconstruct it.

– RAID-4 uses striping with an additional disk to hold redundant parity infor-
mation. If a disk fails, its contents can be reconstructed by combining the
information on the other disks with the parity disk.

• The RAID techniques require a controller to hide the existence of the multiple
disks from the operating system and provide the illusion of a single, virtual disk.
The controller maps each virtual read/write operation to one or more operations
on the underlying disks.

• Disk technology is being challenged by flash memory. Flash memory is persistent
but faster than disk because it is completely electronic. However, since flash is
still significantly slower than RAM, the operating system treats a flash drive the
same as a disk drive.

• The operating system hides the physical details of disk and flash drives from its
clients by providing a block-based interface to them. A block is similar to a sector,
except that its size is OS-defined. A client accesses the contents of a device by
block number. The OS keeps track of which blocks on disk are available for
allocation, by using either a disk map or a free list.

• A page is a block-sized area of memory. A client modifies a block by reading its
contents into a page, modifying the page, and then writing the page back to the
block.

• The operating system also provides a file-level interface to the disk. A client
views a file as a named sequence of bytes.

• An operating system can implement files using contiguous allocation, extent-
based allocation, or indexed allocation. Contiguous allocation stores each file as
a sequence of contiguous blocks. Extent-based allocation stores a file a sequence
of extents, where each extent is a contiguous chunk of blocks. Indexed allocation
allocates each block of the file individually. A special index block is kept with
each file, to keep track of the disk blocks allocated to that file.

• A database system can choose to use either the block-level or the file-level
interface to the disk. A good compromise is to store the data in files but to access
the files at the block level.

74 3 Disk and File Management

3.7 Suggested Reading

The article Chen et al. (1994) provides a detailed survey of the various RAID
strategies and their performance characteristics. A good book that discusses
UNIX-based file systems is von Hagen (2002), and one that discusses Windows
NTFS is Nagar (1997). Brief overviews of various file system implementations can
be found in many operating systems textbooks, such as Silberschatz et al. (2004).

Flash memory has the property that overwriting an existing value is significantly
slower than writing a completely new value. Consequently, there has been a lot of
research aimed at flash-based file systems that do not overwrite values. Such file
systems store updates in a log, similar to the log of Chap. 4. The articles Wu and Kuo
(2006) and Lee and Moon (2007) examine these issues.

Chen, P., Lee, E., Gibson, G., & Patterson, D. (1994) RAID: High-performance,
reliable secondary storage. ACM Computing Surveys, 26(2), 145–185.

Lee, S., & Moon, B. (2007) Design of flash-based DBMS: An in-page logging
approach. Proceedings of the ACM-SIGMOD Conference, pp. 55–66.

Nagar, R. (1997) Windows NT file system internals. O’Reilly.
Silberschatz, A., Gagne, G., & Galvin, P. (2004) Operating system concepts.

Addison Wesley.
von Hagen, W. (2002) Linux filesystems. Sams Publishing.
Wu, C., & Kuo, T. (2006) The design of efficient initialization and crash recovery for

log-based file systems over flash memory. ACM Transactions on Storage, 2(4),
449–467.

3.8 Exercises

Conceptual Exercises

3.1. Consider a single-platter disk containing 50,000 tracks and spinning at
7200 rpm. Each track holds 500 sectors, and each sector contains 512 bytes.

(a) What is the capacity of the platter?
(b) What is the average rotational delay?
(c) What is the maximum transfer rate?

3.2. Consider an 80 GB disk drive spinning at 7200 rpm with a transfer rate of
100 MB/s. Assume that each track contains the same number of bytes.

(a) How many bytes does each track contain? How many tracks does the disk
contain?

(b) If the disk were spinning at 10,000 rpm, what would the transfer rate be?

3.3. Suppose that you have 10 20 GB disk drives, each of which has 500 sectors
per track. Suppose that you want to create a virtual 200 GB drive by striping

3.8 Exercises 75

https://doi.org/10.1007/978-3-030-33836-7_4

the small disks, with the size of each stripe being an entire track instead of just
a single sector.

(a) Suppose that the controller receives a request for virtual sector M. Give the
formula that computes the corresponding actual drive and sector number.

(b) Give a reason why track-sized stripes might be more efficient than sector-
sized stripes.

(c) Give a reason why track-sized stripes might be less efficient than sector-
sized stripes.

3.4. All of the failure-recovery procedures discussed in this chapter require the
system to be shut down while the failed disk is replaced. Many systems cannot
tolerate downtime of any amount, and yet they also don’t want to lose data.

(a) Consider the basic mirroring strategy. Give an algorithm for restoring a
failed mirror without any downtime. Does your algorithm increase the risk
of a second disk failure? What should be done to reduce this risk?

(b) Modify the parity strategy to similarly eliminate downtime. How do you
deal with the risk of a second disk failure?

3.5. One consequence of the RAID-4 parity strategy is that the parity disk gets
accessed for every disk write operation. One suggested improvement is to omit
the parity disk and instead “stripe” the data disks with the parity information.
For example, sectors 0, N, 2N, etc. of disk 0 will contain parity information, as
will sectors 1, N + 1, 2N + 1, etc. of disk 1, and so on. This improvement is
called RAID-5.

(a) Suppose a disk fails. Explain how it will get recovered.
(b) Show that with this improvement, disk reads and writes still require the

same number of disk accesses as RAID-4.
(c) Explain why this improvement nevertheless leads to more efficient disk

accesses.

3.6. Consider Fig. 3.5, and suppose that one of the striped disks fails. Show how to
reconstruct its contents using the parity disk.

3.7. Consider a 1 GB database, stored in a file whose block size is 4K bytes.

(a) How many blocks will the file contain?
(b) Suppose that the database system uses a disk map to manage its free

blocks. How many additional blocks are needed to hold the disk map?

3.8. Consider Fig. 3.6. Draw a picture of the disk map and the free list after the
following operations have been executed:

allocate(1,4); allocate(4,10); allocate(5,12);

3.9. Figure 3.16 depicts a RAID-4 system in which one of the disks has failed. Use
the parity disk to reconstruct its values.

3.10. The free list allocation strategy can wind up with two contiguous chunks on
the free list.

76 3 Disk and File Management

(a) Explain how to modify the free-list technique so that contiguous chunks
can be merged.

(b) Explain why merging unallocated chunks is a good idea when files are
allocated contiguously.

(c) Explain why merging is not important for extent-based or indexed file
allocation.

3.11. Suppose that the OS uses extent-based file allocation using extents of size
12, and suppose that the extent list for a file is [240, 132, 60, 252, 12, 24].

(a) What is the size of the file?
(b) Calculate the physical disk block of logical blocks 2, 12, 23, 34, and 55 of

the file.

3.12. Consider a file implementation that uses indexed file allocation. Assuming that
the block size is 4K bytes, what is the size of the largest possible file?

3.13. In UNIX, the directory entry for a file points to a block called an inode. In one
implementation of an inode, the beginning of the block holds various header
information, and its last 60 bytes contains 15 integers. The first 12 of these
integers are the physical locations of the first 12 data blocks in the file. The
next two integers are the location of two index blocks, and the last integer is the
location of a double-index block. An index block consists entirely of block
numbers of the next data blocks in the file; a double-index block consists
entirely of block numbers of index blocks (whose contents point to data
blocks).

(a) Assuming again that the block size is 4K bytes, how many data blocks
does an index block refer to?

(b) Ignoring the double-index block, what is the largest possible UNIX file
size?

(c) How many data blocks does a double-index block refer to?
(d) What is the largest possible UNIX file size?

Fig. 3.16 A failed physical disk in a RAID-4 system

3.8 Exercises 77

(e) How many block accesses are required to read the last data block of a
1 GB file?

(f) Give an algorithm to implement the seek function for a UNIX file.

3.14. The movie and song title “On a clear day you can see forever” is occasionally
misquoted as “On a clear disk you can seek forever.” Comment on the
cleverness and accuracy of the pun.

Programming Exercises

3.15. A database system often contains diagnostic routines.

(a) Modify the class FileMgr so that it keeps useful statistics, such as the
number of blocks read/written. Add new method(s) to the class that will
return these statistics.

(b) Modify the methods commit and rollback of the class
RemoteConnectionImpl (in the simpledb.jdbc.network
package) so that they print these statistics. Do the same for the class
EmbeddedConnection (in the simpledb.jdbc.embedded pack-
age). The result will be that the engine prints the statistics for each SQL
statement it executes.

3.16. The methods setInt, setBytes, and setString of class Page do not
check that the new value fits in the page.

(a) Modify the code to perform the checks. What should you do if the check
fails?

(b) Give a reason why it is reasonable to not perform the checks.

3.17. The class Page has methods to get/set integers, blobs, and strings. Modify the
class to handle other types, such as short integers, booleans, and dates.

3.18. The class Page implements a string by creating a blob from the string’s
characters. Another way to implement a string is to write each character
individually, appending a delimiter character at the end. A reasonable delim-
iter character in Java is ‘\0’. Modify the class accordingly.

78 3 Disk and File Management

Chapter 4
Memory Management

This chapter studies two components of the database engine: the log manager and
the buffer manager. Each of these components is responsible for certain files: The
log manager is responsible for the log file, and the buffer manager is responsible for
the data files.

Both components face the problem of how to efficiently manage the reading and
writing of disk blocks with main memory. The contents of a database is typically
much larger than main memory, and so these components may need to shuttle blocks
in and out of memory. This chapter examines their memory needs and the memory-
management algorithms they use. The log manager supports only sequential access
to the log file and has a simple, optimal memory-management algorithm. On the
other hand, the buffer manager must support arbitrary access to user files, which is a
much more difficult challenge.

4.1 Two Principles of Database Memory Management

Recall that the only way that a database engine can read a disk value is to read the
block containing it into a page of memory, and the only way to write a disk value is
to write the modified page back to its block. Database engines follow two important
principles when they move data between the disk and memory: minimize disk
accesses, and don’t rely on virtual memory.

Principle 1: Minimize Disk Accesses
Consider an application that reads data from the disk, searches through the data,
performs various computations, makes some changes, and writes the data back. How
can you estimate the amount of time this will take? Recall that RAM operations are
over 1000 times faster than flash and 100,000 times faster than disk. This means that
in most practical situations, the time it takes to read/write the block from disk is at

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_4
Chao Yang

least as large as the time it takes to process the block in RAM. Consequently, the
single most important thing a database engine can do is minimize block accesses.

One way to minimize block accesses is to avoid accessing a disk block multiple
times. This kind of problem occurs in many areas of computing and has a standard
solution known as caching. For example, a CPU has a local hardware cache of
previously executed instructions; if the next instruction is in the cache, the CPU does
not have to load it from RAM. For another example, a browser keeps a cache of
previously accessed web pages; if a user requests a page that happens to be in the
cache (say, by hitting the browser’s Back button), the browser can avoid retrieving it
from the network.

A database engine uses memory pages to cache disk blocks. By keeping track of
which pages contain the contents of which blocks, the engine may be able to satisfy a
client request by using an existing page and thereby avoid a disk read. Similarly, the
engine writes pages to disk only when necessary, in the hope that multiple changes to
a page can be made via a single disk write.

The need to minimize disk accesses is so important that it pervades the entire
implementation of the database engine. For example, the retrieval algorithms used
by the engine are chosen specifically because of the frugal way that they access the
disk. And when an SQL query has several possible retrieval strategies, the planner
will choose the strategy that it thinks will require the fewest number of disk accesses.

Principle 2: Don’t Rely on Virtual Memory
Modern operating systems support virtual memory. The operating system gives each
process the illusion that it has a very large amount of memory in which to store its
code and data. A process can allocate objects arbitrarily in its virtual memory space;
the operating system maps each virtual page to an actual page of physical memory.

The virtual memory space supported by an operating system is usually far larger
than a computer’s physical memory. Since not all virtual pages fit in physical
memory, the OS must store some of them on disk. When a process accesses a virtual
page not in memory, a page swap occurs. The OS chooses a physical page, writes the
contents of that page to disk (if it had been modified), and reads the saved contents of
the virtual page from disk to that page.

The most straightforward way for the database engine to manage disk blocks is to
give each block its own virtual page. For example, it could keep an array of pages for
each file, having one slot for each block of the file. These arrays would be huge, but
they would fit in virtual memory. As the database system accessed these pages, the
virtual memory mechanism would swap them between disk and physical memory, as
needed. This is a simple, easily implemented strategy. Unfortunately, it has a serious
problem, which is that the operating system, not the database engine, controls when
pages get written to disk. Two issues arise.

The first issue is that the operating system’s page-swapping strategy can impair
the database engine’s ability to recover after a system crash. The reason, as you shall
see in Chap. 5, is that a modified page will have some associated log records, and
these log records must be written to disk before the page. (Otherwise, the log records
will not be available to help the database recover after a system crash.) Since the OS

80 4 Memory Management

https://doi.org/10.1007/978-3-030-33836-7_5
Chao Yang

Chao Yang

does not know about the log, it may swap out a modified page without writing its log
records and thereby subvert the recovery mechanism.1

The second issue is that the operating system has no idea which pages are
currently in use and which pages the database engine no longer cares about. The
OS can make an educated guess, such as choosing to swap the page that was least
recently accessed. But if the OS guesses incorrectly, it will swap out a page that will
be needed again, causing two unnecessary disk accesses. The database engine, on the
other hand, has a much better idea of what pages are needed and can make much
more intelligent guesses.

Therefore, a database engine must manage its own pages. It does so by allocating
a relatively small number of pages that it knows will fit in physical memory; these
pages are known as the database’s buffer pool. The engine keeps track of which
pages are available for swapping. When a block needs to be read into a page, the
database engine (and not the operating system) chooses an available page from the
buffer pool, writes its contents (and its log record) to disk if necessary, and only then
reads in the specified block.

4.2 Managing Log Information

Whenever a user changes the database, the database engine must keep track of that
change in case it needs to be undone. The values describing a change are kept in a log
record, and the log records are stored in a log file. New log records are appended to
the end of the log.

The log manager is the database engine component responsible for writing log
records to the log file. The log manager does not understand the contents of the log
records—that responsibility belongs to the recovery manager of Chap. 5. Instead, the
log manager treats the log as just an ever-increasing sequence of log records.

This section examines how the log manager can manage memory as it writes log
records to the log file. Consider the algorithm of Fig. 4.1, which is the most
straightforward way to append a record to the log.

This algorithm requires a disk read and a disk write for every appended log
record. It is simple but very inefficient. Figure 4.2 illustrates the operation of the log

1. Allocate a page in memory.
2. Read the last block of the log file into that page.
3a. If there is room, place the log record after the other records on the page,

and write the page back to disk.
3b. If there is no room, then allocate a new, empty page, place the log record in that page,

and append the page to a new block at the end of the log file.

Fig. 4.1 A simple (but inefficient) algorithm for appending a new record to the log

1Actually, there do exist operating systems that address this issue, but they are not commonplace.

4.2 Managing Log Information 81

https://doi.org/10.1007/978-3-030-33836-7_5
Chao Yang

manager halfway through step 3a of the algorithm. The log file contains three blocks
that hold eight records, labeled r1 through r8. Log records can have varying sizes,
which is why four records fit into block 0 but only three fit into block 1. Block 2 is
not yet full and contains just one record. The memory page contains the contents of
block 2. In addition to record r8, a new log record (record r9) has just been placed in
the page.

Suppose now that the log manager completes the algorithm by writing the page
back to block 2 of the file. When the log manager is eventually asked to add another
log record to the file, it will perform steps 1 and 2 of the algorithm and read block
2 into a page. But note that this disk read is completely unnecessary, because the
existing log page already contains the contents of block 2! Consequently, steps 1 and
2 of the algorithm are unnecessary. The log manager just needs to permanently
allocate a page to contain the contents of the last log block. As a result, all of the disk
reads are eliminated.

It is also possible to reduce the disk writes. In the above algorithm, the log
manager writes its page to disk every time a new record is added to the page.
Looking at Fig. 4.2, you can see that there is no need to write record r9 immediately
to the disk. Each new log record can be simply added to the page as long as the page
has room. When the page becomes full, the log manager can write the page to disk,
clear its contents, and start anew. This new algorithm would result in exactly one
disk write for each log block, which is clearly optimum.

This algorithm has one glitch: A log page may need to be written to the disk
before it is full, due to circumstances beyond the control of the log manager. The
issue is that the buffer manager cannot write a modified data page to disk until that
page’s associated log records have also been written to disk. If one of those log
records happen to be in the log page but not yet on disk, then the log manager must
write its page to disk, regardless of whether the page is full. This issue will be
addressed in Chap. 5.

Figure 4.3 gives the resulting log management algorithm. This algorithm has two
places where a memory page gets written to disk: when a log record needs to be
forced to disk and when the page is full. Consequently, a memory page might get
written to the same log block multiple times. But since these disk writes are
absolutely necessary and cannot be avoided, you can conclude that the algorithm
is optimal.

Fig. 4.2 Adding a new log record r9

82 4 Memory Management

https://doi.org/10.1007/978-3-030-33836-7_5

4.3 The SimpleDB Log Manager

This section examines the log manager of the SimpleDB database system.
Section 4.3.1 illustrates the use of the log manager. Section 4.3.2 examines its
implementation.

4.3.1 The API for the Log Manager

The SimpleDB log manager implementation is in the package simpledb.log. This
package exposes the class LogMgr, whose API appears in Fig. 4.4.

The database engine has one LogMgr object, which is created during system
startup. The arguments to the constructor are a reference to the file manager and the
name of the log file.

The method append adds a record to the log and returns an integer. As far as the
log manager is concerned, a log record is an arbitrarily sized byte array; it saves the
array in the log file but has no idea what its contents denote. The only constraint is
that the array must fit inside a page. The return value from append identifies the
new log record; this identifier is called its log sequence number (or LSN).

Appending a record to the log does not guarantee that the record will get written
to disk; instead, the log manager chooses when to write log records to disk, as in the
algorithm of Fig. 4.3. A client can force a specific log record to disk by calling the
method flush. The argument to flush is the LSN of a log record; the method
ensures that this log record (and all previous log records) is written to disk.

A client calls the method iterator to read the records in the log; this method
returns a Java iterator for the log records. Each call to the iterator’s next method

1. Permanently allocate one memory page to hold the contents of the last block of the log file.
Call this page P.

2. When a new log record is submitted:
a) If there is no room in P, then:

Write P to disk and clear its contents.
b) Append the new log record to P.

3. When the database system requests that a particular log record be written to disk:
a) Determine if that log record is in P.
b) If so, then write P to disk.

Fig. 4.3 The optimal log management algorithm

LogMgr
public LogMgr(FileMgr fm, String logfile);
public int append(byte[] rec);
public void flush(int lsn);
public Iterator<byte[]> iterator();

Fig. 4.4 The API for the SimpleDB log manager

4.3 The SimpleDB Log Manager 83

will return a byte array denoting the next record in the log. The records returned by
the iterator method are in reverse order, starting at the most recent record and
moving backwards through the log file. The records are returned in this order
because that is how the recovery manager wants to see them.

The class LogTest in Fig. 4.5 provides an example of how to use the log
manager API. The code creates 70 log records, each consisting of a string and an
integer. The integer is the record number N, and the string is the value “recordN.”
The code prints the records once after the first 35 have been created and then again
after all 70 have been created.

If you run the code, you will discover that only 20 records are printed after the
first call to printLogRecords. The reason is those records filled the first log
block and were flushed to disk when the 21st log record was created. The other
15 log records remained in the in-memory log page and were not flushed. The second
call to createRecords creates records 36 through 70. The call to flush tells the
log manager to ensure that record 65 is on disk. But since records 66–70 are in the
same page as record 65, they are also written to disk. Consequently, the second call
to printLogRecords will print all 70 records, in reverse order.

Note how the method createLogRecord allocates a byte array to be the log
record. It creates a Page object to wrap that array, so that it can use the page’s
setInt and setString methods to place the string and integer at appropriate
offsets in the log record. The code then returns the byte array. Similarly, the method
printLogRecords creates a Page object to wrap the log record, so that it can
extract the string and integer from the record.

4.3.2 Implementing the Log Manager

The code for LogMgr appears in Fig. 4.6. Its constructor uses the provided string as
the name of the log file. If the log file is empty, the constructor appends a new empty
block to it. The constructor also allocates a single page (called logpage) and
initializes it to contain the contents of the last log block in the file.

Recall that a log sequence number (or LSN) identifies a log record. The method
append assigns LSNs sequentially, starting from 1, using the variable
latestLSN. The log manager keeps track of the next available LSN and the
LSN of the most recent log record written to disk. The method flush compares
the most recent LSN against the specified LSN. If the specified LSN is smaller, then
the desired log record must have already been written to disk; otherwise, logpage
is written to disk, and the latest LSN becomes the most recent one.

The appendmethod calculates the size of the log record to determine if it will fit
in the current page. If not, it writes the current page to disk and calls
appendNewBlock to clear the page and append the now-empty page to the log
file. This strategy is slightly different from the algorithm of Fig. 4.3; namely, the log
manager extends the log file by appending an empty page to it, instead of extending
the file by appending a full page. This strategy is simpler to implement because it
allows flush to assume that the block is already on disk.

84 4 Memory Management

public class LogTest {
private static LogMgr lm;

public static void main(String[] args) {
SimpleDB db = new SimpleDB("logtest", 400, 8);
lm = db.logMgr();
createRecords(1, 35);
printLogRecords("The log file now has these records:");
createRecords(36, 70);
lm.flush(65);
printLogRecords("The log file now has these records:");

}

private static void printLogRecords(String msg) {
System.out.println(msg);
Iterator<byte[]> iter = lm.iterator();
while (iter.hasNext()) {

byte[] rec = iter.next();
Page p = new Page(rec);
String s = p.getString(0);
int npos = Page.maxLength(s.length());
int val = p.getInt(npos);
System.out.println("[" + s + ", " + val + "]");

}
System.out.println();

}

private static void createRecords(int start, int end) {
System.out.print("Creating records: ");
for (int i=start; i<=end; i++) {

byte[] rec = createLogRecord("record"+i, i+100);
int lsn = lm.append(rec);
System.out.print(lsn + " ");

}
System.out.println();

}

private static byte[] createLogRecord(String s, int n) {
int npos = Page.maxLength(s.length());
byte[] b = new byte[npos + Integer.BYTES];
Page p = new Page(b);
p.setString(0, s);
p.setInt(npos, n);
return b;

}
}

Fig. 4.5 Testing the log manager

4.3 The SimpleDB Log Manager 85

public class LogMgr {
private FileMgr fm;
private String logfile;
private Page logpage;
private BlockId currentblk;
private int latestLSN = 0;
private int lastSavedLSN = 0;

public LogMgr(FileMgr fm, String logfile) {
this.fm = fm;
this.logfile = logfile;
byte[] b = new byte[fm.blockSize()];
logpage = new Page(b);
int logsize = fm.length(logfile);
if (logsize == 0)

currentblk = appendNewBlock();
else {

currentblk = new BlockId(logfile, logsize-1);
fm.read(currentblk, logpage);

}
}

public void flush(int lsn) {
if (lsn >= lastSavedLSN)

flush();
}
public Iterator<byte[]> iterator() {

flush();
return new LogIterator(fm, currentblk);

}

public synchronized int append(byte[] logrec) {
int boundary = logpage.getInt(0);
int recsize = logrec.length;
int bytesneeded = recsize + Integer.BYTES;
if (boundary - bytesneeded < Integer.BYTES) { // It doesn't fit

flush(); // so move to the next block.
currentblk = appendNewBlock();
boundary = logpage.getInt(0);

}
int recpos = boundary - bytesneeded;
logpage.setBytes(recpos, logrec);
logpage.setInt(0, recpos); // the new boundary
latestLSN += 1;
return latestLSN;

}
private BlockId appendNewBlock() {

BlockId blk = fm.append(logfile);
logpage.setInt(0, fm.blockSize());
fm.write(blk, logpage);
return blk;

}
private void flush() {

fm.write(currentblk, logpage);
lastSavedLSN = latestLSN;

}
}

Fig. 4.6 The code for the SimpleDB class LogMgr

86 4 Memory Management

Note that append places the log records in the page from right to left. The
variable boundary contains the offset of the most recently added record. This
strategy enables the log iterator to read records in reverse order by reading from left
to right. The boundary value is written to the first four bytes of the page so that the
iterator will know where the records begin.

The iteratormethod flushes the log (in order to ensure that the entire log is on
disk) and then returns a LogIterator object. The class LogIterator is a
package-private class that implements the iterator; its code appears in Fig. 4.7. A
LogIterator object allocates a page to hold the contents of a log block. The
constructor positions the iterator at the first record in the last block of the log (which
is, remember, where the last log record was written). The method nextmoves to the
next record in the page; when there are no more records, it reads the previous block

class LogIterator implements Iterator<byte[]> {
private FileMgr fm;
private BlockId blk;
private Page p;
private int currentpos;
private int boundary;
public LogIterator(FileMgr fm, BlockId blk) {

this.fm = fm;
this.blk = blk;
byte[] b = new byte[fm.blockSize()];
p = new Page(b);
moveToBlock(blk);

}

public boolean hasNext() {
return currentpos<fm.blockSize() || blk.number()>0;

}

public byte[] next() {
if (currentpos == fm.blockSize()) {

blk = new BlockId(blk.fileName(), blk.number()-1);
moveToBlock(blk);

}
byte[] rec = p.getBytes(currentpos);
currentpos += Integer.BYTES + rec.length;
return rec;

}

private void moveToBlock(BlockId blk) {
fm.read(blk, p);
boundary = p.getInt(0);
currentpos = boundary;

}
}

Fig. 4.7 The code for the SimpleDB class LogIterator

4.3 The SimpleDB Log Manager 87

into the page and returns its first record. The hasNext method returns false when
there are no more records in the page and no more previous blocks.

4.4 Managing User Data

Log records are used in a limited, well-understood way. The log manager can
therefore fine-tune its use of memory; in particular, it is able to perform its job
optimally with a single dedicated page. Similarly, each LogIterator object only
needs a single page.

JDBC applications, on the other hand, access their data completely unpredictably.
There is no way to know which block an application will request next and whether it
will ever access a previous block again. And even after an application is completely
finished with its blocks, you can’t know whether another application will access any
of those same blocks in the near future. This section describes how the database
engine can efficiently manage memory in such a situation.

4.4.1 The Buffer Manager

The buffer manager is the component of the database engine responsible for the
pages that hold user data. The buffer manager allocates a fixed set of pages, called
the buffer pool. As mentioned in the beginning of this chapter, the buffer pool should
fit into the computer’s physical memory, and these pages should come from the I/O
buffers held by the operating system.

In order to access a block, a client interacts with the buffer manager according to
the protocol given in Fig. 4.8.

A page is said to be pinned if some client is currently pinning it; otherwise, the
page is unpinned. The buffer manager is obligated to keep a page available to its
clients for as long as it is pinned. Conversely, once a page becomes unpinned, the
buffer manager is allowed to assign it to another block.

When a client asks the buffer manager to pin a page to a block, the buffer manager
will encounter one of these four possibilities:

• The contents of the block is in some page in the buffer, and:

– The page is pinned.
– The page is unpinned.

1. The client asks the buffer manager to pin a page from the buffer pool to that block.
2. The client accesses the contents of the page as much as it desires.
3. When the client is done with the page, it tells the buffer manager to unpin it.

Fig. 4.8 The protocol for accessing a disk block

88 4 Memory Management

• The contents of the block is not currently in any buffer, and:

– There exists at least one unpinned page in the buffer pool.
– All pages in the buffer pool are pinned.

The first case occurs when one or more clients are currently accessing the
contents of the block. Since a page can be pinned by multiple clients, the buffer
manager simply adds another pin to the page and returns the page to the client. Each
client that is pinning the page is free to concurrently read and modify its values. The
buffer manager is not concerned about potential conflicts that may occur; that
responsibility belongs to the concurrency manager of Chap. 5.

The second case occurs when the client(s) that were using the buffer have finished
with it, but the buffer has not yet been reassigned. Since the contents of the block are
still in the buffer page, the buffer manager can reuse the page by simply pinning it
and returning it to the client.

The third case requires the buffer manager to read the block from disk into a
buffer page. Several steps are involved. The buffer manager must first select an
unpinned page to reuse (because pinned pages are still being used by clients).
Second, if the selected page has been modified, then the buffer manager must
write the page contents to disk; this action is called flushing the page. Finally, the
requested block can be read into the selected page, and the page can be pinned.

The fourth case occurs when the buffers are heavily used, such as in the query-
processing algorithms of Chap. 14. In this case, the buffer manager cannot satisfy the
client request. The best solution is for the buffer manager to place the client on a wait
list until an unpinned buffer page becomes available.

4.4.2 Buffers

Each page in the buffer pool has associated status information, such as whether it is
pinned and, if so, what block it is assigned to. A buffer is the object that contains this
information. Every page in the buffer pool has an associated buffer. Each buffer
observes the changes to its page and is responsible for writing its modified page to
disk. Just as with the log, a buffer can reduce disk accesses if it can delay writing its
page. For example, if page is modified several times, then it is more efficient to write
the page once, after all modifications have been made. A reasonable strategy is to
have the buffer postpone writing its page to disk until the page is unpinned.

Actually, the buffer can wait even longer than that. Suppose a modified page
becomes unpinned but is not written to disk. If the page gets pinned again to the same
block (as in the second case above), the client will see the modified contents exactly
as it had been left. This has the same effect as if the page had been written to disk and
then read back, but without the disk accesses. In a sense, the buffer’s page acts as the
in-memory version of its disk block. Any client wishing to use the block will simply
be directed to the buffer page, which the client can read or modify without incurring
any disk accesses.

In fact, there are only two reasons why a buffer will ever need to write a modified
page to disk: either the page is being replaced because the buffer is getting pinned to

4.4 Managing User Data 89

https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_14

a different block (as in the third case above) or the recovery manager needs to write
its contents to disk to guard against a possible system crash (to be discussed in
Chap. 5).

4.4.3 Buffer Replacement Strategies

The pages in the buffer pool begin unallocated. As pin requests arrive, the buffer
manager primes the buffer pool by assigning requested blocks to unallocated pages.
Once all pages have been allocated, the buffer manager will begin replacing pages.
The buffer manager may choose any unpinned page in the buffer pool for
replacement.

If the buffer manager needs to replace a page and all buffer pages are pinned, then
the requesting client must wait. Consequently, each client has the responsibility to
“be a good citizen” and unpin a page as soon as it is no longer needed.

When more than one buffer page is unpinned, the buffer manager must decide
which one to replace. This choice can have a dramatic effect on the efficiency of the
database system. For example, the worst choice would be to replace the page that
will be accessed next, because the buffer manager would then have to immediately
replace another page. It turns out that the best choice is to always replace the page
that will be unused for the longest amount of time.

Since the buffer manager cannot predict which pages will be accessed next, it is
forced to guess. Here, the buffer manager is in almost exactly the same situation as
the operating system when it swaps pages in virtual memory. However, there is one
big difference: Unlike the operating system, the buffer manager knows whether a
page is currently being used or not, because the pages in use are exactly the ones that
are pinned. The burden of not being able to replace pinned pages turns out to be a
blessing. Clients, by pinning pages responsibly, keep the buffer manager from
making the really bad guesses. The buffer replacement strategy only has to choose
from among the currently unwanted pages, which is far less critical.

Given the set of unpinned pages, the buffer manager needs to decide which of
those pages will not be needed for the longest amount of time. For example, a
database usually has several pages (such as the catalog files of Chap. 7) that are used
constantly throughout the lifetime of the database. The buffer manager ought to
avoid replacing such pages, since they will almost certainly be re-pinned fairly soon.
There are several replacement strategies that try to make the best guess. This section
considers four of them: Naïve, FIFO, LRU, and Clock.

Figure 4.9 introduces an example that will allow us to compare the behavior of
these replacement algorithms. Part (a) gives a sequence of operations that pin and
unpin five blocks of a file, and part (b) depicts the resulting state of the buffer pool,
assuming that it contains four buffers. The only page replacement occurred when the
fifth block (i.e., block 50) was pinned. However, since only one buffer was unpinned
at that time, the buffer manager had no choice. In other words, the buffer pool would
look like Fig. 4.9b, regardless of the page replacement strategy.

90 4 Memory Management

https://doi.org/10.1007/978-3-030-33836-7_5
https://doi.org/10.1007/978-3-030-33836-7_7

Each buffer in Fig. 4.9b holds three pieces of information: its block number, the
time it was read into the buffer, and the time it became unpinned. The times in the
figure correspond to the position of the operation in Fig. 4.9a.

The buffers of Fig. 4.9b are all unpinned. Suppose now that the buffer manager
receives two more pin requests:

pin(60); pin(70);

The buffer manager will need to replace two buffers. All of the buffers are
available; which ones should it choose? Each of the following replacement algo-
rithms will give a different answer.

The Naïve Strategy
The simplest replacement strategy is to traverse the buffer pool sequentially,
replacing the first unpinned buffer found. Using the example of Fig. 4.9, block
60 will be assigned to buffer 0, and block 70 will be assigned to buffer 1.

This strategy is easy to implement but has little else to recommend it. For
example, consider again the buffers of Fig. 4.9, and suppose a client repeatedly
pins and unpins blocks 60 and 70, like this:

pin(60); unpin(60); pin(70); unpin(70); pin(60); unpin(60);...

The naïve replacement strategy will use buffer 0 for both blocks, which means
that the blocks will need to be read in from disk each time they are pinned. The
problem is that the buffer pool is not evenly utilized. Had the replacement strategy
chosen two different buffers for blocks 60 and 70, then the blocks would have been
read from disk once each—which is a tremendous improvement in efficiency.

The FIFO Strategy
The naïve strategy chooses a buffer based only on convenience. The FIFO strategy
tries to be more intelligent, by choosing the buffer that was least recently replaced,
that is, the page that has been sitting in the buffer pool the longest. This strategy
usually works better than the naïve strategy, because older pages are less likely to be

pin(10); pin(20); pin(30); pin(40); unpin(20);
pin(50); unpin(40); unpin(10); unpin(30); unpin(50);

(a)

(b)

Fig. 4.9 The effect of some pin/unpin operations on a pool of four buffers. (a) A sequence of ten
pin/unpin operations, (b) The resulting state of the buffer pool

4.4 Managing User Data 91

needed than more recently fetched pages. In Fig. 4.9, the oldest pages are the ones
with the smallest values for “time read in.” Thus, block 60 would get assigned to
buffer 0, and block 70 would get assigned to buffer 2.

FIFO is a reasonable strategy, but it does not always make the right choice. For
example, a database often has frequently used pages, such as the catalog pages of
Chap. 7. Since these pages are used by nearly every client, it makes sense to not
replace them if at all possible. However, these pages will eventually become the
oldest pages in the pool, and the FIFO strategy will choose them for replacement.

The FIFO replacement strategy can be implemented in two ways. One way is to
have each buffer hold the time when its page was last replaced, as in Fig. 4.9b. The
replacement algorithm would then scan the buffer pool, choosing the unpinned page
having the earliest replacement time. A second, more efficient way would be for the
buffer manager to keep a list of pointers to its buffers, ordered by replacement time.
The replacement algorithm searches the list; the first unpinned page found is
replaced, and the pointer to it is moved to the end of the list.

The LRU Strategy
The FIFO strategy bases its replacement decision on when a page was added to the
buffer pool. A similar strategy would be to make the decision based on when a page
was last accessed, the rationale being that a page that has not been used in the near
past will also not be used in the near future. This strategy is called LRU, which
stands for least recently used. In the example of Fig. 4.9, the “time unpinned” value
corresponds to when the buffer was last used. Thus block 60 would be assigned to
buffer 3, and block 70 would be assigned to buffer 0.

The LRU strategy tends to be an effective general-purpose strategy and avoids
replacing commonly used pages. Both implementation options for FIFO can be
adapted to LRU. The only change that must be made is that the buffer manager must
update the timestamp (for the first option) or update the list (for the second option)
each time a page becomes unpinned, instead of when it gets replaced.

The Clock Strategy
This strategy is an interesting combination of the above strategies that has an easy
and straightforward implementation. As in the naïve strategy, the clock replacement
algorithm scans through the buffer pool, choosing the first unpinned page it finds.
The difference is that the algorithm always starts its scan at the page after the
previous replacement. If you visualize the buffer pool as forming a circle, then the
replacement algorithm scans the pool like the hand of an analog clock, stopping
when a page is replaced and starting when another replacement is required.

The example of Fig. 4.9b does not indicate the clock position. But the last
replacement it made was buffer 1, which means that the clock is positioned imme-
diately after that. Thus, block 60 will be assigned to buffer 2, and block 70 will be
assigned to buffer 3.

The clock strategy attempts to use the buffers as evenly as possible. If a page is
pinned, the clock strategy will skip past it and not consider it again until it has
examined all other buffers in the pool. This feature gives the strategy an LRU flavor.
The idea is that if a page is frequently used, there is a high probability that it will be

92 4 Memory Management

https://doi.org/10.1007/978-3-030-33836-7_7

pinned when its turn for replacement arrives. If so, then it is skipped over and given
“another chance.”

4.5 The SimpleDB Buffer Manager

This section examines the buffer manager of the SimpleDB database system.
Section 4.5.1 covers the buffer manager’s API and gives examples of its use.
Section 4.5.2 then shows how these classes can be implemented in Java.

4.5.1 An API for the Buffer Manager

The SimpleDB buffer manager is implemented by the package simpledb.
buffer. This package exposes the two classes BufferMgr and Buffer; their
API appears in Fig. 4.10.

Each database system has one BufferMgr object, which is created during
system startup. Its constructor has three arguments: the size of the buffer pool and
a reference to the file manager and log manager.

A BufferMgr object has methods to pin and unpin a page. The method pin
returns a Buffer object pinned to a page containing the specified block, and the
unpin method unpins the page. The available method returns the number of
unpinned buffer pages. And the method flushAll ensures that all pages modified
by the specified transaction have been written to disk.

Given a Buffer object, a client can call its contents method to obtain the
associated page. If the client modifies the page, then it is also responsible for
generating an appropriate log record and calling the buffer’s setModifiedmethod.

BufferMgr
public BufferMgr(FileMgr fm, LogMgr lm, int numbuffs);
public Buffer pin(BlockId blk);
public void unpin(Buffer buff);
public int available();
public void flushAll(int txnum);

Buffer
public Buffer(FileMgr fm, LogMgr lm);
public Page contents();
public BlockId block();
public boolean isPinned();
public void setModified(int txnum, int lsn);
public int modifyingTx();

Fig. 4.10 The API for the SimpleDB buffer manager

4.5 The SimpleDB Buffer Manager 93

The method has two arguments: an integer that identifies the modifying transaction
and the LSN of the generated log record.

The code in Fig. 4.11 tests the Buffer class. It prints “The new value is 1” the
first time you execute it, and each subsequent execution increments the printed
value. The code behaves as follows. It creates a SimpleDB object having three
buffers. It pins a page to block 1, increments the integer at offset 80, and calls
setModified to indicate that the page has been modified. The arguments to
setModified should be the transaction number and LSN of the generated log
file. The details behind these two values will be discussed in Chap. 5, so until then,
the given arguments are reasonable placeholders.

The buffer manager hides the actual disk accesses from its clients. A client has no
idea exactly how many disk accesses occur on its behalf and when they occur. A disk
read can occur only during a call to pin—in particular, when the specified block is
not currently in a buffer. A disk write can occur only during a call to pin or
flushAll. A call to pin will cause a disk write if the replaced page has been
modified, and a call to flushAll will cause a disk write for each page modified by
the specified transaction.

For example, the code of Fig. 4.11 contains two modifications to block 1. Neither
of these modifications is explicitly written to disk. Executing the code shows that the

public class BufferTest {
public static void main(String[] args) {

SimpleDB db = new SimpleDB("buffertest", 400, 3);
BufferMgr bm = db.bufferMgr();

Buffer buff1 = bm.pin(new BlockId("testfile", 1));
Page p = buff1.contents();
int n = p.getInt(80);
p.setInt(80, n+1); // This modification will
buff1.setModified(1, 0); // get written to disk.
System.out.println("The new value is " + (n+1));
bm.unpin(buff1);
// One of these pins will flush buff1 to disk:
Buffer buff2 = bm.pin(new BlockId("testfile", 2));
Buffer buff3 = bm.pin(new BlockId("testfile", 3));
Buffer buff4 = bm.pin(new BlockId("testfile", 4));

bm.unpin(buff2);
buff2 = bm.pin(new BlockId("testfile", 1));
Page p2 = buff2.contents();
p2.setInt(80, 9999); // This modification
buff2.setModified(1, 0); // won't get written to disk.
bm.unpin(buff2);

}
}

Fig. 4.11 Testing the Buffer class

94 4 Memory Management

https://doi.org/10.1007/978-3-030-33836-7_5

first modification is written to disk but the second one is not. Consider the first
modification. Since there are only three buffers in the buffer pool, the buffer manager
will need to replace the page for block 1 (and thereby write it to disk) in order to pin
pages for blocks 2, 3, and 4. On the other hand, the page for block 1 does not need to
be replaced after the second modification, so the page does not get written to disk,
and its modifications are lost. The issue of lost modifications will be discussed in
Chap. 5.

Suppose that the database engine has a lot of clients, all of whom are using a lot of
buffers. It is possible for every buffer page to be pinned. In this case, the buffer
manager cannot immediately satisfy a pin request. Instead, it places the client on a
wait list. When a buffer becomes available, the buffer manager takes the client off
the wait list so that it can complete the pin request. In other words, the client will
not be aware of the buffer contention; the client will only notice that the engine
seems to have slowed down.

There is one situation where buffer contention can cause a serious problem.
Consider a scenario where clients A and B each need two buffers, but only two
buffers are available. Suppose client A pins the first buffer. There is now a race for
the second buffer. If client A gets it before client B, then B will be added to the wait
list. Client A will eventually finish and unpin the buffers, at which time client B can
pin them. This is a good scenario. Now suppose instead that client B gets the second
buffer before client A. Then both A and B will be on the wait list. If these are the only
two clients in the system, then no buffers will ever get unpinned, and both A and B
will be on the wait list forever. This is a bad scenario. Clients A and B are said to be
deadlocked.

In a real database system with thousands of buffers and hundreds of clients, this
kind of deadlock is highly unlikely. Nevertheless, the buffer manager must be
prepared to deal with the possibility. The solution taken by SimpleDB is to keep
track of how long a client has been waiting for a buffer. If it has waited too long (say,
10 seconds), then the buffer manager assumes that the client is in deadlock and
throws an exception of type BufferAbortException. The client is responsible
for handling the exception, typically by rolling back the transaction and possibly
restarting it.

The code in Fig. 4.12 tests the buffer manager. It again creates a SimpleDB
object having only three buffers, and then calls the buffer manager to pin their pages
to blocks 0, 1, and 2 of file “testfile.” It then unpins block 1, repins block 2, and pins
block 1 again. These three actions will not cause any disk reads and will leave no
available buffers. The attempt to pin block 3 will place the thread on a waiting
list. However, since the thread already holds all of the buffers, none of them will be
unpinned, and the buffer manager will throw an exception after ten seconds
of waiting. The program catches the exception and continues. It unpins block
2. Its attempt to pin block 3 will now be successful because a buffer has become
available.

4.5 The SimpleDB Buffer Manager 95

https://doi.org/10.1007/978-3-030-33836-7_5

4.5.2 Implementing the Buffer Manager

Figure 4.13 contains the code for class Buffer. A Buffer object keeps track of
four kinds of information about its page:

• A reference to the block assigned to its page. If no block is assigned, then the
value is null.

• The number of times the page is pinned. The pin count is incremented on each pin
and decremented on each unpin.

• An integer indicating if the page has been modified. A value of �1 indicates that
the page has not been changed; otherwise, the integer identifies the transaction
that made the change.

• Log information. If the page has been modified, then the buffer holds the LSN of
the most recent log record. LSN values are never negative. If a client calls

public class BufferMgrTest {
public static void main(String[] args) throws Exception {

SimpleDB db = new SimpleDB("buffermgrtest", 400, 3);
BufferMgr bm = db.bufferMgr();

Buffer[] buff = new Buffer[6];
buff[0] = bm.pin(new BlockId("testfile", 0));
buff[1] = bm.pin(new BlockId("testfile", 1));
buff[2] = bm.pin(new BlockId("testfile", 2));
bm.unpin(buff[1]); buff[1] = null;
buff[3] = bm.pin(new BlockId("testfile", 0));
buff[4] = bm.pin(new BlockId("testfile", 1));
System.out.println("Available buffers: " + bm.available());
try {

System.out.println("Attempting to pin block 3...");
buff[5] = bm.pin(new BlockId("testfile", 3));

}
catch(BufferAbortException e) {

System.out.println("Exception: No available buffers\n");
}
bm.unpin(buff[2]); buff[2] = null;
buff[5] = bm.pin(new BlockId("testfile", 3)); // now this works

System.out.println("Final Buffer Allocation:");
for (int i=0; i<buff.length; i++) {

Buffer b = buff[i];
if (b != null)

System.out.println("buff["+i+"] pinned to block "
 + b.block());

}
}

}

Fig. 4.12 Testing the buffer manager

96 4 Memory Management

public class Buffer {
private FileMgr fm;
private LogMgr lm;
private Page contents;
private BlockId blk = null;
private int pins = 0;
private int txnum = -1;
private int lsn = -1;

public Buffer(FileMgr fm, LogMgr lm) {
this.fm = fm;
this.lm = lm;
contents = new Page(fm.blockSize());

}

public Page contents() {
return contents;

}

public BlockId block() {
return blk;

}

public void setModified(int txnum, int lsn) {
this.txnum = txnum;
if (lsn>=0) this.lsn = lsn;

}

public boolean isPinned() {
return pins > 0;

}

public int modifyingTx() {
return txnum;

}

void assignToBlock(BlockId b) {
flush();
blk = b;
fm.read(blk, contents);
pins = 0;

}

void flush() {
if (txnum >= 0) {

lm.flush(lsn);
fm.write(blk, contents);
txnum = -1;

}
}

void pin() {
pins++;

}

void unpin() {
pins--;

}
}

Fig. 4.13 The code for the SimpleDB class Buffer

4.5 The SimpleDB Buffer Manager 97

setModified with a negative LSN, it indicates that a log record was not
generated for that update.

The method flush ensures that the buffer’s assigned disk block has the same
values as its page. If the page has not been modified, then the method need not do
anything. If it has been modified, then the method first calls LogMgr.flush to
ensure that the corresponding log record is on disk; then it writes the page to disk.

The method assignToBlock associates the buffer with a disk block.
The buffer is first flushed, so that any modifications to the previous block are
preserved. The buffer is then associated with the specified block, reading its contents
from disk.

The code for BufferMgr appears in Fig. 4.14. The method pin assigns a buffer
to the specified block. It does so by calling the private method tryToPin. That
method has two parts. The first part, findExistingBuffer, tries to find a buffer
that is already assigned to the specified block. The buffer is returned if found.
Otherwise the second part of the algorithm, chooseUnpinnedBuffer, uses
naïve replacement to choose an unpinned buffer. The chosen buffer’s
assignToBlock method is called, which handles the writing of the existing
page to disk (if necessary) and the reading of the new page from disk. The method
returns null if it cannot find an unpinned buffer.

If tryToPin returns null, the pin method will call the Java method wait. In
Java, every object has a wait list. The object’s waitmethod interrupts the execution
of the calling thread and places it on that list. In Fig. 4.14, the thread will stay on that
list until one of two conditions occurs:

• Another thread calls notifyAll (which occurs from a call to unpin).
• MAX_TIME milliseconds have elapsed, which means that the thread has been

waiting too long.

When a waiting thread resumes, it continues in its loop, trying to obtain a buffer
(together with all the other threads that were waiting). The thread will keep getting
placed back on the wait list until either it gets the buffer or it has exceeded its time
limit.

The unpin method unpins the specified buffer and then checks to see if that
buffer is still pinned. If not, then notifyAll is called to remove all client threads
from the wait list. Those threads will fight for the buffer; whichever is scheduled first
will win. When one of the other threads is scheduled, it may find that all buffers are
still allocated; if so, it will be placed back on the wait list.

4.6 Chapter Summary

• A database engine must strive to minimize disk accesses. It therefore carefully
manages the in-memory pages that it uses to hold disk blocks. The database
components that manage these pages are the log manager and the buffer
manager.

98 4 Memory Management

public class BufferMgr {
private Buffer[] bufferpool;
private int numAvailable;
private static final long MAX_TIME = 10000; // 10 seconds

public BufferMgr(FileMgr fm, LogMgr lm, int numbuffs) {
bufferpool = new Buffer[numbuffs];
numAvailable = numbuffs;
for (int i=0; i<numbuffs; i++)

bufferpool[i] = new Buffer(fm, lm);
}

public synchronized int available() {
return numAvailable;

}

public synchronized void flushAll(int txnum) {
for (Buffer buff : bufferpool)

if (buff.modifyingTx() == txnum)
 buff.flush();

}

public synchronized void unpin(Buffer buff) {
buff.unpin();
if (!buff.isPinned()) {

numAvailable++;
notifyAll();

}
}

public synchronized Buffer pin(BlockId blk) {
try {

long timestamp = System.currentTimeMillis();
Buffer buff = tryToPin(blk);
while (buff == null && !waitingTooLong(timestamp)) {

wait(MAX_TIME);
buff = tryToPin(blk);

}
if (buff == null)

throw new BufferAbortException();
return buff;

}
catch(InterruptedException e) {

throw new BufferAbortException();
}

}

Fig. 4.14 The code for the SimpleDB class BufferMgr

4.6 Chapter Summary 99

• The log manager is responsible for saving log records in the log file. Because log
records are always appended to the log file and are never modified, the log
manager can be very efficient. It only needs to allocate a single page and has a
simple algorithm for writing that page to disk as few times as possible.

• The buffer manager allocates several pages, called the buffer pool, to handle user
data. The buffer manager pins and unpins buffer pages to disk blocks, at the
request of clients. A client accesses a buffer’s page after it is pinned and unpins
the buffer when finished.

• A modified buffer will get written to disk in two circumstances: when the page is
being replaced and when the recovery manager needs it to be on disk.

private boolean waitingTooLong(long starttime) {
return System.currentTimeMillis() - starttime > MAX_TIME;

}

private Buffer tryToPin(BlockId blk) {
Buffer buff = findExistingBuffer(blk);
if (buff == null) {

buff = chooseUnpinnedBuffer();
if (buff == null)

return null;
buff.assignToBlock(blk);

}
if (!buff.isPinned())

numAvailable--;
buff.pin();
return buff;

}

private Buffer findExistingBuffer(BlockId blk) {
for (Buffer buff : bufferpool) {

BlockId b = buff.block();
if (b != null && b.equals(blk))

return buff;
}
return null;

}

private Buffer chooseUnpinnedBuffer() {
for (Buffer buff : bufferpool)

if (!buff.isPinned())
 return buff;

return null;
}

}

Fig. 4.14 (continued)

100 4 Memory Management

• When a client asks to pin a page to a block, the buffer manager chooses the
appropriate buffer. If a page for that block is already in a buffer, then that buffer is
used; otherwise, the buffer manager replaces the contents of an existing buffer.

• The algorithm that determines which buffer to replace is called the buffer
replacement strategy. Four interesting replacement strategies are:

– Naïve: Choose the first unpinned buffer it finds.
– FIFO: Choose the unpinned buffer whose contents were replaced least

recently.
– LRU: Choose the unpinned buffer whose contents were unpinned least

recently.
– Clock: Scan the buffers sequentially from the last replaced buffer; choose the

first unpinned buffer found.

4.7 Suggested Reading

The article Effelsberg et al. (1984) contains a well-written and comprehensive
treatment of buffer management that extends many of the ideas in this chapter.
Chapter 13 of Gray and Reuter (1993) contains an in-depth discussion of buffer
management, illustrating their discussion with a C-based implementation of a typical
buffer manager.

Oracle’s default buffer replacement strategy is LRU. However, it uses FIFO
replacement when scanning large tables. The rationale is that a table scan will
typically not need a block after it is unpinned, and so LRU winds up saving the
wrong blocks. Details can be found in Chap. 14 of Ashdown et al. (2019).

Several researchers have investigated how to make the buffer manager itself more
intelligent. The basic idea is that a buffer manager can keep track of the pin requests
of each transaction. If it detects a pattern (say, the transaction repeatedly reads the
same N blocks of a file), it will try to avoid replacing those pages, even if they are not
pinned. The article Ng et al. (1991) describes the idea in more detail and provides
some simulation results.

Ashdown, L., et al. (2019). Oracle database concepts. Document E96138-01,
Oracle Corporation. Available from https://docs.oracle.com/en/database/oracle/
oracle-database/19/cncpt/database-concepts.pdf

Effelsberg, W., & Haerder, T. (1984). Principles of database buffer management.
ACM Transactions on Database Systems, 9(4), 560–595.

Gray, J., & Reuter, A. (1993). Transaction processing: concepts and techniques.
Morgan Kaufman.

Ng, R., Faloutsos, C., & Sellis, T. (1991). Flexible buffer allocation based on
marginal gains. Proceedings of the ACM SIGMOD Conference, pp. 387–396.

4.7 Suggested Reading 101

https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/database-concepts.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/database-concepts.pdf

4.8 Exercises

Conceptual Exercises

4.1. The code for LogMgr.iterator calls flush. Is this call necessary?
Explain.

4.2. Explain why the method BufferMgr.pin is synchronized. What problem
could occur if it wasn’t?

4.3. Can more than one buffer ever be assigned to the same block? Explain.
4.4. The buffer replacement strategies in this chapter do not distinguish between

modified and unmodified pages when looking for an available buffer. A
possible improvement is for the buffer manager to always replace an
unmodified page whenever possible.

(a) Give one reason why this suggestion could reduce the number of disk
accesses made by the buffer manager.

(b) Give one reason why this suggestion could increase the number of disk
accesses made by the buffer manager.

(c) Do you think strategy is worthwhile? Explain.

4.5. Another possible buffer replacement strategy is least recently modified: the
buffer manager chooses the modified buffer having the lowest LSN. Explain
why such a strategy might be worthwhile.

4.6. Suppose that a buffer page has been modified several times without being
written to disk. The buffer saves only the LSN of the most recent change and
sends only this LSN to the log manager when the page is finally flushed.
Explain why the buffer doesn’t need to send the other LSNs to the log
manager.

4.7. Consider the example pin/unpin scenario of Fig. 4.9a, together with the
additional operations pin(60); pin(70). For each of the four replacement
strategies given in the text, draw the state of the buffers, assuming that the
buffer pool contains five buffers.

4.8. Starting from the buffer state of Fig. 4.9b, give a scenario in which:

(a) The FIFO strategy requires the fewest disk accesses
(b) The LRU strategy requires the fewest disk accesses
(c) The clock strategy requires the fewest disk accesses

4.9. Suppose that two different clients each want to pin the same block but are
placed on the wait list because no buffers are available. Consider the imple-
mentation of the SimpleDB class BufferMgr. Show that when a single
buffer becomes available, both clients will be able to use it.

4.10. Consider the adage “Virtual is its own reward.” Comment on the cleverness of
the pun, and discuss its applicability to the buffer manager.

102 4 Memory Management

Programming Exercises

4.11. The SimpleDB log manager allocates its own page and writes it explicitly to
disk. Another design option is for it to pin a buffer to the last log block and let
the buffer manager handle the disk accesses.

(a) Work out a design for this option. What are the issues that need to be
addressed? Is it a good idea?

(b) Modify SimpleDB to implement your design.

4.12. Each LogIterator object allocates a page to hold the log blocks it
accesses.

(a) Explain why using a buffer instead of a page would be much more
efficient.

(b) Modify the code to use a buffer instead of a page. How should the buffer
get unpinned?

4.13. This exercise examines whether a JDBC program could maliciously pin all of
the buffers in the buffer pool.

(a) Write a JDBC program to pin all of the buffers of the SimpleDB buffer
pool. What happens when all of the buffers are pinned?

(b) The Derby database system does buffer management differently than
SimpleDB. When a JDBC client requests a buffer, Derby pins the buffer,
sends a copy of the buffer to the client, and unpins the buffer. Explain why
your code will not be malicious to other Derby clients.

(c) Derby avoids SimpleDB’s problem by always copying pages from engine
to client. Explain the consequences of this approach. Do you prefer it to
the SimpleDB approach?

(d) Another way to keep a rogue client from monopolizing all of the buffers is
to allow each transaction to pin no more than a certain percentage (say,
10%) of the buffer pool. Implement and test this modification to the
SimpleDB buffer manager.

4.14. Modify class BufferMgr to implement each of the other replacement strat-
egies described in this chapter.

4.15. Exercise 4.4 suggests a page replacement strategy that chooses unmodified
pages over modified ones. Implement this replacement strategy.

4.16. Exercise 4.5 suggests a page replacement strategy that chooses the modified
page having the lowest LSN. Implement this strategy.

4.17. The SimpleDB buffer manager traverses the buffer pool sequentially when
searching for buffers. This search will be time-consuming when there are
thousands of buffers in the pool. Modify the code, adding data structures (such
as special-purpose lists and hash tables) that will improve the search times.

4.18. In Exercise 3.15, you were asked to write code that maintained statistics about
disk usage. Extend this code to also give information about buffer usage.

4.8 Exercises 103

Chapter 5
Transaction Management

The buffer manager allows multiple clients to access the same buffer concurrently,
arbitrarily reading and writing its values. The result can be chaos: A page might have
different (and even inconsistent) values each time a client looks at it, making it
impossible for the client to get an accurate picture of the database. Or two clients can
unwittingly overwrite the values of each other, thereby corrupting the database.

Consequently, a database engine has a concurrency manager and a recovery
manager, whose jobs are to maintain order and ensure database integrity. Each client
program is written as a sequence of transactions. The concurrency manager regu-
lates the execution of these transactions so that they behave consistently. The
recovery manager reads and writes records to the log, so that changes made by
uncommitted transactions can be undone if necessary. This chapter covers the
functionality of these managers and the techniques used to implement them.

5.1 Transactions

Consider an airline reservation database, having two tables with the following
fields:

SEATS(FlightId, NumAvailable, Price)
CUST(CustId, BalanceDue)

Figure 5.1 contains JDBC code to purchase a ticket for a specified customer on a
specified flight. Although this code has no bugs, various problems can occur when it
is being used concurrently by multiple clients or when the server crashes. The
following three scenarios illustrate these problems.

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_5

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_5

In the first scenario, suppose that both clients A and B run the JDBC code
concurrently, with the following sequence of actions:

• Client A executes all of step 1 and is then interrupted.
• Client B executes to completion.
• Client A completes its execution.

In this case, both threads will use the same value for numAvailable. The result
is that two seats will be sold, but the number of available seats will be decremented
only once.

public void reserveSeat(Connection conn, int custId,
int flightId) throws SQLException {

Statement stmt = conn.createStatement();
String s;

// step 1: Get availability and price
s = "select NumAvailable, Price from SEATS " +

"where FlightId = " + flightId;
ResultSet rs = stmt.executeQuery(s);
if (!rs.next()) {

System.out.println("Flight doesn't exist");
return;

}
int numAvailable = rs.getInt("NumAvailable");
int price = rs.getInt("Price");
rs.close();

if (numAvailable == 0) {
System.out.println("Flight is full");
return;

}

// step 2: Update availability
int newNumAvailable = numAvailable 1;
s = "update SEATS set NumAvailable = " + newNumAvailable +

" where FlightId = " + flightId;
stmt.executeUpdate(s);

// step 3: Get and update customer balance
s = "select BalanceDue from CUST where CustID = " + custId;
rs = stmt.executeQuery(s);
int newBalance = rs.getInt("BalanceDue") + price;
rs.close();

s = "update CUST set BalanceDue = " + newBalance +
" where CustId = " + custId;

stmt.executeUpdate(s);
}

Fig. 5.1 JDBC code to reserve a seat on a flight

106 5 Transaction Management

In the second scenario, suppose that while a client is running the code, the server
crashes just after step two executes. In this case, the seat will be reserved, but the
customer will not be charged for it.

In the third scenario, suppose that a client runs the code to completion, but the
buffer manager does not immediately write the modified pages to disk. If the server
crashes (possibly several days later), then there is no way to know which of the pages
(if any) were eventually written to disk. If the first update was written but not the
second, then the customer receives a free ticket; if the second update was written but
not the first, then the customer is charged for a nonexistent ticket. And if neither page
was written, then the entire interaction will be lost.

The above scenarios show how data can get lost or corrupted when client pro-
grams are able to run indiscriminately. Database engines solve this problem by
forcing client programs to consist of transactions. A transaction is a group of
operations that behaves as a single operation. The meaning of “as a single operation”
can be characterized by the following so-called ACID properties: atomicity, consis-
tency, isolation, and durability.

• Atomicity means that a transaction is “all or nothing.” That is, either all its
operations succeed (the transaction commits) or they all fail (the transaction
does a rollback).

• Consistency means that every transaction leaves the database in a consistent state.
This implies that each transaction is a complete work unit that can be executed
independently of other transactions.

• Isolation means that a transaction behaves as if it is the only thread using the
engine. If multiple transactions are running concurrently, then their result should
be the same as if they were all executed serially in some order.

• Durability means that changes made by a committed transaction are guaranteed to
be permanent.

Each of the above scenarios results from some violation of the ACID properties.
The first scenario violated the isolation property, because both clients read the same
value for numAvailable, whereas in any serial execution, the second client would
have read the value written by the first. The second scenario violated atomicity, and
the third scenario violated durability.

The atomicity and durability properties describe the proper behavior of the
commit and rollback operations. A committed transaction must be durable, and an
uncommitted transaction (either due to an explicit rollback or a system crash) must
have its changes completely undone. These features are the responsibility of the
recovery manager and are the topic of Sect. 5.3.

The consistency and isolation properties describe the proper behavior of concur-
rent clients. The database engine must keep clients from conflicting with each other.
A typical strategy is to detect when a conflict is about to occur and to make one of the
clients wait until that conflict is no longer possible. These features are the respon-
sibility of the concurrency manager and are the topic of Sect. 5.4.

5.1 Transactions 107

5.2 Using Transactions in SimpleDB

Before getting into details about how the recovery and concurrency managers do
their job, it will help to get a feel for how clients use transactions. In SimpleDB,
every JDBC transaction has its own Transaction object; its API appears in
Fig. 5.2.

The methods of Transaction fall into three categories. The first category
consists of methods related to the transaction’s lifespan. The constructor begins a
new transaction, the commit and rollback methods terminate it, and the method
recover rolls back all uncommitted transactions. The commit and rollback
methods automatically unpin the transaction’s pinned buffer pages.

The second category consists of methods to access buffers. A transaction hides
the existence of buffers from its client. When a client calls pin on a block, the
transaction saves the buffer internally and does not return it to the client. When the
client calls a method such as getInt, it passes in a BlockId reference. The
transaction finds the corresponding buffer, calls the getIntmethod on the buffer’s
page, and passes the result back to the client.

The transaction hides the buffer from the client so it can make the necessary calls
to the concurrency and recovery managers. For example, the code for setInt will
acquire the appropriate locks (for concurrency control) and write the value that is
currently in the buffer to the log (for recovery) before modifying the buffer. The
fourth argument to setInt and setString is a boolean that indicates whether
the update should be logged. This value is usually true, but there are certain cases
(such as formatting a new block or undoing a transaction) where logging is not
appropriate and the value should be false.

Transaction
public Transaction(FileMgr fm, LogMgr lm, BufferMgr bm);
public void commit();
public void rollback();
public void recover();

public void pin(BlockId blk);
public void unpin(BlockId blk);
public int getInt(BlockId blk, int offset);
public String getString(BlockId blk, int offset);
public void setInt(BlockId blk, int offset, int val,
 boolean okToLog);
public void setString(BlockId blk, int offset, String val,

public int availableBuffs();

public int size(String filename);
public Block append(String filename);
public int blockSize();

boolean okToLog);

Fig. 5.2 The API for SimpleDB transactions

108 5 Transaction Management

public class TxTest {
public static void main(String[] args) throws Exception {

SimpleDB db = new SimpleDB("txtest", 400, 8);
FileMgr fm = db.fileMgr();
LogMgr lm = db.logMgr();
BufferMgr bm = db.bufferMgr();

Transaction tx1 = new Transaction(fm, lm, bm);
BlockId blk = new BlockId("testfile", 1);
tx1.pin(blk);
// Don't log initial block values.
tx1.setInt(blk, 80, 1, false);
tx1.setString(blk, 40, "one", false);
tx1.commit();

Transaction tx2 = new Transaction(fm, lm, bm);
tx2.pin(blk);
int ival = tx2.getInt(blk, 80);
String sval = tx2.getString(blk, 40);
System.out.println("initial value at location 80 = " + ival);
System.out.println("initial value at location 40 = " + sval);
int newival = ival + 1;
int newsval = sval + "!";
tx2.setInt(blk, 80, newival, true);
tx2.setString(blk, 40, newsval, true);
tx2.commit();

Transaction tx3 = new Transaction(fm, lm, bm);
tx3.pin(blk);
System.out.println("new value at location 80 = "

 + tx3.getInt(blk, 80));
System.out.println("new value at location 40 = "
 + tx3.getString(blk, 40));
tx3.setInt(blk, 80, 9999, true);
System.out.println("pre-rollback value at location 80 = "

+ tx3.getInt(blk, 80));
tx3.rollback();

Transaction tx4 = new Transaction(fm, lm, bm);
tx4.pin(blk);
System.out.println("post-rollback at location 80 = "

+ tx4.getInt(blk, 80));

tx4.commit();
}

}

Fig. 5.3 Testing the SimpleDB Transaction class

5.2 Using Transactions in SimpleDB 109

The third category consists of three methods related to the file manager. The
method size reads the end of the file marker, and append modifies it; these
methods must call the concurrency manager to avoid potential conflicts. The method
blockSize exists as a convenience to clients who might need it.

Figure 5.3 illustrates a simple use of the Transaction methods. The code
consists of four transactions, which perform similar tasks as the BufferTest
class of Fig. 4.11. All four transactions access block 1 of file “testfile.” Transaction
tx1 initializes the values at offsets 80 and 40; these updates are not logged.
Transaction tx2 reads those values, prints them, and increments them. Transac-
tion tx3 reads and prints the incremented values. Then it sets the integer to 9999
and rolls back. Transaction tx4 reads the integer to verify that the rollback did in
fact occur.

Compare this code to the code from Chap. 4 and observe what the Transac-
tion class does for you: it manages your buffers; it generates log records for each
update and writes them to the log file; and it is able to roll back your transaction on
demand. But equally important is how this class works behind the scenes to ensure
that the code satisfies the ACID properties. For example, suppose you randomly
abort the program while it is executing. When you subsequently restart the database
engine, the modifications of all transactions that had committed will be on disk
(durability), and the modifications of the transaction that happened to be running will
be rolled back (atomicity).

Moreover, the Transaction class also guarantees that this program will satisfy
the ACID isolation property. Consider the code for transaction tx2. The variables
newival and newsval (see the bold code) are initialized as follows:

int newival = ival + 1;
String newsval = sval + "!";

This code assumes that the values at locations 80 and 40 of the block have not
changed. Without concurrency control, however, this assumption might not be true.
The issue is the “non-repeatable read” scenario of Sect. 2.2.3. Suppose that tx2 gets
interrupted immediately after initializing ival and sval, and another program
modifies the values at offsets 80 and 40. Then the values of ival and sval are now
out of date, and tx2 must call getInt and getString again to obtain their
correct values. The Transaction class is responsible for making sure that such a
possibility will not occur, so that this code is guaranteed to be correct.

5.3 Recovery Management

The recovery manager is the portion of the database engine that reads and processes
the log. It has three functions: to write log records, to roll back a transaction, and to
recover the database after a system crash. This section investigates these functions in
detail.

110 5 Transaction Management

https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_2

5.3.1 Log Records

In order to be able to roll back a transaction, the recovery manager logs information
about the transaction’s activities. In particular, it writes a log record to the log each
time a loggable activity occurs. There are four basic kinds of log record: start
records, commit records, rollback records, and update records. I shall follow
SimpleDB and assume two kinds of update record: one for updates to integers and
one for updates to strings.

Log records are generated by the following loggable activities:

• A start record is written when a transaction begins.
• A commit or rollback record is written when a transaction completes.
• An update record is written when a transaction modifies a value.

Another potentially loggable activity is appending a block to the end of a file.
Then if the transaction rolls back, the new block allocated by append can be
deallocated from the file. For simplicity, I shall ignore this possibility. Exercise
5.48 addresses the issue.

As an example, consider the code of Fig. 5.3, and suppose that the id of tx1 is
1 and so on. Figure 5.4 shows the log records generated by this code.

Each log record contains a description of what type of record it is (START,
SETINT, SETSTRING, COMMIT, or ROLLBACK) and the ID of its transaction.
Update records contain five additional values: the name and block number of the
modified file, the offset where the modification occurred, the old value at that offset,
and the new value at that offset.

In general, multiple transactions will be writing to the log concurrently, and so the
log records for a given transaction will be interspersed through the log.

5.3.2 Rollback

One use of the log is to help the recovery manager roll back a specified transaction
T. The recovery manager rolls back a transaction by undoing its modifications. Since

<START, 1>
<COMMIT, 1>
<START, 2>
<SETINT, 2, testfile, 1, 80, 1, 2>
<SETSTRING, 2, testfile, 1, 40, one, one!>
<COMMIT, 2>
<START, 3>
<SETINT, 3, testfile, 1, 80, 2, 9999>
<ROLLBACK, 3>
<START, 4>
<COMMIT, 4>

Fig. 5.4 The log records generated from Fig. 5.3

5.3 Recovery Management 111

these modifications are listed in the update log records, it is a relatively simple matter
to scan the log, find each update record, and restore the original contents of each
modified value. Figure 5.5 presents the algorithm.

There are two reasons why this algorithm reads the log backwards from the end,
instead of forward from the beginning. The first reason is that the beginning of the
log file will contain records from long-ago completed transactions. It is most likely
that the records you are looking for are at the end of the log, and thus it is more
efficient to read from the end. The second, more important reason is to ensure
correctness. Suppose that the value at a location was modified several times. Then
there will be several log records for that location, each having a different value. The
value to be restored should come from the earliest of these records. If the log records
are processed in reverse order, then this will in fact occur.

5.3.3 Recovery

Another use of the log is to recover the database. Recovery is performed each time
the database engine starts up. Its purpose is to restore the database to a reasonable
state. The term “reasonable state” means two things:

• All uncompleted transactions should be rolled back.
• All committed transactions should have their modifications written to disk.

When a database engine starts up following a normal shutdown, it should already
be in a reasonable state, because the normal shutdown procedure is to wait until the
existing transactions complete and then flush all buffers. However, if a crash had
caused the engine to go down unexpectedly, then there may be uncompleted trans-
actions whose executions were lost. Since there is no way the engine can complete
them, their modifications must be undone. There may also be committed transactions
whose modifications were not yet flushed to disk; these modifications must be
redone.

The recovery manager assumes that a transaction completed if the log file
contains a commit or rollback record for it. So if a transaction had committed prior
to the system crash but its commit record did not make it to the log file, then the
recovery manager will treat the transaction as if it did not complete. This situation
might not seem fair, but there is really nothing else that the recovery manager can
do. All it knows is what is contained in the log file, because everything else about the
transaction was wiped out in the system crash.

1. Set the current record to be the most recent log record.
2. Do until the current record is the start record for T:

a) If the current record is an update record for T then:
Write the saved old value to the specified location.

b) Move to the previous record in the log.
3. Append a rollback record to the log.

Fig. 5.5 The algorithm for rolling back transaction T

112 5 Transaction Management

Actually, rolling back a committed transaction is not only unfair; it violates the
ACID property of durability. Consequently, the recovery manager must ensure that
such a scenario cannot occur. It does so by flushing the commit log record to disk
before it completes a commit operation. Recall that flushing a log record also flushes
all previous log records. So when the recovery manager finds a commit record in the
log, it knows that all of the update records for that transaction are also in the log.

Each update log record contains both the old value and the new value of the
modification. The old value is used when you want to undo the modification, and the
new value is used when you want to redo the modification. Figure 5.6 presents the
recovery algorithm.

Stage 1 undoes the uncompleted transactions. As with the rollback algorithm, the
log must be read backwards from the end to ensure correctness. Reading the log
backwards also means that a commit record will always be found before its update
records; so when the algorithm encounters an update record, it knows whether that
record needs to be undone or not.

It is important for stage 1 to read the entire log. For example, the veryfirst transaction
might have made a change to the database before going into an infinite loop. That
update record will not be found unless you read to the very beginning of the log.

Stage 2 redoes the committed transactions. Since the recovery manager cannot
tell which buffers were flushed and which were not, it redoes all changes made by all
committed transactions.

The recovery manager performs stage 2 by reading the log forward from the
beginning. The recovery manager knows which update records need to be redone,
because it computed the list of committed transaction during stage 1. Note that the
log must be read forward during the redo stage. If several committed transactions
happened to modify the same value, then the final recovered value should be due to
the most recent modification.

The recovery algorithm is oblivious to the current state of the database. It writes
old or new values to the database without looking at what the current values are at
those locations, because the log tells it exactly what the contents of the database
should be. There are two consequences to this feature:

// The undo stage
1. For each log record (reading backwards from the end):

a) If the current record is a commit record then:
Add that transaction to the list of committed transactions.

b) If the current record is a rollback record then:
Add that transaction to the list of rolled-back transactions.

c) If the current record is an update record for a transaction not on the
 committed or rollback list, then: Restore the old value at the specified location.

// The redo stage
2. For each log record (reading forwards from the beginning):

If the current record is an update record and that transaction is on the committed
list, then: Restore the new value at the specified location.

Fig. 5.6 The undo-redo algorithm for recovering a database

5.3 Recovery Management 113

• Recovery is idempotent.
• Recovery may cause more disk writes than necessary.

By idempotent, I mean that performing the recovery algorithm several times has
the same result as performing it once. In particular, you will get the same result even if
you re-run the recovery algorithm immediately after having run just part of it. This
property is essential to the correctness of the algorithm. For example, suppose that the
database system crashes while it is in the middle of the recovery algorithm. When the
database system restarts, it will run the recovery algorithm again, from the beginning.
If the algorithm were not idempotent, then re-running it would corrupt the database.

Because this algorithm does not look at the current contents of the database, it may
make unnecessary changes. For example, suppose that the modifications made by a
committed transaction have been written to disk; then redoing those changes during
stage 2will set themodified values to the contents that they already have. The algorithm
can be revised so that it does not make these unnecessary diskwrites; see Exercise 5.44.

5.3.4 Undo-Only and Redo-Only Recovery

The recovery algorithm of the previous section performs both undo and redo
operations. A database engine may choose to simplify the algorithm to perform
only undo operations or only redo operations, that is, it executes either stage 1 or
stage 2 of the algorithm, but not both.

5.3.4.1 Undo-Only Recovery

Stage 2 can be omitted if the recovery manager is sure that all committed modifica-
tions have been written to disk. The recovery manager can do so by forcing the
buffers to disk before it writes the commit record to the log. Figure 5.7 expresses this
approach as an algorithm. The recovery manager must follow the steps of this
algorithm in exactly the order given.

Which is better, undo-only recovery or undo-redo recovery? Undo-only recovery
is faster, because it requires only one pass through the log file, instead of two. The
log is also a bit smaller, because update records no longer need to contain the new
modified value. On the other hand, the commit operation is much slower, because it
must flush the modified buffers. If you assume that system crashes are infrequent,
then undo-redo recovery wins. Not only do transactions commit faster, but there
should be fewer overall disk writes due to the postponed buffer flushes.

1.
2. Write a commit record to the log.

Flush the transaction’s modified buffers to disk.

3. Flush the log page containing the commit record.

Fig. 5.7 The algorithm for committing a transaction, using undo-only recovery

114 5 Transaction Management

5.3.4.2 Redo-Only Recovery

Stage 1 can be omitted if uncommitted buffers are never written to disk. The
recovery manager can ensure this property by having each transaction keep its
buffers pinned until the transaction completes. A pinned buffer will not get chosen
for replacement, and thus its contents will not get flushed. In addition, a rolled back
transaction will need its modified buffers to be “erased.” Figure 5.8 gives the
necessary revisions to the rollback algorithm.

Redo-only recovery is faster than undo-redo recovery, because uncommitted
transactions can be ignored. However, it requires that each transaction keep a buffer
pinned for every block that it modifies, which increases the contention for buffers in
the system. With a large database, this contention can seriously impact the perfor-
mance of all transactions, which makes redo-only recovery a risky choice.

It is interesting to think about whether it is possible to combine the undo-only and
redo-only techniques, to create a recovery algorithm that doesn’t require either stage
1 or stage 2. See Exercise 5.19.

5.3.5 Write-Ahead Logging

Step 1 of the recovery algorithm in Fig. 5.6 needs further examination. Recall that
this step iterates through the log, performing an undo for each update record from an
uncompleted transaction. In justifying the correctness of this step, I made the
following assumption: all updates for an uncompleted transaction will have a
corresponding log record in the log file. Otherwise, the database will be corrupted
because there would be no way to undo the update.

Since the system could crash at any time, the only way to satisfy this assumption
is to have the log manager flush each update log record to disk as soon as it is written.
But as Sect. 4.2 demonstrated, this strategy is painfully inefficient. There must be a
better way.

Let’s analyze the kinds of things that can go wrong. Suppose that an uncompleted
transaction modified a page and created a corresponding update log record. If the
server crashes, there are four possibilities:

(a) Both the page and the log record got written to disk.
(b) Only the page got written to disk.
(c) Only the log record got written to disk.
(d) Neither got written to disk.

For each buffer modified by the transaction:
a) Mark the buffer as unallocated. (In SimpleDB, set its block number to -1)
b) Mark the buffer as unmodified.
c) Unpin the buffer.

Fig. 5.8 The algorithm for rolling back a transaction, using redo-only recovery

5.3 Recovery Management 115

https://doi.org/10.1007/978-3-030-33836-7_4

Consider each possibility in turn. If (a), then the recovery algorithm will find the
log record and undo the change to the data block on disk; no problem. If (b), then the
recovery algorithm won’t find the log record, and so it will not undo the change to
the data block. This is a serious problem. If (c), then the recovery algorithm will find
the log record and undo the nonexistent change to the block. Since the block wasn’t
actually changed, this is a waste of time, but not incorrect. If (d), then the recovery
algorithm won’t find the log record, but since there was no change to the block there
is nothing to undo anyway; no problem.

Thus (b) is the only problem case. The database engine avoids this case by
flushing an update log record to disk before flushing the corresponding modified
buffer page. This strategy is called using a write-ahead log. Note that the log may
describe modifications to the database that never wind up occurring (as in possibility
(c) above), but if the database does get modified, the log record for that modification
will always be on disk.

The standard way to implement a write-ahead log is for each buffer to keep track
of the LSN of its most recent modification. Before a buffer replaces a modified page,
it tells the log manager to flush the log up to that LSN. As a result, the log record
corresponding to a modification will always be on disk before the modification gets
saved to disk.

5.3.6 Quiescent Checkpointing

The log contains the history of every modification to the database. As time passes,
the size of the log file can become very large—in some cases, larger than the data
files. The effort to read the entire log during recovery and undo/redo every change to
the database can become overwhelming. Consequently, recovery strategies have
been devised for reading only a portion of the log. The basic idea is that the recovery
algorithm can stop searching the log as soon as it knows two things:

• All earlier log records were written by completed transactions.
• The buffers for those transactions have been flushed to disk.

The first bullet point applies to the undo stage of the recovery algorithm. It
ensures that there are no more uncommitted transactions to be rolled back. The
second bullet point applies to the redo stage and ensures that all earlier committed
transactions do not need to be redone. Note that if the recovery manager implements
undo-only recovery then the second bullet point will always be true.

At any point in time, the recovery manager can perform a quiescent checkpoint
operation, as shown in Fig. 5.9. Step 2 of that algorithm ensures that the first bullet
point is satisfied, and step 3 ensures that the second bullet point is satisfied.

The quiescent checkpoint record acts as a marker in the log. When stage 1 of the
recovery algorithm encounters the checkpoint record as it moves backwards through

116 5 Transaction Management

the log, it knows that all earlier log records can be ignored; it therefore can begin
stage 2 from that point in the log and move forward. In other words, the recovery
algorithm never needs to look at log records prior to a quiescent checkpoint record.

A good time to write a quiescent checkpoint record is during system startup, after
recovery has completed and before new transactions have begun. Since the recovery
algorithm has just finished processing the log, the checkpoint record ensures that it
will never need to examine those log records again.

For an example, consider the log shown in Fig. 5.10. This example log illustrates
three things: First, no new transactions can start once the checkpoint process begins;
second, the checkpoint record was written as soon as the last transaction completed
and the buffers were flushed; and third, other transactions may start as soon as the
checkpoint record is written.

5.3.7 Nonquiescent Checkpointing

Quiescent checkpointing is simple to implement and easy to understand. However, it
requires that the database be unavailable while the recovery manager waits for
existing transactions to complete. In many database applications, this is a serious
shortcoming—companies don’t want their databases to occasionally stop responding

1. Stop accepting new transactions.
2. Wait for existing transactions to finish.
3. Flush all modified buffers.
4. Append a quiescent checkpoint record to the log and flush it to disk.
5. Start accepting new transactions.

Fig. 5.9 The algorithm for performing a quiescent checkpoint

<START, 0>
<SETINT, 0, junk, 33, 8, 542, 543>
<START, 1>
<START, 2>
<COMMIT, 1>
<SETSTRING, 2, junk, 44, 20, hello, ciao>
 //The quiescent checkpoint procedure starts here
<SETSTRING, 0, junk, 33, 12, joe, joseph>
<COMMIT, 0>
 //tx 3 wants to start here, but must wait
<SETINT, 2, junk, 66, 8, 0, 116>
<COMMIT, 2>
<CHECKPOINT>
<START, 3>
<SETINT, 3, junk, 33, 8, 543, 120>

Fig. 5.10 A log using quiescent checkpointing

5.3 Recovery Management 117

for arbitrary periods of time. Consequently, a checkpointing algorithm has been
developed that doesn’t require quiescence. The algorithm appears in Fig. 5.11.

This algorithm uses a different kind of checkpoint record, called a nonquiescent
checkpoint record. A nonquiescent checkpoint record contains a list of the currently
running transactions.

The recovery algorithm is revised as follows. Stage 1 of the algorithm reads the
log backwards as before and keeps track of the completed transactions. When it
encounters a nonquiescent checkpoint record <NQCKPT T1,. . .,Tk>, it deter-
mines which of these transactions are still running. It can then continue reading
the log backwards until it encounters the start record for the earliest of those trans-
actions. All log records prior to this start record can be ignored.

For an example, consider again the log of Fig. 5.10. With nonquiescent
checkpointing, the log would appear as in Fig. 5.12. Note that the <NQCKPT. . .>
record appears in this log in the place where the checkpoint process began in
Fig. 5.10 and states that transactions 0 and 2 are still running at that point. This
log differs from that of Fig. 5.10 in that transaction 2 never commits.

If the recovery algorithm sees this log during system startup, it would enter stage
1 and proceed as follows.

• When it encounters the <SETINT, 3, ...> log record, it will check to see if
transaction 3 was on the list of committed transactions. Since that list is currently
empty, the algorithm will perform an undo, writing the integer 543 to offset 8 of
block 33 of file “junk”.

1. Let T1 k be the currently running transactions.
2. Stop accepting new transactions.
3. Flush all modified buffers.
4. Write the record <NQCKPT T1 k> into the log.
5. Start accepting new transactions.

Fig. 5.11 The algorithm for adding a nonquiescent checkpoint record

<START, 0>
<SETINT, 0, junk, 33, 8, 542, 543>
<START, 1>
<START, 2>
<COMMIT, 1>
<SETSTRING, 2, junk, 44, 20, hello, ciao>

<SETSTRING, 0, junk, 33, 12, joe, joseph>
<COMMIT, 0>
<START, 3>

<NQCKPT, 0, 2>

<SETINT, 2, junk, 66, 8, 0, 116>
<SETINT, 3, junk, 33, 8, 543, 120>

Fig. 5.12 A log using nonquiescent checkpointing

118 5 Transaction Management

• The log record <SETINT, 2, ...> will be treated similarly, writing the
integer 0 to offset 8 of block 66 of “junk”.

• The <COMMIT, 0> log record will cause 0 to be added to the list of committed
transactions.

• The <SETSTRING, 0, ...> log record will be ignored, because 0 is in the
committed transaction list.

• When it encounters the <NQCKPT 0,2> log record, it knows that transaction
0 has committed, and thus it can ignore all log records prior to the start record for
transaction 2.

• When it encounters the <START, 2> log record, it enters stage 2 and begins
moving forward through the log.

• The <SETSTRING, 0, ...> log record will be redone, because 0 is in the
committed transaction list. The value ‘joseph’ will be written to offset 12 of block
33 of “junk”.

5.3.8 Data Item Granularity

The recovery-management algorithms of this section use values as the unit of
logging. That is, a log record is created for each value that is modified, with the
log record containing the previous and new versions of the value. This unit of
logging is called a recovery data item. The size of a data item is called its
granularity.

Instead of using values as data items, the recovery manager could choose to use
blocks or files. For example, suppose that blocks were chosen as the data item. In this
case, an update log record would be created each time a block was modified, with the
previous and new values of the block being stored in the log record.

The advantage to logging blocks is that fewer log records are needed if you use
undo-only recovery. Suppose that a transaction pins a block, modifies several values,
and then unpins it. You could save the original contents of the block in a single log
record, instead of having to write one log record for each modified value. The
disadvantage, of course, is that the update log records are now very large; the entire
contents of the block gets saved, regardless of how many of its values actually
change. Thus, logging blocks makes sense only if transactions tend to do a lot of
modifications per block.

Now consider what it would mean to use files as data items. A transaction would
generate one update log record for each file that it changed. Each log record would
contain the entire original contents of that file. To roll back a transaction, you would
just need to replace the existing files with their original versions. This approach is
almost certainly less practical than using values or blocks as data items, because each
transaction would have to make a copy of the entire file, no matter how many values
changed.

Although file-granularity data items are impractical for database systems, they are
often used by non-database applications. Suppose, for example, that your computer

5.3 Recovery Management 119

crashes while you are editing a file. After the system reboots, some word processors
are able to show you two versions of the file: the version that you most recently
saved and the version that existed at the time of the crash. The reason is that those
word processors do not write your modifications directly to the original file but to a
copy; when you save, the modified file is copied to the original one. This strategy is a
crude version of file-based logging.

5.3.9 The SimpleDB Recovery Manager

The SimpleDB recovery manager is implemented via the class RecoveryMgr in
package simpledb.tx.recovery. The API for RecoveryMgr appears in
Fig. 5.13.

Each transaction has its own RecoveryMgr object, whose methods write the
appropriate log records for that transaction. For example, the constructor writes a
start log record to the log; the commit and rollback methods write
corresponding log records; and the setInt and setString methods extract the
old value from the specified buffer and write an update record to the log. The
rollback and recover methods perform the rollback (or recovery) algorithms.

A RecoveryMgr object uses undo-only recovery with value-granularity data
items. Its code can be divided into two areas of concern: code to implement log
records, and code to implement the rollback and recovery algorithms.

5.3.9.1 Log Records

As mentioned in Sect. 4.2, the log manager sees each log record as a byte array. Each
kind of log record has its own class, which is responsible for embedding the
appropriate values in the byte array. The first value in each array will be an integer
that denotes the operator of the record; the operator can be one of the constants
CHECKPOINT, START, COMMIT, ROLLBACK, SETINT, or SETSTRING. The
remaining values depend on the operator—a quiescent checkpoint record has no
other values, an update record has five other values, and the other records have one
other value.

RecoveryMgr
public RecoveryMgr(Transaction tx, int txnum, LogMgr lm,

BufferMgr bm);
public void commit();
public void rollback();
public void recover();
public int setInt(Buffer buff, int offset, int newval);
public int setString(Buffer buff, int offset, String newval);

Fig. 5.13 The API for the SimpleDB recovery manager

120 5 Transaction Management

https://doi.org/10.1007/978-3-030-33836-7_4

Each log record class implements the interface LogRecord, which is shown in
Fig. 5.14. The interface defines three methods that extract the components of the log
record. Method op returns the record’s operator. Method txNumber returns the ID
of the transaction that wrote the log record. This method makes sense for all log
records except checkpoint records, which return a dummy ID value. The method
undo restores any changes stored in that record. Only the setint and
setstring log records will have a non-empty undo method; the method for
those records will pin a buffer to the specified block, write the specified value at the
specified offset, and unpin the buffer.

The classes for the individual kinds of log record all have similar code; it should
suffice to examine one of the classes, say SetStringRecord, whose code
appears in Fig. 5.15.

The class has two significant methods: a static method writeToLog, which
encodes the six values of a SETSTRING log record into a byte array, and the
constructor, which extracts those six values from that byte array. Consider the
implementation of writeToLog. It first calculates the size of the byte array and
the offset within that array of each value. It then creates a byte array of that size,
wraps it in a Page object, and uses the page’s setInt and setString methods

public interface LogRecord {
static final int CHECKPOINT = 0, START = 1, COMMIT = 2,

ROLLBACK = 3, SETINT = 4, SETSTRING = 5;
int op();
int txNumber();
void undo(int txnum);

static LogRecord createLogRecord(byte[] bytes) {
Page p = new Page(bytes);
switch (p.getInt(0)) {
case CHECKPOINT:

return new CheckpointRecord();
case START:

return new StartRecord(p);
case COMMIT:

return new CommitRecord(p);
case ROLLBACK:

return new RollbackRecord(p);
case SETINT:

return new SetIntRecord(p);
case SETSTRING:

return new SetStringRecord(p);
default:

return null;
}

}
}

Fig. 5.14 The code for the SimpleDB LogRecord interface

5.3 Recovery Management 121

public class SetStringRecord implements LogRecord {
private int txnum, offset;
private String val;
private BlockId blk;

public SetStringRecord(Page p) {
int tpos = Integer.BYTES;
txnum = p.getInt(tpos);
int fpos = tpos + Integer.BYTES;
String filename = p.getString(fpos);
int bpos = fpos + Page.maxLength(filename.length());
int blknum = p.getInt(bpos);
blk = new BlockId(filename, blknum);
int opos = bpos + Integer.BYTES;
offset = p.getInt(opos);
int vpos = opos + Integer.BYTES;
val = p.getString(vpos);

}

public int op() {
return SETSTRING;

}

public int txNumber() {
return txnum;

}

public String toString() {
return "<SETSTRING " + txnum + " " + blk + " " + offset + " "
 + val + ">";

}

public void undo(Transaction tx) {
tx.pin(blk);
tx.setString(blk, offset, val, false); // don't log the undo!
tx.unpin(blk);

}

public static int writeToLog(LogMgr lm, int txnum, BlockId blk,
int offset, String val) {

int tpos = Integer.BYTES;
int fpos = tpos + Integer.BYTES;
int bpos = fpos + Page.maxLength(blk.fileName().length());
int opos = bpos + Integer.BYTES;
int vpos = opos + Integer.BYTES;
int reclen = vpos + Page.maxLength(val.length());
byte[] rec = new byte[reclen];
Page p = new Page(rec);
p.setInt(0, SETSTRING);
p.setInt(tpos, txnum);
p.setString(fpos, blk.fileName());
p.setInt(bpos, blk.number());
p.setInt(opos, offset);
p.setString(vpos, val);
return lm.append(rec);

}
}

Fig. 5.15 The code for the class SetStringRecord

122 5 Transaction Management

to write the values in the appropriate locations. The constructor is analogous. It
determines the offset of each value within the page and extracts them.

The undo method has one argument, which is the transaction performing the
undo. The method has the transaction pin the block denoted by the record, write the
saved value, and unpin the block. The method that calls undo (either rollback or
recover) is responsible for flushing the buffer contents to disk.

5.3.9.2 Rollback and Recover

The class RecoveryMgr implements the undo-only recovery algorithm; its code
appears in Fig. 5.16. The commit and rollback methods flush the transaction’s
buffers before writing their log record, and the doRollback and doRecover
methods make a single backward pass through the log.

The doRollback method iterates through the log records. Each time it finds a
log record for that transaction, it calls the record’s undo method. It stops when it
encounters the start record for that transaction.

The doRecover method is implemented similarly. It reads the log until it hits a
quiescent checkpoint record or reaches the end of the log, keeping a list of committed
transaction numbers. It undoes uncommitted update records the same as in roll-
back, the difference being that it handles all uncommitted transactions, not just a
specific one. This method is slightly different from the recovery algorithm of
Fig. 5.6, because it will undo transactions that have already been rolled back.
Although this difference does not make the code incorrect, it does make it less
efficient. Exercise 5.50 asks you to improve it.

5.4 Concurrency Management

The concurrency manager is the component of the database engine that is responsible
for the correct execution of concurrent transactions. This section examines what it
means for execution to be “correct” and studies some algorithms that ensure
correctness.

5.4.1 Serializable Schedules

The history of a transaction is its sequence of calls to methods that access the
database files—in particular, the get/set methods.1 For example, the histories of
each transaction in Fig. 5.3 could be written, somewhat tediously, as shown in
Fig. 5.17a. Another way to express the history of a transaction is in terms of the

1The size and append methods also access a database file but more subtly than do the get/set
methods. Section 5.4.5 will consider the effect of size and append.

5.4 Concurrency Management 123

public class RecoveryMgr {
private LogMgr lm;
private BufferMgr bm;
private Transaction tx;
private int txnum;

public RecoveryMgr(Transaction tx, int txnum, LogMgr lm,
 BufferMgr bm) {

this.tx = tx;
this.txnum = txnum;
this.lm = lm;
this.bm = bm;
StartRecord.writeToLog(lm, txnum);

}

public void commit() {
bm.flushAll(txnum);
int lsn = CommitRecord.writeToLog(lm, txnum);
lm.flush(lsn);

}

public void rollback() {
doRollback();
bm.flushAll(txnum);
int lsn = RollbackRecord.writeToLog(lm, txnum);
lm.flush(lsn);

}

public void recover() {
doRecover();
bm.flushAll(txnum);
int lsn = CheckpointRecord.writeToLog(lm);
lm.flush(lsn);

}

public int setInt(Buffer buff, int offset, int newval) {
int oldval = buff.contents().getInt(offset);
BlockId blk = buff.block();
return SetIntRecord.writeToLog(lm, txnum, blk, offset,
 oldval);

}

public int setString(Buffer buff, int offset, String newval)
 {

String oldval = buff.contents().getString(offset);
BlockId blk = buff.block();
return SetStringRecord.writeToLog(lm, txnum, blk, offset,
 oldval);

}

private void doRollback() {
Iterator<byte[]> iter = lm.iterator();
while (iter.hasNext()) {

Fig. 5.16 The code for the class RecoveryMgr

124 5 Transaction Management

affected blocks, as shown in Fig. 5.17b. For example, the history for tx2 states that
it reads twice from block blk and then writes twice to blk.

Formally, the history of a transaction is the sequence of database actionsmade by
that transaction. The term “database action” is deliberately vague. Part (a) of
Fig. 5.17 treated a database action as the modification of a value, and part
(b) treated it as the read/write of a disk block. Other granularities are possible,
which are discussed in Sect. 5.4.8. Until then, I shall assume that a database action
is the reading or writing of a disk block.

When multiple transactions are running concurrently, the database engine will
interleave the execution of their threads, periodically interrupting one thread and
resuming another. (In SimpleDB, the Java runtime environment does this automat-
ically.) Thus, the actual sequence of operations performed by the concurrency
manager will be an unpredictable interleaving of the histories of its transactions.
That interleaving is called a schedule.

The purpose of concurrency control is to ensure that only correct schedules get
executed. But what does “correct” mean? Well, consider the simplest possible sched-
ule—one in which all transactions run serially (such as in Fig. 5.17). The operations in
this schedule will not be interleaved, that is, the schedule will simply be the back-to-
back histories of each transaction. This kind of schedule is called a serial schedule.

Concurrency control is predicated on the assumption that a serial schedule has to
be correct, since there is no concurrency. The interesting thing about defining

byte[] bytes = iter.next();
LogRecord rec = LogRecord.createLogRecord(bytes);
if (rec.txNumber() == txnum) {

if (rec.op() == START)
return;

rec.undo(tx);
}

}
}

private void doRecover() {
Collection<Integer> finishedTxs = new ArrayList<Integer>();
Iterator<byte[]> iter = lm.iterator();
while (iter.hasNext()) {

byte[] bytes = iter.next();
LogRecord rec = LogRecord.createLogRecord(bytes);
if (rec.op() == CHECKPOINT)

return;
if (rec.op() == COMMIT || rec.op() == ROLLBACK)

finishedTxs.add(rec.txNumber());
else if (!finishedTxs.contains(rec.txNumber()))

rec.undo(tx);
}

}
}

Fig. 5.16 (continued)

5.4 Concurrency Management 125

correctness in terms of serial schedules is that different serial schedules of the same
transactions can give different results. For example, consider the two transactions T1
and T2, having the following identical histories:

T1: W(b1); W(b2)
T2: W(b1); W(b2)

Although these transactions have the same history (i.e., they both write block b1 first
and then block b2), they are not necessarily identical as transactions—for example, T1
might write an ‘X’ at the beginning of each block, whereas T2 might write a ‘Y.’ If T1
executes before T2, the blocks will contain the values written by T2, but if they execute
in the reverse order, the blocks will contain the values written by T1.

In this example, T1 and T2 have different opinions about what blocks b1 and b2
should contain. And since all transactions are equal in the eyes of the database
engine, there is no way to say that one result is more correct than another. Thus, you
are forced to admit that the result of either serial schedule is correct. That is, there can
be several correct results.

A non-serial schedule is said to be serializable if it produces the same result as
some serial schedule.2 Since serial schedules are correct, it follows that serializable

tx1: setInt(blk, 80, 1, false);
setString(blk, 40, "one", false);

tx2: getInt(blk, 80);
getString(blk, 40);
setInt(blk, 80, newival, true);
setString(blk, 40, newsval, true);

tx3: getInt(blk, 80));
getString(blk, 40));
setInt(blk, 80, 9999, true);
getInt(blk, 80));

tx4: getInt(blk, 80));

(a)

tx1: W(blk); W(blk)
tx2: R(blk); R(blk); W(blk); W(blk)
tx3: R(blk); R(blk); W(blk); R(blk)
tx4: R(blk)

(b)

Fig. 5.17 Transaction histories from Fig. 5.3. (a) Data access histories, (b) Block access histories

2The term serializable is also used in Java—a serializable class is one whose objects can be written
as a stream of bytes. Unfortunately, that use of the term has absolutely nothing to do with the
database usage of it.

126 5 Transaction Management

schedules must also be correct. For an example, consider the following non-serial
schedule of the above transactions:

W1(b1); W2(b1); W1(b2); W2(b2)

Here, W1(b1) means that transaction T1 writes block b1, etc. This schedule
results from running the first half of T1, followed by the first half of T2, the second
half of T1, and the second half of T2. This schedule is serializable, because it is
equivalent to doing T1 first and then T2. On the other hand, consider the following
schedule:

W1(b1); W2(b1); W2(b2); W1(b2)

This transaction does the first half of T1, all of T2, and then the second half of T1.
The result of this schedule is that block b1 contains the values written by T2, but
block b2 contains the values written by T1. This result cannot be produced by any
serial schedule, and so the schedule is said to be non-serializable.

Recall the ACID property of isolation, which said that each transaction should
execute as if it were the only transaction in the system. A non-serializable schedule
does not have this property. Therefore, you are forced to admit that non-serializable
schedules are incorrect. In other words, a schedule is correct if and only if it is
serializable.

5.4.2 The Lock Table

The database engine is responsible for ensuring that all schedules are serializable. A
common technique is to use locking to postpone the execution of a transaction.
Section 5.4.3 will look at how locking can be used to ensure serializability. This
section simply examines how the basic locking mechanism works.

Each block has two kinds of lock—a shared lock (or slock) and an exclusive lock
(or xlock). If a transaction holds an exclusive lock on a block, then no other
transaction is allowed to have any kind of lock on it; if the transaction holds a shared
lock on a block, then other transactions are only allowed to have shared locks on
it. Note that these restrictions apply only to other transactions. A single transaction is
allowed to hold both a shared and exclusive lock on a block.

The lock table is the database engine component responsible for granting locks to
transactions. The SimpleDB class LockTable implements the lock table. Its API
appears in Fig. 5.18.

LockTable
public void sLock(Block blk);
public void xLock(Block blk);
public void unlock(Block blk);

Fig. 5.18 The API for the SimpleDB class LockTable

5.4 Concurrency Management 127

The method sLock requests a shared lock on the specified block. If an exclusive
lock already exists on the block, the method waits until the exclusive lock has been
released. The method xLock requests an exclusive lock on the block. This method
waits until no other transaction has any kind of lock on it. The unlock method
releases a lock on the block.

Figure 5.19 presents the class ConcurrencyTest, which demonstrates some
interactions between lock requests.

public class ConcurrencyTest {
private static FileMgr fm;
private static LogMgr lm;
private static BufferMgr bm;

public static void main(String[] args) {
//initialize the database engine
SimpleDB db = new SimpleDB("concurrencytest", 400, 8);
fm = db.fileMgr();
lm = db.logMgr();
bm = db.bufferMgr();
A a = new A(); new Thread(a).start();
B b = new B(); new Thread(b).start();
C c = new C(); new Thread(c).start();

}

static class A implements Runnable {
public void run() {

try {
Transaction txA = new Transaction(fm, lm, bm);
BlockId blk1 = new BlockId("testfile", 1);
BlockId blk2 = new BlockId("testfile", 2);
txA.pin(blk1);
txA.pin(blk2);
System.out.println("Tx A: request slock 1");
txA.getInt(blk1, 0);
System.out.println("Tx A: receive slock 1");
Thread.sleep(1000);
System.out.println("Tx A: request slock 2");
txA.getInt(blk2, 0);
System.out.println("Tx A: receive slock 2");
txA.commit();

}
catch(InterruptedException e) {};

}
}

static class B implements Runnable {
public void run() {

try {
Transaction txB = new Transaction(fm, lm, bm);

Fig. 5.19 Testing the interaction between lock requests

128 5 Transaction Management

The main method executes three concurrent threads, corresponding to an object
from each of classes A, B, and C. These transactions do not explicitly lock and
unlock blocks. Instead, Transaction’s getInt method obtains an slock, its
setIntmethod obtains an xlock, and its commitmethod unlocks all its locks. The
sequence of locks and unlocks for each transaction thus looks like this:

txA: sLock(blk1); sLock(blk2); unlock(blk1); unlock(blk2)
txB: xLock(blk2); sLock(blk1); unlock(blk1); unlock(blk2)
txC: xLock(blk1); sLock(blk2); unlock(blk1); unlock(blk2)

BlockId blk1 = new BlockId("testfile", 1);
BlockId blk2 = new BlockId("testfile", 2);
txB.pin(blk1);
txB.pin(blk2);
System.out.println("Tx B: request xlock 2");
txB.setInt(blk2, 0, 0, false);
System.out.println("Tx B: receive xlock 2");
Thread.sleep(1000);
System.out.println("Tx B: request slock 1");
txB.getInt(blk1, 0);
System.out.println("Tx B: receive slock 1");
txB.commit();

}
catch(InterruptedException e) {};

}
}

static class C implements Runnable {
public void run() {

try {
Transaction txC = new Transaction(fm, lm, bm);
BlockId blk1 = new BlockId("testfile", 1);
BlockId blk2 = new BlockId("testfile", 2);
txC.pin(blk1);
txC.pin(blk2);
System.out.println("Tx C: request xlock 1");
txC.setInt(blk1, 0, 0, false);
System.out.println("Tx C: receive xlock 1");
Thread.sleep(1000);
System.out.println("Tx C: request slock 2");
txC.getInt(blk2, 0);
System.out.println("Tx C: receive slock 2");
txC.commit();

}
catch(InterruptedException e) {};

}
}

}

Fig. 5.19 (continued)

5.4 Concurrency Management 129

The threads have sleep statements to force the transactions to alternate their lock
requests. The following sequence of events occurs:

1. Thread A obtains an slock on blk1.
2. Thread B obtains an xlock on blk2.
3. Thread C cannot get an xlock on blk1, because someone else has a lock on

it. Thus thread C waits.
4. Thread A cannot get an slock on blk2, because someone else has an xlock on

it. Thus thread A also waits.
5. Thread B can continue. It obtains an slock on block blk1, because nobody

currently has an xlock on it. (It doesn’t matter that thread C is waiting for an
xlock on that block.)

6. Thread B unlocks block blk1, but this does not help either waiting thread.
7. Thread B unlocks block blk2.
8. Thread A can now continue and obtains its slock on blk2.
9. Thread A unlocks block blk1.

10. Thread C finally is able to obtain its xlock on blk1.
11. Threads A and C can continue in any order until they complete.

5.4.3 The Lock Protocol

It is time to tackle the question of how locking can be used to ensure that all
schedules are serializable. Consider two transactions having the following histories:

T1: R(b1); W(b2)
T2: W(b1); W(b2)

What is it that causes their serial schedules to have different results? Transactions
T1 and T2 both write to the same block b2, which means that the order of these
operations makes a difference—whichever transaction writes last is the “winner.”
The operations {W1(b2), W2(b2)} are said to conflict. In general, two operations
conflict if the order in which they are executed can produce a different result. If two
transactions have conflicting operations, then their serial schedules may have dif-
ferent (but equally correct) results.

This conflict is an example of a write-write conflict. A second kind of conflict is a
read-write conflict. For example, the operations {R1(b1), W2(b1)} conflict—if
R1(b1) executes first, then T1 reads one version of block b1, whereas if W2(b1)
executes first, then T1 reads a different version of block b1. Note that two read
operations cannot ever conflict, nor can operations involving different blocks.

The reason to care about conflicts is because they influence the serializability of a
schedule. The order in which conflicting operations are executed in a non-serial
schedule determines what the equivalent serial schedule must be. In the above
example, if W2(b1) executes before R1(b1), then any equivalent serial schedule

130 5 Transaction Management

must have T2 running before T1. In general, if you consider all operations in T1 that
conflict with T2, then either they all must be executed before any conflicting T2
operations or they all must be executed after them. Nonconflicting operations can
happen in an arbitrary order.3

Locking can be used to avoid write-write and read-write conflicts. In particular,
suppose that all transactions use locks according to the protocol of Fig. 5.20.

From this protocol, you can infer two important facts. First, if a transaction gets a
shared lock on a block, then no other active transaction will have written to the block
(otherwise, some transaction would still have an exclusive lock on the block).
Second, if a transaction gets an exclusive lock on a block, then no other active
transaction will have accessed the block in any way (otherwise, some transaction
would still have a lock on the block). These facts imply that an operation performed
by a transaction will never conflict with a previous operation by another active
transaction. In other words, if all transactions obey the lock protocol, then:

• The resulting schedule will always be serializable (and hence correct)
• The equivalent serial schedule is determined by the order in which the trans-

actions commit

By forcing transactions to hold their locks until they complete, the lock protocol
drastically limits the concurrency in the system. It would be nice if a transaction
could release its locks when they are no longer needed, so other transactions
wouldn’t have to wait as long. However, two serious problems can arise if a
transaction releases its locks before it completes: it may no longer be serializable,
and other transactions can read its uncommitted changes. These two issues are
discussed next.

5.4.3.1 Serializability Problems

Once a transaction unlocks a block, it can no longer lock another block without
impacting serializability. To see why, consider a transaction T1 that unlocks block x
before locking block y.

T1: ... R(x); UL(x); SL(y); R(y); ...

1. Before reading a block, acquire a shared lock on it.
2. Before modifying a block, acquire an exclusive lock on it.
3. Release all locks after a commit or rollback.

Fig. 5.20 The lock protocol

3Actually, you can construct obscure examples in which certain write-write conflicts can also occur
in any order; see Exercise 5.26. Such examples, however, are not practical enough to be worth
considering.

5.4 Concurrency Management 131

Suppose that T1 is interrupted during the time interval between the unlock of x
and the slock of y. At this point, T1 is extremely vulnerable, because both x and y are
unlocked. Suppose that another transaction T2 jumps in, locks both x and y, writes to
them, commits, and releases its locks. The following situation has occurred: T1 must
come before T2 in the serial order, because T1 read the version of block x that
existed before T2 wrote it. On the other hand, T1 must also come after T2 in the
serial order, because T1 will read the version of block y written by T2. Thus, the
resulting schedule is non-serializable.

It can be shown that the converse is also true—if a transaction acquires all of its
locks before unlocking any of them, the resulting schedule is guaranteed to be
serializable (see Exercise 5.27). This variant of the lock protocol is called two-
phase locking. This name comes from the fact that under this protocol, a transaction
has two phases—the phase where it accumulates the locks and the phase where it
releases the locks.

Although two-phase locking is theoretically a more general protocol, a database
engine cannot easily take advantage of it. Usually by the time a transaction has
finished accessing its final block (which is when locks are finally able to be released),
it is ready to commit anyway. So the fully general two-phase locking protocol is
rarely effective in practice.

5.4.3.2 Reading Uncommitted Data

Another problem with releasing locks early (even with two-phase locking) is that
transactions will be able to read uncommitted data. Consider the following partial
schedule:

... W1(b); UL1(b); SL2(b); R2(b); ...

In this schedule, T1 writes to block b and unlocks it; transaction T2 then locks and
reads b. If T1 eventually commits, then there is no problem. But suppose that T1
does a rollback. Then T2 will also have to roll back, because its execution is based on
changes that no longer exist. And if T2 rolls back, this could cause still other
transactions to roll back. This phenomenon is known as cascading rollback.

When the database engine lets a transaction read uncommitted data, it enables
more concurrency, but it takes the risk that the transaction that wrote the data will not
commit. Certainly, rollbacks tend to be infrequent, and cascaded rollbacks should be
more so. The question is whether a database engine wants to take any risk of possibly
rolling back a transaction unnecessarily. Most commercial database systems are not
willing to take this risk and therefore always wait until a transaction completes
before releasing its exclusive locks.

132 5 Transaction Management

5.4.4 Deadlock

Although the lock protocol guarantees that schedules will be serializable, it does not
guarantee that all transactions will commit. In particular, it is possible for trans-
actions to be deadlocked.

Section 4.5.1 gave an example of deadlock in which two client threads were each
waiting for the other to release a buffer. A similar possibility exists with locks. A
deadlock occurs when there is a cycle of transactions in which the first transaction is
waiting for a lock held by the second transaction, the second transaction is waiting
for a lock held by the third transaction, and so on, until the last transaction is waiting
for a lock held by the first transaction. In such a case, none of the waiting transactions
can continue, and all will wait potentially forever. For a simple example, consider the
following two histories, in which the transactions write to the same blocks but in
different orders:

T1: W(b1); W(b2)
T2: W(b2); W(b1)

Suppose that T1 first acquires its lock on block b1. There is now a race for the
lock on block b2. If T1 gets it first, then T2 will wait, T1 will eventually commit and
release its locks, and T2 can continue. No problem. But if T2 gets the lock on block
b2 first, then deadlock occurs—T1 is waiting for T2 to unlock block b2, and T2 is
waiting for T1 to unlock block b1. Neither transaction can continue.

The concurrency manager can detect a deadlock by keeping a “waits-for” graph.
This graph has one node for each transaction and an edge from T1 to T2 if T1 is
waiting for a lock that T2 holds; each edge is labeled by the block that the transaction
is waiting for. Every time a lock is requested or released, the graph is updated. For
example, the waits-for graph corresponding to the above deadlock scenario appears
in Fig. 5.21.

It is easy to show that a deadlock exists iff the waits-for graph has a cycle; see
Exercise 5.28. When the transaction manager detects the occurrence of a deadlock, it
can break it by summarily rolling back any one of the transactions in the cycle. A
reasonable strategy is to roll back the transaction whose lock request “caused” the
cycle, although other strategies are possible; see Exercise 5.29.

If you consider threads waiting for buffers as well as those waiting for locks, then
testing for deadlock gets considerably more complicated. For example, suppose that
the buffer pool contains only two buffers, and consider the following scenario:

T1: xlock(b1); pin(b4)
T2: pin(b2); pin(b3); xlock(b1)

Fig. 5.21 A waits-for graph

5.4 Concurrency Management 133

https://doi.org/10.1007/978-3-030-33836-7_4

Suppose transaction T1 gets interrupted after obtaining the lock on block b1, and
then T2 pins blocks b2 and b3. T2 will wind up on the waiting list for xlock(b1), and
T1 will wind up on the waiting list for a buffer. There is deadlock, even though the
waits-for graph is acyclic.

In order to detect deadlock in such situations, the lock manager must not only
keep a waits-for graph, it also needs to know about which transactions are waiting for
what buffers. Incorporating this additional consideration into the deadlock detection
algorithm turns out to be fairly difficult. Adventurous readers are encouraged to try
Exercise 5.37.

The problem with using a waits-for graph to detect deadlock is that the graph is
somewhat difficult to maintain and the process of detecting cycles in the graph is
time-consuming. Consequently, simpler strategies have been developed to approx-
imate deadlock detection. These strategies are conservative, in the sense that they
will always detect a deadlock, but they might also treat a non-deadlock situation as a
deadlock. This section considers two such possible strategies; Exercise 5.33 con-
siders another.

The first approximation strategy is called wait-die, which is defined in Fig. 5.22.
This strategy ensures that no deadlocks can occur, because the waits-for graph will
contain only edges from older transactions to newer transactions. But the strategy
also treats every potential deadlock as a cause for rollback. For example, suppose
transaction T1 is older than T2, and T2 requests a lock currently held by T1. Even
though this request may not immediately cause deadlock, there is the potential for it,
because at some later point, T1 might request a lock held by T2. Thus the wait-die
strategy will preemptively roll back T2.

The second approximation strategy is to use a time limit to detect a possible
deadlock. If a transaction has been waiting for some preset amount of time, then the
transaction manager will assume that it is deadlocked and will roll it back. See
Fig. 5.23.

Regardless of the deadlock detection strategy, the concurrency manager must
break the deadlock by rolling back an active transaction. The hope is that by

Suppose T1 requests a lock that conflicts with a lock held by T2.
If T1 is older than T2 then:

T1 waits for the lock.
Otherwise:

T1 is rolled back (i.e. it “dies”).

Fig. 5.22 The wait-die deadlock detection strategy

Suppose T1 requests a lock that conflicts with a lock held by T2.

1. T1 waits for the lock.
2. If T1 stays on the wait list too long then:

T1 is rolled back.

Fig. 5.23 The time limit deadlock detection strategy

134 5 Transaction Management

releasing that transaction’s locks, the remaining transactions will be able to com-
plete. Once the transaction is rolled back, the concurrency manager throws an
exception; in SimpleDB, this exception is called a LockAbortException. As
with the BufferAbortException of Chap. 4, this exception is caught by the
JDBC client of the aborted transaction, which then decides how to handle it. For
example, the client could choose to simply exit, or it could try to run the transaction
again.

5.4.5 File-Level Conflicts and Phantoms

This chapter has so far considered the conflicts that arise from the reading and
writing of blocks. Another kind of conflict involves the methods size and
append, which read and write the end-of-file marker. These two methods clearly
conflict with each other: Suppose that transaction T1 calls append before transac-
tion T2 calls size; then T1 must come before T2 in any serial order.

One of the consequences of this conflict is known as the phantom problem.
Suppose that T2 reads the entire contents of a file repeatedly and calls size before
each iteration to determine how many blocks to read. Moreover, suppose that after
T2 reads the file the first time, transaction T1 appends some additional blocks to the
file, fills them with values, and commits. The next time through the file, T2 will see
these additional values, in violation of the ACID property of isolation. These
additional values are called phantoms, because to T2 they have shown up
mysteriously.

How can the concurrency manager avoid this conflict? The lock protocol requires
T2 to obtain an slock on each block it reads, so that T1 will not be able to write new
values to those blocks. However, this approach will not work here, because it would
require T2 to slock the new blocks before T1 creates them!

The solution is to allow transactions to lock the end-of-file marker. In particular,
a transaction needs to xlock the marker in order to call the append method, and
it needs to slock the marker in order to call the size method. In the above
scenario, if T1 calls append first, then T2 will not be able to determine the file
size until T1 completes; conversely, if T2 has already determined the file size, then
T1 would be blocked from appending until T2 commits. In either case, phantoms
cannot occur.

5.4.6 Multiversion Locking

Transactions in many database applications are read-only. Read-only transactions
coexist nicely within the database engine because they share locks and never have to
wait for each other. However, they do not get along well with update transactions.
Suppose that one update transaction is writing to a block. Then all read-only

5.4 Concurrency Management 135

https://doi.org/10.1007/978-3-030-33836-7_4

transactions that want to read that block must wait, not just until the block is written
but until the update transaction has completed. Conversely, if an update transaction
wants to write a block, it needs to wait until all of the read-only transactions that read
the block have completed.

In other words, a lot of waiting is going to occur when read-only and update
transactions conflict, regardless of which transaction gets its lock first. Given that
this situation is a common one, researchers have developed strategies for reducing
this waiting. One such strategy is called multiversion locking.

5.4.6.1 The Principle of Multiversion Locking

As its name suggests, multiversion locking works by storing multiple versions of
each block. The basic idea is as follows:

• Each version of a block is timestamped with the commit time of the transaction
that wrote it.

• When a read-only transaction requests a value from a block, the concurrency
manager uses the version of the block that was most recently committed at the
time the transaction began.

In other words, a read-only transaction sees a snapshot of the committed data as it
would have looked at the time the transaction began. Note the term “committed
data.” The transaction sees the data written by transactions that committed before it
began and does not see the data written by later transactions.

Consider the following example of multiversion locking. Suppose four trans-
actions have the following histories:

T1: W(b1); W(b2)
T2: W(b1); W(b2)
T3: R(b1); R(b2)
T4: W(b2)

and that they execute according to the following schedule:

Fig. 5.24 Multiversion concurrency

136 5 Transaction Management

W1(b1); W1(b2); C1; W2(b1); R3(b1); W4(b2); C4; R3(b2); C3; W2(b1); C2

This schedule assumes that a transaction begins at its first operation and obtains
its locks immediately before they are needed. The operation Ci indicates when
transaction Ti commits. The update transactions T1, T2, and T4 follow the lock
protocol, as you can verify from the schedule. Transaction T3 is a read-only
transaction and does not follow the protocol.

The concurrency manager stores a version of a block for each update transaction
that writes to it. Thus, there will be two versions of b1 and three versions of b2, as
shown in Fig. 5.24.

The timestamp on each version is the time when its transaction commits, not
when the writing occurred. Assume that each operation takes one time unit, so T1
commits at time 3, T4 at time 7, T3 at time 9, and T2 at time 11.

Now consider the read-only transaction T3. It begins at time 5, which means that
it should see the values that were committed at that point, namely, the changes made
by T1 but not T2 or T4. Thus, it will see the versions of b1 and b2 that were
timestamped at time 3. Note that T3 will not see the version of b2 that was
timestamped at time 7, even though that version had been committed by the time
that the read occurred.

The beauty of multiversion locking is that read-only transactions do not need to
obtain locks and thus never have to wait. The concurrency manager chooses the
appropriate version of a requested block according to the start time of the transaction.
An update transaction can be concurrently making changes to the same block, but a
read-only transaction will not care because it sees a different version of that block.

Multiversion locking only applies to read-only transactions. Update transactions
need to follow the lock protocol, obtaining both slocks and xlocks as appropriate.
The reason is every update transaction reads and writes the current version of the
data (and never a previous version), and thus conflicts are possible. But remember
that these conflicts are between update transactions only and not with the read-only
transactions. Thus, assuming that there are relatively few conflicting update trans-
actions, waiting will be much less frequent.

5.4.6.2 Implementing Multiversion Locking

Now that you have seen how multiversion locking should work, let’s examine how
the concurrency manager does what it needs to do. The basic issue is how to
maintain the versions of each block. A straightforward but somewhat difficult
approach would be to explicitly save each version in a dedicated “version file.” A
different approach is to use the log to reconstruct any desired version of a block. Its
implementation works as follows.

Each read-only transaction is given a timestamp when it starts. Each update
transaction is given a timestamp when it commits. The commit method for an
update transaction is revised to include the following actions:

5.4 Concurrency Management 137

• The recovery manager writes the transaction’s timestamp as part of its commit log
record.

• For each xlock held by the transaction, the concurrency manager pins the block,
writes the timestamp to the beginning of the block, and unpins the buffer.

Suppose that a read-only transaction having timestamp t requests a block b. The
concurrency manager takes the following steps to reconstruct the appropriate
version:

• It copies the current version of block b to a new page.
• It reads the log backwards three times, as follows:

– It constructs a list of transactions that committed after time t. Since trans-
actions commit in timestamp order, the concurrency manager can stop reading
the log when it finds a commit record whose timestamp is less than t.

– It constructs a list of uncompleted transactions by looking for log records
written by transactions that do not have a commit or rollback record. It can
stop reading the log when it encounters a quiescent checkpoint record or the
earliest start record of a transaction in a nonquiescent checkpoint record.

– It uses the update records to undo values in the copy of b. When it encounters
an update record for b written by a transaction on either of the above lists, it
performs an undo. It can stop reading the log when it encounters the start
record for the earliest transaction on the lists.

• The modified copy of b is returned to the transaction.

In other words, the concurrency manager reconstructs the version of the block at
time t by undoing modifications made by transactions that did not commit before
t. This algorithm uses three passes through the log for simplicity. Exercise 5.38 asks
you to rewrite the algorithm to make a single pass through the log.

Finally, a transaction needs to specify whether it is read-only or not, since the
concurrency manager treats the two types of transaction differently. In JDBC, this
specification is performed by the method setReadOnly in the Connection
interface. For example:

Connection conn = ... // obtain the connection
conn.setReadOnly(true);

The call to setReadOnly is considered to be a “hint” to the database
system. The system can choose to ignore the call if it does not support multiversion
locking.

138 5 Transaction Management

5.4.7 Transaction Isolation Levels

Enforcing serializability causes a considerable amount of waiting, because the lock
protocol requires transactions to hold their locks until they complete. Consequently,
if a transaction T1 happens to need just one lock that conflicts with a lock held by T2,
then T1 cannot do anything else until T2 completes.

Multiversion locking is very attractive because it allows read-only transactions to
execute without locks and therefore without the inconvenience of having to wait.
However, the implementation of multiversion locking is somewhat complex and
requires additional disk accesses to recreate the versions. Moreover, multiversion
locking does not apply to transactions that update the database.

There is another way for a transaction to reduce the amount of time it waits for
locks—it can specify that it does not need complete serializability. Chapter 2
examined the four transaction isolation levels of JDBC. Figure 5.25 summarizes
these levels and their properties.

Chapter 2 related these isolation levels to the various problems that can occur.
What is new about Fig. 5.25 is that it also relates these levels to the way that slocks
are used. Serializable isolation requires very restrictive shared locking, whereas
read-uncommitted isolation does not even use slocks. Clearly, the less restrictive
the locking, the less waiting that occurs. But less restrictive locking also introduces
more inaccuracies into the results of queries: a transaction may see phantoms, or it
may see two different values at a location at different times, or it may see values
written by an uncommitted transaction.

I want to stress that these isolation levels apply only to data reading. All trans-
actions, regardless of their isolation level, should behave correctly with respect to
writing data. They must obtain the appropriate xlocks (including the xlock on the eof
marker) and hold them to completion. The reason is that an individual transaction
may choose to tolerate inaccuracies when it runs a query, but an inaccurate update
poisons the entire database and cannot be tolerated.

ISOLATION LEVEL PROBLEMS LOCK USAGE COMMENTS

serializable none
slocks held to completion,
slock on eof marker

the only level that
guarantees correctness

repeatable read phantoms
slocks held to completion,
no slock on eof marker

useful for modify-based
transactions

read committed
phantoms,
values may change

slocks released early,
no slock on eof marker

useful for conceptually
separable transactions

read uncommitted
phantoms,
values may change,
dirty reads

no slocks at all
useful for read-only
transactions that tolerate
inaccurate results

whose updates are “all
or nothing”

Fig. 5.25 Transaction isolation levels

5.4 Concurrency Management 139

https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_2

How does read uncommitted isolation compare with multiversion locking? Both
apply to read-only transactions, and both operate without locks. However, a trans-
action that uses read uncommitted isolation sees the current value of each block that
it reads, regardless of which transaction wrote to it or when. It is not even close to
being serializable. On the other hand, a transaction that uses multiversion locking
sees the committed contents of the blocks at a single point in time and is serializable.

5.4.8 Data Item Granularity

This chapter has assumed that the concurrency manager locks blocks. But other
locking granularities are possible: The concurrency manager could lock values, files,
or even the entire database. The unit of locking is called a concurrency data item.

The principles of concurrency control are not affected by the granularity of data
item used. All of the definitions, protocols, and algorithms in this chapter apply to
any data item. The choice of granularity is therefore a practical one, which needs to
balance efficiency with flexibility. This section examines some of these trade-offs.

The concurrency manager keeps a lock for each data item. A smaller granularity
size is useful because it allows for more concurrency. For example, suppose that two
transactions wish to concurrently modify different parts of the same block. These
concurrent modifications are possible with value-granularity locking but not with
block-granularity locking.

However, a smaller granularity requires more locks. Values tend to make imprac-
tically small data items, because they entail an enormous number of locks. At the
other extreme, using files as data items would require very few locks but would also
significantly impact concurrency—a client would need to xlock the entire file in
order to update any portion of it. Using blocks as data items is a reasonable
compromise.

As an aside, note that some operating systems (such as MacOS andWindows) use
file-granularity locking to implement a primitive form of concurrency control. In
particular, an application cannot write to a file without an xlock on the file, and it
cannot obtain the xlock if that file is currently being used by another application.

Some concurrency managers support data items at multiple granularities, such as
blocks and files. A transaction that plans to access only a few blocks of a file could
lock them separately; but if the transaction plans to access all (or most of) the file, it
would obtain a single file-granularity lock. This approach blends the flexibility of
small-granularity items with the convenience of high-level items.

Another possible granularity is to use data records as concurrency data items.
Data records are handled by the record manager, which is the topic of the next
chapter. SimpleDB is structured so that the concurrency manager does not under-
stand records and therefore cannot lock them. However, some commercial systems
(such as Oracle) are built so that the concurrency manager knows about the record
manager and can call its methods. In this case, data records would be a reasonable
concurrency data item.

140 5 Transaction Management

Although data-record granularity appears attractive, it introduces additional prob-
lems with phantoms. Since new data records can get inserted into existing blocks, a
transaction that reads all records from a block needs a way to keep other transactions
from inserting records into that block. The solution is for the concurrency manager to
also support a coarser-granularity data item, such as blocks or files. In fact, some
commercial systems avoid phantoms by simply forcing a transaction to obtain an
xlock on the file before it performs any insertion.

5.4.9 The SimpleDB Concurrency Manager

The SimpleDB concurrency manager is implemented via the class
ConcurrencyMgr in the package simpledb.tx.concurrency. The con-
currency manager implements the lock protocol, using block-level granularity. Its
API appears in Fig. 5.26.

Each transaction has its own concurrency manager. The methods of the concur-
rency manager are similar to those of the lock table but are transaction-specific. Each
ConcurrencyMgr object keeps track of the locks held by its transaction. The
methods sLock and xLock will request a lock from the lock table only if the
transaction does not yet have it. The method release is called at the end of the
transaction to unlock all its locks.

The ConcurrencyMgr class makes use of the class LockTable, which
implements the SimpleDB lock table. The remainder of this section examines the
implementation of these two classes.

5.4.9.1 The Class LockTable

The code for the class LockTable appears in Fig. 5.27. The LockTable object
holds a Map variable called locks. This map contains an entry for each block that
currently has an assigned lock. The value of an entry will be an Integer object; a
value of -1 denotes that an exclusive lock is assigned, whereas a positive value
denotes the current number of shared locks assigned.

The sLock and xLock methods work very similarly to the pin method of
BufferMgr. Each method calls the Java wait method inside of a loop, which

ConcurrencyMgr
public ConcurrencyMgr(int txnum);
public void sLock(Block blk);
public void xLock(Block blk);
public void release();

Fig. 5.26 The API for the SimpleDB concurrency manager

5.4 Concurrency Management 141

class LockTable {
private static final long MAX_TIME = 10000; // 10 seconds

private Map<Block,Integer> locks = new HashMap<Block,Integer>();

public synchronized void sLock(Block blk) {
try {

long timestamp = System.currentTimeMillis();
while (hasXlock(blk) && !waitingTooLong(timestamp))

wait(MAX_TIME);
if (hasXlock(blk))

throw new LockAbortException();
int val = getLockVal(blk); // will not be negative
locks.put(blk, val+1);

}
catch(InterruptedException e) {

throw new LockAbortException();
}

}

public synchronized void xLock(Block blk) {
try {

long timestamp = System.currentTimeMillis();
while (hasOtherSLocks(blk) && !waitingTooLong(timestamp))

wait(MAX_TIME);
if (hasOtherSLocks(blk))

throw new LockAbortException();
locks.put(blk, -1);

}
catch(InterruptedException e) {

throw new LockAbortException();
}

}

public synchronized void unlock(Block blk) {
int val = getLockVal(blk);
if (val > 1)

locks.put(blk, val-1);
else {

locks.remove(blk);
notifyAll();

}
}

private boolean hasXlock(Block blk) {
return getLockVal(blk) < 0;

}

Fig. 5.27 The code for the SimpleDB class LockTable

142 5 Transaction Management

means that the client thread is continually placed on the wait list as long as the loop
condition holds. The loop condition for sLock calls the method hasXlock, which
returns true if the block has an entry in locks with a value of -1. The loop
condition for xLock calls the method hasOtherLocks, which returns true if
the block has an entry in locks with a value greater than 1. The rationale is that the
concurrency manager will always obtain an slock on the block before requesting the
xlock, and so a value higher than 1 indicates that some other transaction also has a
lock on this block.

The unlock method either removes the specified lock from the locks collec-
tion (if it is either an exclusive lock or a shared lock held by only one transaction) or
decrements the number of transactions still sharing the lock. If the lock is removed
from the collection, the method calls the Java notifyAllmethod, which moves all
waiting threads to the ready list for scheduling. The internal Java thread scheduler
resumes each thread in some unspecified order. There may be several threads waiting
on the same released lock. By the time a thread is resumed, it may discover that the
lock it wants is unavailable and will place itself on the wait list again.

This code is not especially efficient about how it manages thread notification. The
notifyAll method moves all waiting threads, which includes threads waiting on
other locks. Those threads, when scheduled, will (of course) discover that their lock
is still unavailable and will place themselves back on the wait list. On one hand, this
strategy will not be too costly if there are relatively few conflicting database threads
running concurrently. On the other hand, a database engine ought to be more
sophisticated than that. Exercises 5.53–5.54 ask you to improve the wait/notification
mechanism.

5.4.9.2 The Class ConcurrencyMgr

The code for the class ConcurrencyMgr appears in Fig. 5.28. Although there is a
concurrency manager for each transaction, they all need to use the same lock table.

private boolean hasOtherSLocks(Block blk) {
return getLockVal(blk) > 1;

}

private boolean waitingTooLong(long starttime) {
return System.currentTimeMillis() - starttime > MAX_TIME;

}

private int getLockVal(Block blk) {
Integer ival = locks.get(blk);
return (ival == null) ? 0 : ival.intValue();

}
}

Fig. 5.27 (continued)

5.4 Concurrency Management 143

This requirement is implemented by having each ConcurrencyMgr object share a
static LockTable variable. The description of the locks held by the transaction is
held in the local variable locks. This variable holds a map that has an entry for each
locked block. The value associated with the entry is either “S” or “X,” depending on
whether there is an slock or an xlock on that block.

The method sLock first checks to see if the transaction already has a lock on the
block; if so, there is no need to go to the lock table. Otherwise, it calls the lock table’s
sLockmethod and waits for the lock to be granted. The method xLock need not do
anything if the transaction already has an xlock on the block. If not, the method first
obtains an slock on the block and then obtains the xlock. (Recall that the lock table’s
xLock method assumes that the transaction already has an slock.) Note that xlocks
are “stronger” than slocks, in the sense that a transaction having an xlock on a block
also has an implied slock on it.

public class ConcurrencyMgr {
private static LockTable locktbl = new LockTable();
private Map<Block,String> locks = new HashMap<Block,String>();

public void sLock(Block blk) {
if (locks.get(blk) == null) {

locktbl.sLock(blk);
locks.put(blk, "S");

}
}

public void xLock(Block blk) {
if (!hasXLock(blk)) {

sLock(blk);
locktbl.xLock(blk);
locks.put(blk, "X");

}

}

public void release() {
for (Block blk : locks.keySet())

locktbl.unlock(blk);
locks.clear();

}

private boolean hasXLock(Block blk) {
String locktype = locks.get(blk);
return locktype != null && locktype.equals("X");

}
}

Fig. 5.28 The code for the SimpleDB class ConcurrencyMgr

144 5 Transaction Management

5.5 Implementing SimpleDB Transactions

Section 5.2 introduced the API for the class Transaction. It is now possible to
discuss its implementation. The Transaction class makes use of the class
BufferList to manage the buffers it has pinned. Each class is discussed in turn.

The Class Transaction
The code for class Transaction appears in Fig. 5.29. Each Transaction
object creates its own recovery manger and concurrency manager. It also creates
the object myBuffers to manage the currently pinned buffers.

The commit and rollback methods perform the following activities:

• They unpin any remaining buffers.
• They call the recovery manager to commit (or roll back) the transaction.
• They call the concurrency manager to release its locks.

The methods getInt and getString first acquire an slock on the specified
block from the concurrency manager and then return the requested value from the
buffer. The methods setInt and setString first acquire an xlock from the
concurrency manager and then call the corresponding method in the recovery
manager to create the appropriate log record and return its LSN. This LSN can
then be passed to the buffer’s setModified method.

The methods size and append treat the end-of-file marker as a “dummy” block
with block number ‐1. The method size obtains an slock on the block, and append
obtains an xlock on the block.

The Class BufferList
The class BufferList manages the list of currently pinned buffers for a transac-
tion; see Fig. 5.30. A BufferList object needs to know two things: which buffer
is assigned to a specified block, and how many times each block is pinned. The code
uses a map to determine buffers and a list to determine pin counts. The list contains a
BlockId object as many times as it is pinned; each time the block is unpinned, one
instance is removed from the list.

The method unpinAll performs the buffer-related activity required when a
transaction commits or rolls back—it has the buffer manager flush all buffers
modified by the transaction and unpins any still-pinned buffers.

5.6 Chapter Summary

• Data can get lost or corrupted when client programs are able to run indiscrimi-
nately. Database engines force client programs to consist of transactions.

• A transaction is a group of operations that behaves as a single operation. It
satisfies the ACID properties of atomicity, consistency, isolation, and durability.

• The recovery manager is responsible for ensuring atomicity and durability. It is
the portion of the server that reads and processes the log. It has three functions: to

5.6 Chapter Summary 145

public class Transaction {
private static int nextTxNum = 0;
private static final int END_OF_FILE = -1;
private RecoveryMgr recoveryMgr;
private ConcurrencyMgr concurMgr;
private BufferMgr bm;
private FileMgr fm;
private int txnum;
private BufferList mybuffers;

public Transaction(FileMgr fm, LogMgr lm, BufferMgr bm) {
this.fm = fm;
this.bm = bm;
txnum = nextTxNumber();
recoveryMgr = new RecoveryMgr(this, txnum, lm, bm);
concurMgr = new ConcurrencyMgr();
mybuffers = new BufferList(bm);

}

public void commit() {
recoveryMgr.commit();
concurMgr.release();
mybuffers.unpinAll();
System.out.println("transaction " + txnum + " committed");

}

public void rollback() {
recoveryMgr.rollback();
concurMgr.release();
mybuffers.unpinAll();
System.out.println("transaction " + txnum + " rolled back");

}

public void recover() {
bm.flushAll(txnum);
recoveryMgr.recover();

}

public void pin(BlockId blk) {
mybuffers.pin(blk);

}
public void unpin(BlockId blk) {

mybuffers.unpin(blk);
}

public int getInt(BlockId blk, int offset) {
concurMgr.sLock(blk);
Buffer buff = mybuffers.getBuffer(blk);
return buff.contents().getInt(offset);

}

public String getString(BlockId blk, int offset) {
concurMgr.sLock(blk);
Buffer buff = mybuffers.getBuffer(blk);
return buff.contents().getString(offset);

Fig. 5.29 The code for the SimpleDB class Transaction

146 5 Transaction Management

public void setInt(BlockId blk, int offset, int val,
 boolean okToLog) {

concurMgr.xLock(blk);
Buffer buff = mybuffers.getBuffer(blk);
int lsn = -1;
if (okToLog)

lsn = recoveryMgr.setInt(buff, offset, val);
Page p = buff.contents();
p.setInt(offset, val);
buff.setModified(txnum, lsn);

}

public void setString(BlockId blk, int offset, String val,
 boolean okToLog) {

concurMgr.xLock(blk);
Buffer buff = mybuffers.getBuffer(blk);
int lsn = -1;
if (okToLog)

lsn = recoveryMgr.setString(buff, offset, val);
Page p = buff.contents();
p.setString(offset, val);
buff.setModified(txnum, lsn);

}

public int size(String filename) {
BlockId dummyblk = new BlockId(filename, END_OF_FILE);
concurMgr.sLock(dummyblk);
return fm.length(filename);

}

public BlockId append(String filename) {
BlockId dummyblk = new BlockId(filename, END_OF_FILE);
concurMgr.xLock(dummyblk);
return fm.append(filename);

}

public int blockSize() {
return fm.blockSize();

}

public int availableBuffs() {
return bm.available();

}

private static synchronized int nextTxNumber() {
nextTxNum++;
System.out.println("new transaction: " + nextTxNum);
return nextTxNum;

}
}

Fig. 5.29 (continued)

5.6 Chapter Summary 147

write log records, to roll back a transaction, and to recover the database after a
system crash.

• Each transaction writes a start record to the log to denote when it begins, update
records to indicate the modifications it makes, and a commit or rollback record to
denote when it completes. In addition, the recovery manager can write checkpoint
records to the log at various times.

• The recovery manager rolls back a transaction by reading the log backwards. It
uses the transaction’s update records to undo the modifications.

• The recovery manager recovers the database after a system crash.

class BufferList {
private Map<BlockId,Buffer> buffers = new HashMap<>();
private List<BlockId> pins = new ArrayList<>();
private BufferMgr bm;

public BufferList(BufferMgr bm) {
this.bm = bm;

}

Buffer getBuffer(BlockId blk) {
return buffers.get(blk);

}

void pin(BlockId blk) {
Buffer buff = bm.pin(blk);
buffers.put(blk, buff);
pins.add(blk);

}

void unpin(BlockId blk) {
Buffer buff = buffers.get(blk);
bm.unpin(buff);
pins.remove(blk);
if (!pins.contains(blk))

buffers.remove(blk);
}

void unpinAll() {
for (BlockId blk : pins) {

Buffer buff = buffers.get(blk);
bm.unpin(buff);

}
buffers.clear();
pins.clear();

}

}

Fig. 5.30 The code for the SimpleDB class BufferList

148 5 Transaction Management

• The undo-redo recovery algorithm undoes the modifications made by uncom-
mitted transactions and redoes the modifications made by committed transactions.

• The undo-only recovery algorithm assumes that modifications made by a com-
mitted transaction are flushed to the disk before the transaction commits. Thus, it
only needs to undo modifications made by uncommitted transactions.

• The redo-only recovery algorithm assumes that modified buffers are not flushed
until the transaction commits. This algorithm requires a transaction to keep
modified buffers pinned until it completes, but it avoids the need to undo
uncommitted transactions.

• The write-ahead logging strategy requires that an update log record be forced to
disk before the modified data page. Write-ahead logging guarantees that modifi-
cations to the database will always be in the log and therefore will always be
undoable.

• Checkpoint records are added to the log in order to reduce the portion of the log
that the recovery algorithm needs to consider. A quiescent checkpoint record can
be written when no transactions are currently running; a nonquiescent checkpoint
record can be written at any time. If undo-redo (or redo-only) recovery is used,
then the recovery manager must flush modified buffers to disk before it writes a
checkpoint record.

• A recovery manager can choose to log values, records, pages, files, etc. The unit
of logging is called a recovery data item. The choice of data item involves a trade-
off: A large-granularity data item will require fewer update log records, but each
log record will be larger.

• The concurrency manager is the portion of the database engine that is responsible
for the correct execution of concurrent transactions.

• The sequence of operations performed by the transactions in the engine is called a
schedule. A schedule is serializable if it is equivalent to a serial schedule. Only
serializable schedules are correct.

• The concurrency manager uses locking to guarantee that schedules are
serializable. In particular, it requires all transactions to follow the lock protocol,
which states:

– Before reading a block, acquire a shared lock on it.
– Before modifying a block, acquire an exclusive lock on it.
– Release all locks after commit or rollback.

• A deadlock can occur if there is a cycle of transactions where each transaction is
waiting for a lock held by the next transaction. The concurrency manager can
detect deadlock by keeping a waits-for graph and checking for cycles.

• The concurrency manager can also use algorithms to approximate deadlock
detection. The wait-die algorithm forces a transaction to roll back if it needs a
lock held by an older transaction. The time-limit algorithm forces a transaction to
roll back if it has been waiting for a lock longer than expected. Both of these
algorithms will remove deadlock when it exists, but might also roll back a
transaction unnecessarily.

5.6 Chapter Summary 149

• While one transaction is examining a file, another transaction might append new
blocks to it. The values in those blocks are called phantoms. Phantoms are
undesirable because they violate serializability. A transaction can avoid phantoms
by locking the end-of-file marker.

• The locking needed to enforce serializability significantly reduces concurrency.
The multiversion locking strategy allows read-only transactions to run without
locks (and thus without having to wait). The concurrency manager implements
multiversion locking by associating timestamps with each transaction and using
those timestamps to reconstruct the version of the blocks as they were at a
specified point in time.

• Another way to reduce the waiting time imposed by locking is to remove the
requirement of serializability. A transaction can specify that it belongs to one of
four isolation levels: serializable, repeatable read, read committed, or read
uncommitted. Each non-serializable isolation level reduces the restrictions on
slocks given by the log protocol and results in less waiting as well as increased
severity of read problems. Developers who choose non-serializable isolation
levels must consider carefully the extent to which inaccurate results will occur
and the acceptability of such inaccuracies.

• As with recovery, a concurrency manager can choose to lock values, records,
pages, files, etc. The unit of locking is called a concurrency data item. The choice
of data item involves a trade-off. A large-granularity data item will require fewer
locks, but the larger locks will conflict more readily and thus reduce concurrency.

5.7 Suggested Reading

The notion of a transaction is fundamental to many areas of distributed computing,
not just database systems. Researchers have developed an extensive set of tech-
niques and algorithms; the ideas in this chapter are the small tip of a very large
iceberg. Two excellent books that provide an overview of the field are Bernstein and
Newcomer (1997) and Gray and Reuter (1993). A comprehensive treatment of many
concurrency control and recovery algorithms appears in Bernstein et al. (1987). A
widely adopted recovery algorithm is called ARIES and is described in Mohan et al.
(1992).

Oracle’s implementation of the serializable isolation level is called snapshot
isolation, which extends multiversion concurrency control to include updates.
Details can be found in Chap. 9 of Ashdown et al. (2019). Note that Oracle calls
this isolation level “serializable,” although it is subtly different from it. Snapshot
isolation is more efficient than the locking protocol, but it does not guarantee
serializability. Although most schedules will be serializable, there are certain sce-
narios in which is can result in non-serializable behavior. The article Fekete et al.
(2005) analyzes these scenarios and shows how to modify at-risk applications to
guarantee serializability.

150 5 Transaction Management

Oracle implements undo-redo recovery, but it separates the undo information
(i.e., the old, overwritten values) from the redo information (the newly written
values). Redo information is stored in a redo log, which is managed similarly to
the descriptions in this chapter. However, undo information is not stored in a log file
but in special undo buffers. The reason is that Oracle uses previous, overwritten
values for multiversion concurrency as well as for recovery. Details can be found in
Chap. 9 of Ashdown et al. (2019).

It is often useful to think of a transaction as being comprised of several smaller,
coordinated transactions. For example, in a nested transaction, a parent transaction
is able to spawn one or more child subtransactions; when a subtransaction com-
pletes, its parent decides what to do. If the subtransaction aborts, the parent could
choose to abort all of its children, or it might continue by spawning another
transaction to replace the aborted one. The basics of nested transactions can be
found in Moss (1985). The article Weikum (1991) defines multilevel transactions,
which are similar to nested transactions; the difference is that a multilevel transaction
uses subtransactions as a way to increase efficiency via parallel execution.

Ashdown, L., et al. (2019). Oracle database concepts. Document E96138-01,
Oracle Corporation. Retrieved from https://docs.oracle.com/en/database/oracle/
oracle-database/19/cncpt/database-concepts.pdf

Bernstein, P., Hadzilacos, V., & Goodman, N. (1987). Concurrency control and
recovery in database systems. Reading, MA: Addison-Wesley.

Bernstein, P., & Newcomer, E. (1997). Principles of transaction processing. San
Mateo: Morgan Kaufman.

Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., & Shasha, D. (2005). Making
snapshot isolation serializable. ACM Transactions on Database Systems, 30(2),
492–528.

Gray, J., & Reuter, A. (1993). Transaction processing: concepts and techniques. San
Mateo: Morgan Kaufman.

Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., & Schwartz, P. (1992). ARIES: A
transaction recovery method supporting fine-granularity locking and partial roll-
backs using write-ahead logging. ACM Transactions on Database Systems, 17
(1), 94–162.

Moss, J. (1985). Nested transactions: An approach to reliable distributed comput-
ing. Cambridge, MA: MIT Press.

Weikum, G. (1991). Principles and realization strategies of multilevel transaction
management. ACM Transactions on Database Systems, 16(1), 132–180.

5.8 Exercises

Conceptual Exercises

5.1. Assume that the code of Fig. 5.1 is being run by two concurrent users, but
without transactions. Give a scenario in which two seats are reserved but only
one sale is recorded.

5.8 Exercises 151

https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/database-concepts.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/database-concepts.pdf

5.2. Software configuration managers such as Git or Subversion allow a user to
commit a series of changes to a file and to roll back a file to a previous state.
They also allow multiple users to modify a file concurrently.

(a) What is the notion of a transaction in such systems?
(b) How do such systems ensure serializability?
(c) Would such an approach work for a database system? Explain.

5.3. Consider a JDBC program that performs several unrelated SQL queries but
does not modify the database. The programmer decides that since nothing is
updated, the concept of a transaction is unimportant; thus, the entire program
is run as a single transaction.

(a) Explain why the concept of a transaction is important to a read-only
program.

(b) What is the problem with running the entire program as a large
transaction?

(c) How much overhead is involved in committing a read-only transaction?
Does it make sense for the program to commit after every SQL query?

5.4. The recovery manager writes a start record to the log when each transaction
begins.

(a) What is the practical benefit of having start records in the log?
(b) Suppose that a database system decides not to write start records to the log.

Can the recovery manager still function properly? What capabilities are
impacted?

5.5. The SimpleDB rollback method writes the rollback log record to disk
before it returns. Is this necessary? Is it a good idea?

5.6. Suppose that the recovery manager was modified so that it didn’t write
rollback log records when it finished. Would there be a problem? Would
this be a good idea?

5.7. Consider the undo-only commit algorithm of Fig. 5.7. Explain why it would
be incorrect to swap steps 1 and 2 of the algorithm.

5.8. Show that if the system crashes during a rollback or a recovery, then redoing
the rollback (or recovery) is still correct.

5.9. Is there any reason to log the changes made to the database during rollback or
recovery? Explain.

5.10. A variation on the nonquiescent checkpointing algorithm is to mention only
one transaction in the checkpoint log record, namely, the oldest active trans-
action at the time.

(a) Explain how the recovery algorithm will work.
(b) Compare this strategy with the strategy given in the text. Which is simpler

to implement? Which is more efficient?

5.11. What should the rollback method do if it encounters a quiescent checkpoint
log record? What if it encounters a nonquiescent log record? Explain.

152 5 Transaction Management

5.12. The algorithm for nonquiescent checkpointing does not allow new transac-
tions to start while it is writing the checkpoint record. Explain why this
restriction is important for correctness.

5.13. Another way to do nonquiescent checkpointing is to write two records to the
log. The first record is <BEGIN_NQCKPT>, and contains nothing else. The
second record is the standard <NQCKPT ...> record, which contains the list
of active transactions. The first record is written as soon as the recovery
manager decides to do a checkpoint. The second record is written later, after
the list of active transactions has been created.

(a) Explain why this strategy solves the problem of Exercise 5.12.
(b) Give a revised recovery algorithm that incorporates this strategy.

5.14. Explain why the recovery manager will never encounter more than one
quiescent checkpoint record during recovery.

5.15. Give an example showing that the recovery manager could encounter several
nonquiescent checkpoint records during recovery. What is the best way for it
to handle the nonquiescent checkpoint records it finds after the first one?

5.16. Explain why the recovery manager could not encounter both a nonquiescent
and a quiescent checkpoint record during recovery.

5.17. Consider the recovery algorithm of Fig. 5.6. Step 1c doesn’t undo a value for
transactions that have been rolled back.

(a) Explain why this is a correct thing to do.
(b) Would the algorithm be correct if it did undo those values? Explain.

5.18. When the rollbackmethod needs to restore the original contents of a value,
it writes the page directly and doesn’t request any kind of lock. Can this cause
a non-serializable conflict with another transaction? Explain.

5.19. Explain why it is not possible to have a recovery algorithm that combines the
techniques of undo-only and redo-only recovery. That is, explain why it is
necessary to keep either undo information or redo information.

5.20. Suppose that the recovery manager finds the following records in the log file
when the system restarts after a crash.

<START, 1>
<START, 2>
<SETSTRING, 2, junk, 33, 0, abc, def>
<SETSTRING, 1, junk, 44, 0, abc, xyz>
<START, 3>
<COMMIT, 2>
<SETSTRING, 3, junk, 33, 0, def, joe>
<START, 4>
<SETSTRING, 4, junk, 55, 0, abc, sue>
<NQCKPT, 1, 3, 4>
<SETSTRING, 4, junk, 55, 0, sue, max>
<START, 5>
<COMMIT, 4>

5.8 Exercises 153

(a) Assuming undo-redo recovery, indicate what changes to the database will
be performed.

(b) Assuming undo-only recovery, indicate what changes to the database will
be performed.

(c) Is it possible for transaction T1 to have committed, even though it has no
commit record in the log?

(d) Is it possible for transaction T1 to have modified a buffer containing block
23?

(e) Is it possible for transaction T1 to have modified block 23 on disk?
(f) Is it possible for transaction T1 to have not modified a buffer containing

block 44?

5.21. Is a serial schedule always serializable? Is a serializable schedule always
serial? Explain.

5.22. This exercise asks you to examine the need for non-serial schedules.

(a) Suppose that the database is much larger than the size of the buffer pool.
Explain why the database system will handle transactions more quickly if
it can execute the transactions concurrently.

(b) Conversely, explain why concurrency is less important if the database fits
into the buffer pool.

5.23. The get/set methods in the SimpleDB class Transaction obtain a lock on
the specified block. Why don’t they unlock the block when they are done?

5.24. Consider Fig. 5.3. Give the history of the transaction if files are the element of
concurrency.

5.25. Consider the following two transactions and their histories:

T1: W(b1); R(b2); W(b1); R(b3); W(b3); R(b4); W(b2)
T2: R(b2); R(b3); R(b1); W(b3); R(b4); W(b4)

(a) Give a serializable non-serial schedule for these transactions.
(b) Add lock and unlock actions to these histories that satisfy the lock

protocol.
(c) Give a non-serial schedule corresponding to these locks that deadlocks.
(d) Show that there is no non-deadlocked non-serial serializable schedule for

these transactions that obeys the lock protocol.

5.26. Give an example schedule which is serializable but has conflicting write-write
operations that do not affect the order in which the transactions commit. (Hint:
Some of the conflicting operations will not have corresponding read
operations.)

5.27. Show that if all transactions obey the two-phase locking protocol, then all
schedules are serializable.

5.28. Show that the waits-for graph has a cycle if and only if there is a deadlock.
5.29. Suppose that a transaction manager maintains a waits-for graph in order to

accurately detect deadlocks. Section 5.4.4 suggested that the transaction

154 5 Transaction Management

manager roll back the transaction whose request caused the cycle in the graph.
Other possibilities are to roll back the oldest transaction in the cycle, the
newest transaction in the cycle, the transaction holding the most locks, or
the transaction holding the fewest locks. Which possibility makes the most
sense to you? Explain.

5.30. Suppose in SimpleDB that transaction T currently has a shared lock on a block
and calls setInt on it. Give a scenario in which this will cause a deadlock.

5.31. Consider the ConcurrencyTest class of Fig. 5.19. Give a schedule that
causes deadlock.

5.32. Consider the locking scenario described for Fig. 5.19. Draw the different states
of the waits-for graph as locks are requested and released.

5.33. A variant of the wait-die protocol is called wound-wait and is as follows:

• If T1 has a lower number than T2, then T2 is aborted (i.e., T1 “wounds”
T2).

• If T1 has a higher number than T2, then T1 waits for the lock.

The idea is that if an older transaction needs a lock held by a younger one, then
it simply kills the younger one and takes the lock.

(a) Show that this protocol prevents deadlock.
(b) Compare the relative benefits of the wait-die and wound-wait protocols.

5.34. In the wait-die deadlock detection protocol, a transaction is aborted if it
requests a lock held by an older transaction. Suppose you modified the
protocol so that transactions are aborted instead if they request a lock held
by a younger transaction. This protocol would also detect deadlocks. How
does this revised protocol compare to the original one? Which would you
prefer the transaction manager to use? Explain.

5.35. Explain why the lock/unlock methods in class LockTable are synchronized.
What bad thing could happen if they were not?

5.36. Suppose that a database system uses files as concurrency elements. Explain
why phantoms are not possible.

5.37. Give an algorithm for deadlock detection that also handles transactions
waiting for buffers.

5.38. Rewrite the algorithm for multiversion locking so that the concurrency man-
ager only makes one pass through the log file.

5.39. The read-committed transaction isolation level purports to reduce a trans-
action’s waiting time by releasing its slocks early. At first glance, it is not
obvious why a transaction would wait less by releasing locks that it already
has. Explain the advantages of early lock release and give illustrative
scenarios.

5.40. The method nextTransactionNumber is the only method in Trans-
action that is synchronized. Explain why synchronization is not necessary
for the other methods.

5.41. Consider the SimpleDB class Transaction.

5.8 Exercises 155

(a) Can a transaction pin a block without locking it?
(b) Can a transaction lock a block without pinning it?

Programming Exercises

5.42. A SimpleDB transaction acquires an slock on a block whenever a getInt or
getString method is called. Another possibility is for the transaction to
acquire the slock when the block is pinned, under the assumption that you
don’t pin a block unless you intend to look at its contents.

(a) Implement this strategy.
(b) Compare the benefits of this strategy with that of SimpleDB. Which do

you prefer and why?

5.43. After recovery, the log is not needed except for archival purposes. Revise the
SimpleDB code so that the log file is saved to a separate directory after
recovery, and a new empty log file is begun.

5.44. Revise the SimpleDB recovery manager so that it undoes an update record
only when necessary.

5.45. Revise SimpleDB so that it uses blocks as the elements of recovery. A possible
strategy is to save a copy of a block the first time a transaction modifies it. The
copy could be saved in a separate file, and the update log record could hold the
block number of the copy. You will also need to write methods that can copy
blocks between files.

5.46. Implement a static method in class Transaction that performs quiescent
checkpointing. Decide how the method will get invoked (e.g., every N trans-
actions, every N seconds, or manually). You will need to revise Transac-
tion as follows:

• Use a static variable to hold all currently active transactions.
• Revise the constructor of Transaction to see if a checkpoint is being

performed and, if so, to place itself on a wait list until the checkpoint
procedure completes.

5.47. Implement nonquiescent checkpointing using the strategy described in
the text.

5.48. Suppose a transaction appends a lot of blocks to a file, writes a bunch of values
to these blocks, and then rolls back. The new blocks will be restored to their
initial condition, but they themselves will not be deleted from the file. Modify
SimpleDB so that they will. (Hint: You can take advantage of the fact that only
one transaction at a time can be appending to a file, which means that the file
can be truncated during rollback. You will need to add to the file manager the
ability to truncate a file.)

5.49. Log records could also be used for auditing a system as well as recovery. For
auditing, the record needs to store the date when the activity occurred, as well
as the IP address of the client.

(a) Revise the SimpleDB log records in this way.

156 5 Transaction Management

(b) Design and implement a class whose methods support common auditing
tasks, such as finding when a block was last modified, or what activity
occurred by a particular transaction or from a particular IP address.

5.50. Each time the server starts up, transaction numbers begin again at 0. This
means that throughout the history of the database, there will be multiple
transactions having the same number.

(a) Explain why this non-uniqueness of transaction numbers is not a signif-
icant problem.

(b) Revise SimpleDB so that transaction numbers continue from the last time
the server was running.

5.51. Revise SimpleDB so that it uses undo-redo recovery.
5.52. Implement deadlock detection in SimpleDB using:

(a) The wait-die protocol given in the text
(b) The wound-wait protocol given in Exercise 5.33

5.53. Revise the lock table so that it uses individual wait lists for each block.
(So notifyAll only touches the threads waiting on the same lock.)

5.54. Revise the lock table so that it keeps its own explicit wait list(s) and chooses
itself which transactions to notify when a lock becomes available. (i.e., it uses
the Java method notify instead of notifyAll.)

5.55. Revise the SimpleDB concurrency manager so that:

(a) Files are the elements of concurrency.
(b) Values are the elements of concurrency. (Warning: You will still need to

keep the methods size and append from causing conflicts.)

5.56. Write test programs:

(a) To verify that the recovery manager works (commit, rollback, and
recovery)

(b) To more completely test the lock manager
(c) To test the entire transaction manager

5.8 Exercises 157

Chapter 6
Record Management

The transaction manager is able to read and write values at specified locations on a
disk block. However, it has no idea what values are in a block nor where those values
might be located. This responsibility belongs to the record manager. It organizes a
file into a collection of records and has methods for iterating through the records and
placing values in them. This chapter studies the functionality provided by the record
manager and the techniques used to implement that functionality.

6.1 Designing a Record Manager

A record manager must address several issues, such as:

• Should each record be placed entirely within one block?
• Will all of the records in a block be from the same table?
• Is each field representable using a predetermined number of bytes?
• Where should each field value be positioned within its record?

This section discusses these issues and their trade-offs.

6.1.1 Spanned Versus Unspanned Records

Suppose that the record manager needs to insert four 300-byte records into a file,
where the block size is 1000 bytes. Three records fit nicely into the first 900 bytes of
the block. But what should the record manager do with the fourth record? Figure 6.1
depicts two options.

In Fig. 6.1a, the record manager creates a spanned record, that is, a record whose
values span two or more blocks. It stores the first 100 bytes of the record in the

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_6

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_6

existing block and the next 200 bytes of the record in a new block. In Fig. 6.1b, the
record manager stores the entire fourth record in a new block.

The record manager has to decide whether to create spanned records or not. A
disadvantage of unspanned records is that they waste disk space. In Fig. 6.1b,
100 bytes (or 10%) of each block is wasted. An even worse case would be if each
record contained 501 bytes—then a block could contain only 1 record, and nearly
50% of its space would be wasted. Another disadvantage is that the size of an
unspanned record is limited to the block size. If records can be larger than a block,
then spanning is necessary.

The main disadvantage of spanned records is that they increase the complexity of
record access. Because a spanned record is split among several blocks, multiple
block accesses will required to read it. Moreover, the spanned record may need to be
reconstructed from these blocks by reading it into a separate area of memory.

6.1.2 Homogeneous Versus Nonhomogeneous Files

A file is homogeneous if all its records come from the same table. The record
manager must decide whether or not to allow nonhomogeneous files. The trade-off
is again one of efficiency versus flexibility.

For example, consider the STUDENT and DEPT tables from Fig. 1.1. A homo-
geneous implementation would place all STUDENT records in one file and all DEPT
records in another file. This placement makes single-table SQL queries easy to
answer—the record manager needs to scan only through the blocks of one file.
However, multi-table queries become less efficient. Consider a query that joins these
two tables, such as “Find the names of students and their major departments.” The
record manager will have to search back and forth between the blocks of STUDENT
records and the blocks of DEPT records (as will be discussed in Chap. 8), looking for
matching records. Even if the query could be performed without excess searching
(e.g., via an index join of Chap. 12), the disk drive will still have to seek repeatedly
as it alternates between reading the STUDENT and DEPT blocks.

Fig. 6.1 Spanned versus unspanned records. (a) Record R4 spans blocks 0 and 1, (b) record R4 is
stored entirely in block 1

160 6 Record Management

https://doi.org/10.1007/978-3-030-33836-7_1
https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_12

A nonhomogeneous organization would store the STUDENT and DEPT records
in the same file, with the record for each student stored near the record for its major
department. Figure 6.2 depicts the first two blocks of such an organization, assuming
three records per block. The file consists of a DEPT record, followed by the
STUDENT records having that department as a major. This organization requires
fewer block accesses to calculate the join, because the joined records are clustered on
the same (or a nearby) block.

Clustering improves the efficiency of queries that join the clustered tables because
the matching records are stored together. However, clustering will cause single-table
queries to become less efficient because the records for each table are spread out over
more blocks. Similarly, joins with other tables will also be less efficient. Thus
clustering is effective only if the most heavily used queries perform the join encoded
by the clustering.1

6.1.3 Fixed-Length Versus Variable-Length Fields

Every field in a table has a defined type. Based on that type, the record manager
decides whether to implement the field using a fixed-length or variable-length
representation. A fixed-length representation uses exactly the same number of
bytes to store each of the field’s values, whereas a variable-length representation
expands and contracts based on the data value stored.

Most types are naturally fixed-length. For example, both integers and floating-
point numbers can be stored as 4-byte binary values. In fact, all numeric and date/
time types have natural fixed-length representations. The Java type String is the
prime example of a type that needs a variable-length representation, because char-
acter strings can be arbitrarily long.

Variable-length representations can cause significant complications. Consider,
for example, a record sitting in the middle of a block packed with records, and
suppose that you modify one of its field values. If the field is fixed-length, then the
record will remain the same size, and the field can be modified in place. However, if
the field is variable-length, then the record may get larger. In order to make room for
the larger record, the record manager may have to rearrange the location of the

Fig. 6.2 Clustered, nonhomogeneous records

1In fact, clustering is the fundamental organizational principle behind the early hierarchical
database systems, such as IBM’s IMS system. Databases that are naturally understood hierarchically
can be implemented very efficiently in such systems.

6.1 Designing a Record Manager 161

Chao Yang

records in the block. In fact, if the modified record gets too large, then one or more
records might need to be moved out of the block and placed in a different block.

Consequently, the record manager tries its best to use a fixed-length representa-
tion whenever possible. For example, a record manager can choose from three
different representations of a string field:

• A variable-length representation, in which the record manager allocates the exact
amount of space in the record that the string requires

• A fixed-length representation, in which the record manager stores the string in a
location outside of the record and keeps a fixed-length reference to that location in
the record

• A fixed-length representation, in which the record manager allocates the same
amount of space in the record for each string, regardless of its length

These representations are depicted in Fig. 6.3. Part (a) shows three COURSE
records, where the Title field is implemented using a variable-length representa-
tion. These records are space-efficient but have the problems just discussed.

Part (b) shows the same three records, but with the Title strings placed in a
separate “string area.” This area could be a separate file or (if the strings are very
large) a directory in which each string is stored in its own file. In either case, the field
contains a reference to the string’s location in that area. This representation results in
records that are both fixed-length and small. Small records are good, because they
can be stored in fewer blocks and thus require fewer block accesses. The downside to
this representation is that retrieving the string value from a record requires an
additional block access.

Part (c) shows two of the records, implemented using a fixed-length Title field.
This implementation has the advantage that the records are fixed-length and the
strings are stored in the record. However, the downside is that some records will be
larger than they need to be. If there is a wide difference in string sizes, then this

Fig. 6.3 Alternative representations for the Title field in COURSE records. (a) Allocating
exactly as much space as each string needs, (b) storing the strings in a separate location. (c)
allocating the same amount of space for each string

162 6 Record Management

Chao Yang

wasted space will be significant, resulting in a larger file and correspondingly more
block accesses.

None of these representations are clearly better than the others. As a way to help
the record manager choose the proper representation, standard SQL provides three
different string datatypes: char, varchar, and clob. The type char(n) spec-
ifies strings of exactly n characters. The types varchar(n) and clob(n) specify
strings of at most n characters. Their difference is the expected size of n. In
varchar(n), n is reasonably small, say no more than 4K. On the other hand,
the value of n in clob(n) can be in the giga-character range. (The acronym CLOB
stands for “character large object.”) For an example of a clob field, suppose that the
university database adds a field Syllabus to its SECTION table, with the idea that
the values of this field would contain the text of each section’s syllabus. Assuming
that syllabi can be no more than 8000 characters, you could reasonably define the
field as clob(8000).

Fields of type char most naturally correspond to Fig. 6.3c. Since all strings will
be the same length, there is no wasted space inside the records, and the fixed-length
representation will be most efficient.

Fields of type varchar(n)most naturally correspond to Fig. 6.3a. Since n will
be relatively small, placing the string inside the record will not make the record too
large. Moreover, the variance in string sizes means that the fixed-length representa-
tion would waste space. Thus, the variable-length representation is the best
alternative.

If n happens to be small (say, less than 20), then the record manager might choose
to implement a varchar field using the third representation. The reason is that the
wasted space will be insignificant compared to the benefits of a fixed-length
representation.

Fields of type clob correspond to Fig. 6.3b, because that representation handles
large strings the best. By storing the large string outside of the record, the records
themselves become smaller and more manageable.

6.1.4 Placing Fields in Records

The record manager determines the structure of its records. For fixed-length records,
it determines the location of each field within the record. The most straightforward
strategy is to store the fields next to each other. The size of the record then becomes
the sum of the sizes of the fields, and the offset of each field is the end of the previous
field.

This strategy of tightly packing fields into records is appropriate for Java-based
systems (like SimpleDB and Derby) but can cause problems elsewhere. The issue
has to do with ensuring that values are aligned properly in memory. In most
computers, the machine code to access an integer requires that the integer be stored
in a memory location that is a multiple of 4; the integer is said to be aligned on a
4-byte boundary. The record manager must therefore ensure that every integer in

6.1 Designing a Record Manager 163

every page is aligned on a 4-byte boundary. Since OS pages are always aligned on a
2N-byte boundary for some reasonably large N, the first byte of each page will be
properly aligned. Thus, the record manager must simply make sure that the offset of
each integer within each page is a multiple of 4. If the previous field ended at a
location that is not a multiple of 4, then the record manager must pad it with enough
bytes so that it does.

For example, consider the STUDENT table, which consists of three integer fields
and a varchar(10) string field. The integer fields are multiples of 4, so they don’t
need to be padded. The string field, however, requires 14 bytes (assuming the
SimpleDB representation of Sect. 3.5.2); it therefore needs to be padded with
2 additional bytes so that the field following it will be aligned on a multiple of 4.

In general, different types may require different amounts of padding. Double-
precision floating point numbers, for example, are usually aligned on an 8-byte
boundary, and small integers are usually aligned on a 2-byte boundary. The record
manager is responsible for ensuring these alignments. A simple strategy is to
position the fields in the order that they were declared, padding each field to ensure
the proper alignment of the next field. A more clever strategy is to reorder the fields
so that the least amount of padding is required. For example, consider the following
SQL table declaration:

create table T (A smallint, B double precision, C smallint, D int, E int)

Suppose the fields are stored in the order given. Then field A needs to be padded
with 6 extra bytes and field C needs to be padded with 2 extra bytes, leading to a
record length of 28 bytes; see Fig. 6.4a. On the other hand, if the fields are stored in
the order [B, D, A, C, E], then no padding is required, and the record length is only
20 bytes, as shown in Fig. 6.4b.

In addition to padding fields, the record manager must also pad each record. The
idea is that each record needs to end on a k-byte boundary, where k is the largest
supported alignment, so that every record in a page has the same alignment as the
first one. Consider again the field placement of Fig. 6.4a, which has a record length
of 28 bytes. Suppose that the first record begins at byte 0 of the block. Then the
second record will start at byte 28 of the block, which means that field B of the
second record will start at byte 36 of the block, which is the wrong alignment. It is
essential that each record begin on an 8-byte boundary. In the example of Fig. 6.4,
the records of both part (a) and part (b) need to be padded with 4 additional bytes.

Fig. 6.4 Placing fields in a
record to establish
alignment. (a) A placement
that requires padding, (b) a
placement that needs no
padding

164 6 Record Management

https://doi.org/10.1007/978-3-030-33836-7_3

A Java program does not need to consider padding because it cannot directly
access numeric values in a byte array. For example, the Java method to read an
integer from a page is ByteBuffer.getInt. This method does not call a
machine-code instruction to obtain the integer but instead constructs the integer
itself from the 4 specified bytes of the array. This activity is less efficient than a
single machine-code instruction, but it avoids alignment issues.

6.2 Implementing a File of Records

The previous section considered the various decisions that the record manager must
address. This section considers how these decisions get implemented. It begins with
the most straightforward implementation: a file containing homogeneous,
unspanned, fixed-length records. It then considers how other design decisions affect
this implementation.

6.2.1 A Straightforward Implementation

Suppose you want to create a file of homogeneous, unspanned, fixed-length records.
The fact that the records are unspanned means that you can treat the file as a
sequence of blocks, where each block contains its own records. The fact that the
records are homogeneous and fixed-length means that you can allocate the same
amount of space for each record within a block. In other words, you can think of each
block as an array of records. SimpleDB calls such a block a record page.

A record manager can implement record pages as follows. It divides a block into
slots, where each slot is large enough to hold a record plus one additional byte. The
value of this byte is a flag that denotes whether the slot is empty or in use; let’s say
that a 0 means “empty” and a 1 means “in use.”2

For example, suppose that the block size is 400 and the record size is 26; then
each slot is 27 bytes long, and the block holds 14 slots with 22 bytes of wasted space.
Figure 6.5 depicts this situation. This figure shows 4 of the 14 slots; slots 0 and
13 currently contain records, whereas slots 1 and 2 are empty.

Fig. 6.5 A record page with space for 14 26-byte records

2You can improve the space usage by only using a bit to hold each empty/inuse flag. See Exercise
6.7.

6.2 Implementing a File of Records 165

The record manager needs to be able to insert, delete, and modify records in a
record page. To do so, it uses the following information about the records:

• The size of a slot
• The name, type, length, and offset of each field of a record

These values constitute the record’s layout. For an example, consider the table
STUDENT as defined in Fig. 2.4. A STUDENT record contains three integers plus a
ten-character varchar field. Assuming the storage strategy of SimpleDB, each
integer requires 4 bytes and a ten-character string requires 14 bytes. Let’s also
assume that padding is not necessary, that varchar fields are implemented by
allocating fixed space for the largest possible string, and that the empty/inuse flag
takes up one byte at the beginning of each slot. Figure 6.6 gives the resulting layout
of this table.

Given a layout, the record manager can determine the location of each value
within the page. The record in slot k begins at location RL�k, where RL is the record
length. The empty/inuse flag for that record is at location RL�k, and the value of its
field F is at location RL�k+Offset(F).

The record manager can process insertions, deletions, modifications, and
retrievals quite easily:

• To insert a new record, the record manager examines the empty/inuse flag of each
slot until it finds a 0. It then sets the flag to 1 and returns the location of that slot. If
all flag values are 1, then the block is full and insertion is not possible.

• To delete a record, the record manager simply sets its empty/inuse flag to 0.
• To modify a field value of a record (or to initialize a field of a new record), the

record manager determines the location of that field and writes the value to that
location.

• To retrieve the records in the page, the record manager examines the empty/inuse
flag of each slot. Each time it finds a 1, it knows that that slot contains an existing
record.

The record manager also needs a way to identify a record within a record page.
When records are fixed-length, the most straightforward record identifier is its slot
number.

Slot Size: 27
Field Information: Name Type Length Offset

SId int 4 1

SName varchar(10) 14 5

GradYear int 4 19

MajorId int 4 23

Fig. 6.6 The layout of STUDENT

166 6 Record Management

https://doi.org/10.1007/978-3-030-33836-7_2

6.2.2 Implementing Variable-Length Fields

The implementation of fixed-length fields is very straightforward. This section
considers how the introduction of variable-length fields affects that implementation.

One issue is that the field offsets in a record are no longer fixed. In particular, the
offsets of all fields following a variable-length field will differ from record to record.
The only way to determine the offset of those fields is to read the previous field and
see where it ends. If the first field in a record is variable-length, then it will be
necessary to read the first n-1 fields of the record in order to determine the offset of
the nth field. Consequently, the record manager typically places the fixed-length
fields at the beginning of each record so that they can be accessed by a precomputed
offset. The variable-length fields are placed at the end of the record. The first
variable-length field will have a fixed offset, but the remaining ones will not.

Another issue is that modifying a field value can cause a record’s length to
change. If the new value is larger, then the block contents to the right of the modified
value must be shifted to make room. In extreme cases, the shifted records will spill
out of the block; this situation must be handled by allocating an overflow block.

An overflow block is a new block allocated from an area known as the overflow
area. Any record that spills out of the original block is removed from that block and
added to an overflow block. If many such modifications occur, then a chain of
several overflow blocks may be necessary. Each block will contain a reference to the
next overflow block on the chain. Conceptually, the original and overflow blocks
form a single (large) record page.

For example, consider the COURSE table, and suppose that course titles are
saved as variable-length strings. Figure 6.7a depicts a block containing the first three
records of the table. (The Title field has been moved to the end of the record
because the other fields are fixed-length.) Figure 6.7b depicts the result of modifying
the title “DbSys” to “Database Systems Implementation.” Assuming a block size of
80 bytes, the third record no longer fits in the block, and so it is placed in an overflow
block. The original block contains a reference to that overflow block.

Fig. 6.7 Using an overflow block to implement variable-length records. (a) The original block, (b)
the result of modifying the title of course 12

6.2 Implementing a File of Records 167

A third issue concerns the use of the slot number as a record identifier. It is no
longer possible to multiply the slot number by the slot size, as with fixed-length
records. The only way to find the beginning of a record having a given id is to read
the records starting from the beginning of the block.

The use of the slot number as a record identifier also complicates record inser-
tions. Figure 6.8 illustrates the issue.

Part (a) depicts a block containing the first three COURSE records, the same as in
Fig. 6.7a. Deleting the record for course 22 sets the flag to 0 (for “empty”) and leaves
the record intact, as shown in Part (b). This space is now available for insertion.
However, a record can be inserted into the space only if its Title field has nine or
fewer characters. In general, a new record might not fit into the block even though
there are numerous empty spaces left by smaller deleted records. The block is said to
be fragmented.

A way to reduce this fragmentation is to shift the remaining records so that they
are all grouped on one end of the block. However, doing so changes the slot numbers
of the shifted records, which unfortunately changes their ids.

The solution to this problem is to use an ID table to dissociate the record’s slot
number from its location in the page. An ID table is an array of integers stored at the
beginning of the page. Each slot in the array denotes a record id. The value in the
array slot is the location of the record having that id; a value of 0 means that no
record currently has that id. Figure 6.8c depicts the same data as Fig. 6.8b, but with
an ID table. The ID table contains three entries: two of them point to the records at
offsets 63 and 43 of the block, and the other is empty. The record at location 63 has
id 0, and the record at location 43 has id 2. There is currently no record having id 1.

The ID table provides a level of indirection that allows the record manager to
move records within a block. If the record moves, its entry in the ID table is adjusted

Fig. 6.8 Using an ID table to implement variable-length records. (a) The original block, (b) the
straightforward way to delete record 1, (c) using an ID table to delete record 1

168 6 Record Management

correspondingly; if the record is deleted, its entry is set to 0. When a new record is
inserted, the record manager finds an available entry in the array and assigns it as the
id of the new record. In this way, the ID table allows variable-length records to be
moved within a block, while providing each record with a fixed identifier.

The ID table expands as the number of records in the block increases. The size of
the array is necessarily open-ended, because a block can hold a varying number of
variable-length records. Typically the ID table is placed at one end of the block, and
the records are placed at the other end, and they grow toward each other. This
situation can be seen in Fig. 6.8c, where the first record in the block is at its far right.

An ID table makes empty/inuse flags unnecessary. A record is in use if an entry of
the ID table points to it. Empty records have an id of 0 (and in fact don’t even exist).
The ID table also enables the record manager to quickly find each record in the
block. To move to a record having a particular id, the record manager simply uses the
location stored in that entry of the ID table; to move to the next record, the record
manager scans the ID table until it finds the next non-zero entry.

6.2.3 Implementing Spanned Records

This section considers how spanned records can be implemented. When records are
unspanned, the first record in each block always begins at the same location. With
spanned records, this situation is no longer true. Consequently, the record manager
must store an integer at the beginning of each block to hold the offset of the first
record.

For example, consider Fig. 6.9. The first integer in block 0 is a 4, denoting that the
first record R1 begins at offset 4 (i.e., immediately after the integer). Record R2
spans blocks 0 and 1, and so the first record in block 1 is R3, which begins at offset
60. Record R3 continues through block 2 into block 3. Record R4 is the first record
in block 3 and begins at offset 30. Note that the first integer of block 2 is 0, denoting
the fact that no record begins in that block.

The record manager can choose to split a spanned record in two different ways.
The first way is to fill the block as much as possible, splitting it on the block
boundary; the remaining bytes are placed into the next block(s) of the file. The
second way is to write the record value by value; when the page becomes full, the
writing continues on a new page. The first way has the advantage that it wastes
absolutely no space but has the disadvantage of splitting a value across blocks. To
access the split value, the record manager must reconstruct the value by catenating
the bytes from the two blocks.

Fig. 6.9 Implementing spanned records

6.2 Implementing a File of Records 169

6.2.4 Implementing Nonhomogeneous Records

If the record manager supports nonhomogeneous records, then it will also need to
support variable-length records, because records from different tables need not be
the same size. There are two issues related to having nonhomogeneous records in a
block:

• The record manager needs to know the layout of each type of record in the block.
• Given a record, the record manager needs to know which table it comes from.

The record manager can address the first issue by keeping an array of layouts, one
for each possible table. The record manager can address the second issue by adding
an extra value to the beginning of each record; this value, sometimes called a tag
value, is an index into the layout array, which specifies the table that the record
belongs to.

For example, consider again Fig. 6.2, which depicts nonhomogeneous blocks
from the DEPT and STUDENT tables. The record manager will keep an array
containing the layout information from both of these tables; let’s assume that
DEPT information is in index 0 of the array and STUDENT information is in
index 1. Then the tag value for each record from DEPT will be 0, and the tag
value for each STUDENT record will be 1.

The behavior of the record manager does not need much change. When the record
manager accesses a record, it determines from the tag value which table information
to use. It can then use that table to read or write to any field, the same as in the
homogeneous case.

The log records in SimpleDB are an example of nonhomogeneous records. The
first value of each log record is an integer that indicates the type of the log record.
The recovery manager uses that value to determine how to read the rest of the
record.

6.3 SimpleDB Record Pages

The next two sections examine the SimpleDB record manager, which implements
the basic record manager of Sect. 6.2.1. This section covers the implementation of
record pages, and the next section covers how to implement a file of record pages.
Some of the end-of-chapter exercises ask you to modify it to handle other design
decisions.

6.3.1 Managing Record Information

The SimpleDB record manager uses the classes Schema and Layout to manage a
record’s information. Their API appears in Fig. 6.10.

170 6 Record Management

A Schema object holds a record’s schema, that is, the name and type of each
field, and the length of each string field. This information corresponds to what a user
would specify when creating a table and contains no physical information. For
example, the length of a string is the maximum number of characters allowed, not
its size in bytes.

A schema can be thought of as a list of triples of the form [fieldname, type,
length]. The class Schema contains five methods to add a triple to the list. The
method addField adds a triple explicitly. The methods addIntField,
addStringField, add, and addAll are convenience methods; the first two
of these methods calculate the triple, and the last two copy triples from an existing
schema. The class also has accessor methods to retrieve the collection of field names,
determine if a specified field is in the collection, and retrieve the type and length of a
specified field.

The class Layout additionally contains the physical information about a record.
It calculates field and slot sizes, and the field offsets within the slot. The class has two
constructors, corresponding to the two reasons for creating a Layout object. The
first constructor is called when a table is created; it calculates the layout information
based on the given schema. The second constructor is called after the table has been
created; the client simply provides the previously-calculated values.

The code fragment in Fig. 6.11 illustrates the use of these two classes. The first
part of the code creates a schema containing the three fields of the COURSE table

Schema
public Schema();
public void addField(String fldname, int type, int length);
public void addIntField(String fldname);
public void addStringField(String fldname, int length);
public void add(String fldname, Schema sch);
public void addAll(Schema sch);

public List<String> fields();
public boolean hasField(String fldname);
public int type(String fldname);
public int length(String fldname);

Layout
public Layout(Schema schema);
public Layout(Schema schema, Map<String,Integer> offsets,

 int slotSize);

public Schema schema();
public int offset(String fldname);
public int slotSize();

Fig. 6.10 The API for SimpleDB record information

6.3 SimpleDB Record Pages 171

and then creates a Layout object from it. The second part of the code prints the
name and offset of each field.

6.3.2 Implementing the Schema and Layout

The code for the class Schema is straightforward and appears in Fig. 6.12. Inter-
nally, the class stores the triples in a map keyed on the field name. The object
associated with the field name belongs to the private class FieldInfo, which
encapsulates the length and type of the field.

Types are denoted by the constants INTEGER and VARCHAR, as defined in the
JDBC class Types. The length of a field is only meaningful for string fields; the
method addIntField gives integers a length value of 0, but this value is irrele-
vant as it will never be accessed.

The code for Layout appears in Fig. 6.13. The first constructor positions the
fields in the order they appear in the schema. It determines the length of each field in
bytes, calculates the slot size as the sum of the field lengths, adding four bytes for an
integer-sized empty/inuse flag. It assigns the flag to be at offset 0 of the slot, and
assigns the offset of each field to be the location at which the previous field ends (i.e.,
with no padding).

6.3.3 Managing the Records in a Page

The class RecordPage manages the records within a page. Its API appears in
Fig. 6.14.

The methods nextAfter and insertAfter search the page for desired
records. The nextAfter method returns the first used slot that follows the
specified slot, skipping over any empty slots. A negative return value indicates
that all remaining slots are empty. The method insertAfter looks for the first
empty slot following the specified slot. If an empty slot is found, the method sets its
flag to USED and returns the slot number. Otherwise, the method returns �1.

Schema sch = new Schema();
sch.addIntField("cid");
sch.addStringField("title", 20);
sch.addIntField("deptid");
Layout layout = new Layout(sch);

for (String fldname : layout.schema().fields()) {
int offset = layout.offset(fldname);
System.out.println(fldname + " has offset " + offset);

}

Fig. 6.11 Specifying the structure of COURSE records

172 6 Record Management

public class Schema {
private List<String> fields = new ArrayList<>();
private Map<String,FieldInfo> info = new HashMap<>();

public void addField(String fldname, int type, int length) {
fields.add(fldname);
info.put(fldname, new FieldInfo(type, length));

}

public void addIntField(String fldname) {
addField(fldname, INTEGER, 0);

}

public void addStringField(String fldname, int length) {
addField(fldname, VARCHAR, length);

}

public void add(String fldname, Schema sch) {
int type = sch.type(fldname);
int length = sch.length(fldname);
addField(fldname, type, length);

}

public void addAll(Schema sch) {
for (String fldname : sch.fields())
add(fldname, sch);

}

public List<String> fields() {
return fields;

}

public boolean hasField(String fldname) {
return fields.contains(fldname);

}

public int type(String fldname) {
return info.get(fldname).type;

}

public int length(String fldname) {
return info.get(fldname).length;

}

class FieldInfo {
int type, length;
public FieldInfo(int type, int length) {

this.type = type;
this.length = length;

}
}

}

Fig. 6.12 The code for SimpleDB class Schema

6.3 SimpleDB Record Pages 173

The get/set methods access the value of a specified field in the specified
record. The delete method sets the record’s flag to EMPTY. The format method
gives default values to all record slots in the page. It sets each empty/inuse flag to
EMPTY, all integers to 0, and all strings to "".

public class Layout {
private Schema schema;
private Map<String,Integer> offsets;
private int slotsize;

public Layout(Schema schema) {
this.schema = schema;
offsets = new HashMap<>();
int pos = Integer.BYTES; // space for the empty/inuse flag
for (String fldname : schema.fields()) {

offsets.put(fldname, pos);
pos += lengthInBytes(fldname);

}

slotsize = pos;
}

public Layout(Schema schema, Map<String,Integer> offsets,
 int slotsize) {

this.schema = schema;
this.offsets = offsets;
this.slotsize = slotsize;

}

public Schema schema() {
return schema;

}

public int offset(String fldname) {
return offsets.get(fldname);

}

public int slotSize() {
return slotsize;

}

private int lengthInBytes(String fldname) {
int fldtype = schema.type(fldname);
if (fldtype == INTEGER)

return Integer.BYTES;
else // fldtype == VARCHAR

return Page.maxLength(schema.length(fldname));
}

}

Fig. 6.13 The code for the SimpleDB class Layout

174 6 Record Management

The class RecordTest illustrates the use of the RecordPage methods; its
code appears in Fig. 6.15. It defines a record schema having two fields: an integer
field A and a string field B. It then creates a RecordPage object for a new block and
formats it. The for loop uses the insertAfter method to fill the page with
random-valued records. (Each A-value is a random number between 0 and 49, and
the B-values are a string version of that number.) The two while loops use the
nextAfter method to search the page. The first loop deletes selected records, and
the second loop prints the contents of the remaining records.

6.3.4 Implementing Record Pages

SimpleDB implements the slotted-page structure of Fig. 6.5. The only difference is
that the empty/inuse flags are implemented as 4-byte integers instead of single bytes
(the reason being that SimpleDB doesn’t support byte-sized values). The code for the
class RecordPage appears in Fig. 6.16.

The private method offset uses the slot size to calculate the starting location of
a record slot. The get/setmethods calculate the location of their specified field by
adding the offset of the field to the offset of the record. The methods nextAfter
and insertAfter call the private method searchAfter to find a slot having
the specified flag USED or EMPTY, respectively. Method searchAfter repeatedly
increments the specified slot until it either finds a slot having the specified flag or it
runs out of slots. The delete method sets the flag of the specified slot to EMPTY,
and insertAfter sets the flag of the found slot to USED.

RecordPage
public RecordPage(Transaction tx, BlockId blk, Layout layout);
public BlockId block();

public int getInt (int slot, String fldname);
public String getString(int slot, String fldname);
public void setInt (int slot, String fldname, int val);
public void setString(int slot, String fldname, String val);
public void format();
public void delete(int slot);

public int nextAfter(int slot);
public int insertAfter(int slot);

Fig. 6.14 The API for SimpleDB record pages

6.3 SimpleDB Record Pages 175

public class RecordTest {
public static void main(String[] args) throws Exception {

SimpleDB db = new SimpleDB("recordtest", 400, 8);
Transaction tx = db.newTx();

Schema sch = new Schema();
sch.addIntField("A");
sch.addStringField("B", 9);
Layout layout = new Layout(sch);
for (String fldname : layout.schema().fields()) {

int offset = layout.offset(fldname);
System.out.println(fldname + " has offset " + offset);

}
BlockId blk = tx.append("testfile");
tx.pin(blk);
RecordPage rp = new RecordPage(tx, blk, layout);
rp.format();

System.out.println("Filling the page with random records.");
int slot = rp.insertAfter(-1);
while (slot >= 0) {

int n = (int) Math.round(Math.random() * 50);
rp.setInt(slot, "A", n);
rp.setString(slot, "B", "rec"+n);
System.out.println("inserting into slot " + slot + ": {"

+ n + ", " + "rec"+n + "}");
slot = rp.insertAfter(slot);

}

System.out.println("Deleted these records with A-values < 25.");
int count = 0;
slot = rp.nextAfter(-1);
while (slot >= 0) {

int a = rp.getInt(slot, "A");
String b = rp.getString(slot, "B");
if (a < 25) {

count++;
System.out.println("slot " + slot + ": {"
 + a + ", " + b + "}");
rp.delete(slot);

}
slot = rp.nextAfter(slot);

}
System.out.println(count + " values under 25 were deleted.\n");
System.out.println("Here are the remaining records.");
slot = rp.nextAfter(-1);
while (slot >= 0) {

int a = rp.getInt(slot, "A");
String b = rp.getString(slot, "B");
System.out.println("slot " + slot + ": {"
 + a + ", " + b + "}");
slot = rp.nextAfter(slot);

}
tx.unpin(blk);
tx.commit();

}

Fig. 6.15 Testing the RecordPage class

176 6 Record Management

public class RecordPage {
public static final int EMPTY = 0, USED = 1;
private Transaction tx;
private BlockId blk;
private Layout layout;

public RecordPage(Transaction tx, BlockId blk, Layout layout) {
this.tx = tx;
this.blk = blk;
this.layout = layout;
tx.pin(blk);

}

public int getInt(int slot, String fldname) {
int fldpos = offset(slot) + layout.offset(fldname);
return tx.getInt(blk, fldpos);

}
public String getString(int slot, String fldname) {

int fldpos = offset(slot) + layout.offset(fldname);
return tx.getString(blk, fldpos);

}

public void setInt(int slot, String fldname, int val) {
int fldpos = offset(slot) + layout.offset(fldname);
tx.setInt(blk, fldpos, val, true);

}
public void setString(int slot, String fldname, String val) {

int fldpos = offset(slot) + layout.offset(fldname);
tx.setString(blk, fldpos, val, true);

}
public void delete(int slot) {

setFlag(slot, EMPTY);
}
public void format() {

int slot = 0;
while (isValidSlot(slot)) {

tx.setInt(blk, offset(slot), EMPTY, false);
Schema sch = layout.schema();
for (String fldname : sch.fields()) {

int fldpos = offset(slot) + layout.offset(fldname);
if (sch.type(fldname) == INTEGER)

tx.setInt(blk, fldpos, 0, false);
else

tx.setString(blk, fldpos, "", false);
}
slot++;

}
}

Fig. 6.16 The code for the SimpleDB class RecordPage

6.3 SimpleDB Record Pages 177

6.4 SimpleDB Table Scans

A record page manages a block of records. This section examines table scans, which
store arbitrarily many records in multiple blocks of a file.

6.4.1 Table Scans

The TableScan class manages the records in a table. Its API is given in Fig. 6.17.
A TableScan object keeps track of a current record, and its methods change

the current record and access its contents. The method beforeFirst positions the
current record before the first record of the file, and next positions the current
record at the next record in the file. If the current block has no more records, then

public int insertAfter(int slot) {
int newslot = searchAfter(slot, EMPTY);
if (newslot >= 0)

setFlag(newslot, USED);
return newslot;

}
public BlockId block() {

return blk;
}

// Private auxiliary methods
private void setFlag(int slot, int flag) {

tx.setInt(blk, offset(slot), flag, true);
}
private int searchAfter(int slot, int flag) {

slot++;
while (isValidSlot(slot)) {

if (tx.getInt(blk, offset(slot)) == flag)
return slot;

slot++;
}
return -1;

}
private boolean isValidSlot(int slot) {

return offset(slot+1) <= tx.blockSize();
}
private int offset(int slot) {

return slot * layout.slotSize();
}

public int nextAfter(int slot) {
return searchAfter(slot, USED);

}

Fig. 6.16 (continued)

178 6 Record Management

next will read succeeding blocks in the file until another record is found. If no more
records can be found, then the call to next returns false.

The get/set and delete methods apply to the current record. The insert
method inserts a new record somewhere in the file, starting with the current record’s
block. Unlike the insertion method of RecordPage, this insertion method always
succeeds; if it cannot find a place to insert the record in the existing blocks of the file,
it appends a new block to the file and inserts the record there.

Each record in a file can be identified by a pair of values: its block number in the
file and its slot within the block. These two values are known as a record identifier
(or rid). The class RID implements these record identifiers. Its class constructor
saves the two values; the accessor methods blockNumber and slot
retrieves them.

The TableScan class contains two methods that interact with rids. The method
moveToRid positions the current record at the specified rid, and the method
currentRid returns the rid of the current record.

The TableScan class provides a level of abstraction significantly different from
the other classes you have seen so far. That is, the methods of Page, Buffer,
Transaction, and RecordPage all apply to a particular block. The
TableScan class, on the other hand, hides the block structure from its clients. In
general, a client will not know (or care) which block is currently being accessed.

public TableScan(Transaction tx, String tblname,
 Layout layout);

public void close();
public boolean hasField(String fldname);

// methods that establish the current record
public void beforeFirst();
public boolean next();
public void moveToRid(RID r);
public void insert();

// methods that access the current record
public int getInt(String fldname);
public String getString(String fldname);
public void setInt(String fldname, int val);
public void setString(String fldname, String val);
public RID currentRid();
public void delete();

RID
public RID(int blknum, int slot);
public int blockNumber();
public int slot();

TableScan

Fig. 6.17 The API for SimpleDB table scans

6.4 SimpleDB Table Scans 179

public class TableScanTest {
public static void main(String[] args) throws Exception {

SimpleDB db = new SimpleDB("tabletest", 400, 8);
Transaction tx = db.newTx();

Schema sch = new Schema();
sch.addIntField("A");
sch.addStringField("B", 9);
Layout layout = new Layout(sch);
for (String fldname : layout.schema().fields()) {

int offset = layout.offset(fldname);
System.out.println(fldname + " has offset " + offset);

}
TableScan ts = new TableScan(tx, "T", layout);

System.out.println("Filling the table with 50 random records.");
ts.beforeFirst();
for (int i=0; i<50; i++) {

ts.insert();
int n = (int) Math.round(Math.random() * 50);
ts.setInt("A", n);
ts.setString("B", "rec"+n);
System.out.println("inserting into slot " + ts.getRid() + ": {"

+ n + ", " + "rec"+n + "}");
}

System.out.println("Deleting records with A-values < 25.");
int count = 0;
ts.beforeFirst();
while (ts.next()) {

int a = ts.getInt("A");
String b = ts.getString("B");
if (a < 25) {

count++;
System.out.println("slot " + ts.getRid() + ": {"

+ a + ", " + b + "}");
ts.delete();

}
}
System.out.println(count + " values under 10 were deleted.\n");

System.out.println("Here are the remaining records.");
ts.beforeFirst();
while (ts.next()) {

int a = ts.getInt("A");
String b = ts.getString("B");
System.out.println("slot " + ts.getRid() +
 ": {" + a + ", " + b + "}");

}
ts.close();
tx.commit();

}

Fig. 6.18 Testing the table scan

180 6 Record Management

The class TableScanTest in Fig. 6.18 illustrates the use of table scans. The
code is similar to RecordTest, except that it inserts 50 records into the file. The
calls to ts.insert will allocate as many new blocks as necessary to hold the
records. In this case, three blocks will be allocated (at 18 records per block).
However, the code has no idea that this is happening. If you run this code multiple
times, you will observe that another 50 records are inserted into the file and that they
fill in the slots abandoned by the previously deleted records.

6.4.2 Implementing Table Scans

The code for class TableScan appears in Fig. 6.19. A TableScan object holds
the record page for its current block. The get/set/delete methods simply call
the corresponding method of the record page. The private method moveToBlock is
called when the current block changes; that method closes the current record page
and opens another one for the specified block, positioned before the its first slot.

The algorithm for the next method is as follows:

1. Move to the next record in the current record page.
2. If there are no more records in that page, then move to the next block of the file

and get its next record.
3. Continue until either a next record is found or the end of the file is encountered.

It is possible for multiple blocks of a file to be empty (see Exercise 6.2), so a call
to next may need to loop through several blocks.

The insert method tries to insert a new record starting after the current record.
If the current block is full, then it moves to the next one and continues until it finds an
empty slot. If all blocks are full, then it appends a new block to the file and inserts the
record there.

TableScan implements the interface UpdateScan (and also Scan, by exten-
sion). These interfaces are central to the execution of queries and will be discussed in
Chap. 8. The methods getVal and setVal are also discussed in Chap. 8. They get
and set objects of type Constant. A constant is an abstraction of a value type (such
as int or String) and makes it easier to express a query without having to know
the type of a given field.

RID objects are simply a combination of two integers: a block number and a slot
number. The code for the class RID is therefore straightforward and appears in
Fig. 6.20.

6.4 SimpleDB Table Scans 181

https://doi.org/10.1007/978-3-030-33836-7_8
https://doi.org/10.1007/978-3-030-33836-7_8

public class TableScan implements UpdateScan {
private Transaction tx;
private Layout layout;
private RecordPage rp;
private String filename;
private int currentslot;

public TableScan(Transaction tx, String tblname, Layout layout) {
this.tx = tx;
this.layout = layout;
filename = tblname + ".tbl";
if (tx.size(filename) == 0)

moveToNewBlock();
else

moveToBlock(0);
}
// Methods that implement Scan
public void close() {

if (rp != null)
tx.unpin(rp.block());

}
public void beforeFirst() {

moveToBlock(0);
}
public boolean next() {

currentslot = rp.nextAfter(currentslot);
while (currentslot < 0) {

if (atLastBlock())
return false;

moveToBlock(rp.block().number()+1);
currentslot = rp.nextAfter(currentslot);

}
return true;

}
public int getInt(String fldname) {

return rp.getInt(currentslot, fldname);
}
public String getString(String fldname) {

return rp.getString(currentslot, fldname);
}
public Constant getVal(String fldname) {

if (layout.schema().type(fldname) == INTEGER)
return new IntConstant(getInt(fldname));

else
return new StringConstant(getString(fldname));

}
public boolean hasField(String fldname) {

return layout.schema().hasField(fldname);
}

// Methods that implement UpdateScan

public void setInt(String fldname, int val) {

Fig. 6.19 The code for the SimpleDB class TableScan

182 6 Record Management

rp.setInt(currentslot, fldname, val);
}
public void setString(String fldname, String val) {

rp.setString(currentslot, fldname, val);
}

public void setVal(String fldname, Constant val) {
if (layout.schema().type(fldname) == INTEGER)

setInt(fldname, (Integer)val.asJavaVal());
else

setString(fldname, (String)val.asJavaVal());
}
public void insert() {

currentslot = rp.insertAfter(currentslot);
while (currentslot < 0) {

if (atLastBlock())
moveToNewBlock();

else
moveToBlock(rp.block().number()+1);

currentslot = rp.insertAfter(currentslot);
}

}
public void delete() {

rp.delete(currentslot);
}
public void moveToRid(RID rid) {

close();
BlockId blk = new BlockId(filename, rid.blockNumber());
rp = new RecordPage(tx, blk, layout);
currentslot = rid.slot();

}

public RID getRid() {
return new RID(rp.block().number(), currentslot);

}

// Private auxiliary methods
private void moveToBlock(int blknum) {

close();
BlockId blk = new BlockId(filename, blknum);
rp = new RecordPage(tx, blk, layout);
currentslot = -1;

}

private void moveToNewBlock() {
close();
BlockId blk = tx.append(filename);
rp = new RecordPage(tx, blk, layout);
rp.format();
currentslot = -1;

}
private boolean atLastBlock() {

return rp.block().number() == tx.size(filename) - 1;
}

Fig. 6.19 (continued)

6.4 SimpleDB Table Scans 183

6.5 Chapter Summary

• The record manager is the portion of the database system that stores records in a
file. It has three basic responsibilities:

– Placing fields within records
– Placing records within blocks
– Providing access to the records in a file

There are several issues that must be addressed when designing a record manager.

• One issue is whether to support variable-length fields. Fixed-length records can
be implemented easily, because fields can be updated in place. Updating a
variable-length field can cause records to spill out of a block and be placed into
an overflow block.

• SQL has three different string types: char, varchar, and clob.

– The char type is most naturally implemented using a fixed-length
representation.

– The varchar type is most naturally implemented using a variable-length
representation.

– The clob type is implemented most naturally using a fixed-length represen-
tation that stores the string in an auxiliary file.

public class RID {
private int blknum;
private int slot;

public RID(int blknum, int slot) {
this.blknum = blknum;
this.slot = slot;

}

public int blockNumber() {
return blknum;

}

public int slot() {
return slot;

}

public boolean equals(Object obj) {
RID r = (RID) obj;
return blknum == r.blknum && slot==r.slot;

}

public String toString() {
return "[" + blknum + ", " + slot + "]";

}
}

Fig. 6.20 The code for the SimpleDB class RID

184 6 Record Management

• A common implementation technique for variable-length records is to use an ID
table. Each entry in the table points to a record in the page. A record can move
around in a page by just changing its entry in the ID table.

• A second issue is whether to create spanned records. Spanned records are useful
because they do not waste space and allow for large records, but they are more
complicated to implement.

• A third issue is whether to allow nonhomogeneous records in a file.
Nonhomogeneous records allow related records to be clustered on a page.
Clustering can lead to very efficient joins but tend to make other queries more
expensive. The record manager can implement nonhomogeneous records by
storing a tag field at the beginning of each record; the tag denotes the table that
the record belongs to.

• A fourth issue is how to determine the offset of each field within a record. The
record manager may need to pad the fields so that they are aligned on appropriate
byte boundaries. A field in a fixed-length record has the same offset for each record.
It may be necessary to search a variable-length record for the beginning of its fields.

6.6 Suggested Reading

The ideas and techniques in this chapter have been present in relational databases
from the very beginning. Section 3.3 of Stonebraker et al. (1976) describes the
approach taken by the first version of INGRES; this approach uses the variation of
the ID table described in Sect. 6.2.2. Section 3 of Astrahan et al. (1976) describes the
page structure for the early System R database system (which later became IBM’s
DB2 product), which stored records nonhomogeneously. Both articles discuss a
broad range of implementation ideas and are well worth reading in their entirety. A
more detailed discussion of these techniques, together with a C-based implementa-
tion of an example record manager, appears in Chap. 14 of Gray and Reuter (1993).

The strategy of storing each record contiguously in a page is not necessarily best.
The article Ailamaki et al. (2002) advocates breaking up the records on a page and
placing the values for each field together. Although this record organization doesn’t
change the number of disk accesses performed by the record manager, it significantly
improves the performance of the CPU because its data cache is utilized more
effectively. The article Stonebraker et al. (2005) goes even farther, proposing that
tables should be organized by field values, that is, all of the record values for each
field should be stored together. The article shows how field-based storage can be
more compact than record-based storage, which can lead to more efficient queries.

An implementation strategy for very large records is described in Carey et al.
(1986).

Ailamaki, A., DeWitt, D., & Hill, M. (2002). Data page layouts for relational
databases on deep memory hierarchies. VLDB Journal, 11(3), 198–215.

Astrahan, M., Blasgen, M., Chamberlin, D., Eswaren, K., Gray, J., Griffiths, P.,
King, W., Lorie, R., McJones, P., Mehl, J., Putzolu, G., Traiger, I., Wade, B., &

6.6 Suggested Reading 185

Watson, V. (1976). System R: Relational approach to database management.
ACM Transactions on Database Systems, 1(2), 97–137.

Carey, M., DeWitt, D., Richardson, J., & Shekita, E. (1986). Object and file
management in the EXODUS extendable database system. In Proceedings of
the VLDB Conference (pp. 91–100).

Gray, J., & Reuter, A. (1993). Transaction processing: concepts and techniques. San
Mateo, CA: Morgan Kaufman.

Stonebraker, M., Abadi, D., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau,
E., Lin, A., Madden, S., O’Neil, E., O’Neil, P., Rasin, A., Tran, N., & Zdonik,
S. (2005). C-Store: A column-oriented DBMS. In Proceedings of the VLDB
Conference (pp. 553–564).

Stonebraker, M., Kreps, P., Wong, E., & Held, G. (1976). The design and imple-
mentation of INGRES. ACM Transactions on Database Systems, 1(3), 189–222.

6.7 Exercises

Conceptual Problems

6.1. Assume that the block size is 400 bytes and that records cannot span blocks.
Calculate the maximum number of records that can fit in a SimpleDB record
page and the amount of wasted space in the page for each of the following slot
sizes: 10 bytes, 20 bytes, 50 bytes, and 100 bytes.

6.2. Explain how the file for a table can contain blocks having no records.
6.3. Consider each table in the university database (except STUDENT).

(a) Give the layout for that table, as in Fig. 6.6. (You can use the varchar
declarations in the demo client files or assume that all string fields are
defined as varchar(20).)

(b) Draw a picture of the record page(s) (as in Fig. 6.5) for each table, using
the records of Fig. 1.1. As in Fig. 6.5, assume that the empty/full flag is a
single byte long. Also assume a fixed-length implementation of string
fields.

(c) Do part (b), but assume a variable-length implementation of string fields.
Use Fig. 6.8c as a model.

(d) Revise your pictures from parts (b) and (c) to show the state of the pages
after their second record has been deleted.

6.4. Another way to deal with very large strings is to not store them in the database.
Instead, you could place the strings in an OS file and store the name of the file
in the database. This strategy would eliminate the need for the clob type.
Give several reasons why this strategy is not particularly good.

6.5. Suppose that you want to insert a record into a block that contains an overflow
block, as in Fig. 6.7b. Is it a good idea to save the record in the overflow block?
Explain.

186 6 Record Management

https://doi.org/10.1007/978-3-030-33836-7_1

6.6. Here is another way to implement variable-length records. Each block has two
areas: a sequence of fixed-length slots (as in SimpleDB) and a place where
variable-length values are stored. A record is stored in a slot. Its fixed-length
values are stored with the record, and its variable-length values are stored in
the value area. The record will contain the block offset where the value is
located. For example, the records in Fig. 6.8a could be stored like this:

(a) Explain what should happen when a variable-length value gets modified.
Do you need an overflow block? If so, what should it look like?

(b) Compare this storage strategy with that of ID tables. Explain the compar-
ative benefits of each.

(c) Which implementation strategy do you prefer? Why?

6.7. Using a byte for each empty/inuse flag wastes space, since only a bit is needed.
An alternative implementation strategy is to store the empty/inuse bits for
each slot in a bit array at the beginning of the block. This bit array could be
implemented as one or more 4-byte integers.

(a) Compare this bit array with the ID table of Fig. 6.8c.
(b) Suppose that the block size is 4K and records are assumed to be at least

15 bytes. How many integers are needed to store the bit array?
(c) Describe an algorithm for finding an empty slot to insert a new record.
(d) Describe an algorithm for finding the next non-empty record in a block.

Programming Problems

6.8. Revise the class RecordPage so that its block is not pinned by the con-
structor but instead is pinned at the beginning of each get/set method.
Similarly, the block is unpinned at the end of each get/set method, thereby
eliminating the need for a close method. Do you think this is better than the
SimpleDB implementation? Explain.

6.9. Revise the record manager so that varchar fields have a variable-length
implementation.

6.10. SimpleDB only knows how to read files in the forward direction.

(a) Revise the classes TableScan and RecordPage to support a pre-
vious method, as well as the method afterLast, which positions the
current record to be after the last record in the file (or page).

(b) Revise the TableScanTest program to print its records in reverse
order.

6.7 Exercises 187

6.11. Revise the record manager so that records are spanned.
6.12. Revise the class Layout to pad string fields so that their size is always a

multiple of 4.
6.13. Revise the SimpleDB record manager to handle null field values. Since it is

unreasonable to use a particular integer or string value to denote a null, you
should use flags to specify which values are null. In particular, suppose that a
record contains N fields. Then you can store N additional bits with each record,
such that the value of the ith bit is 1 iff the value of the ith field is null.
Assuming that N<32, the empty/inuse integer can be used for this purpose.
Bit 0 of this integer denotes empty/inuse, as before. But now the other bits
hold null-value information. You should make the following revisions to the
code:

• Modify Layout so that it has a method bitLocation(fldname),
which returns the position in the flag where the field’s null information
bit is located.

• Modify RecordPage and TableScan to have two additional public
methods: a void method setNull(fldname), which stores a 1 in the
appropriate bit of the flag, and a boolean method isNull(fldname),
which returns true if the null-bit for the specified field of the current
record is 1.

• Modify the formatmethod of RecordPage to explicitly set of the fields
of the new record to non-null.

• Modify the setString and setInt methods to set the specified field to
non-null.

6.14. Suppose that setString is called with a string that is longer than is
specified in the schema.

(a) Explain what kinds of things can go wrong and when they will be
detected.

(b) Fix the SimpleDB code so that the error is detected and handled
appropriately.

188 6 Record Management

Chapter 7
Metadata Management

The previous chapter examined how the record manager stores records in files. As
you saw, however, a file is useless by itself; the record manager also needs to know
the records’ layout in order to “decode” the contents of each block. The layout is an
example of metadata. This chapter examines the kinds of metadata supported by a
database engine, their purpose and functionality, and the ways that the engine stores
metadata in the database.

7.1 The Metadata Manager

Metadata is data that describes a database. A database engine maintains a wide
variety of metadata. For example:

• Table metadata describes the structure of the table’s records, such as the length,
type, and offset of each field. The layout used by the record manager is an
example of this kind of metadata.

• View metadata describes the properties of each view, such as its definition and
creator. This metadata helps the planner handle queries that mention views.

• Index metadata describes the indexes that have been defined on the table (to be
discussed in Chap. 12). The planner uses this metadata to see if a query can be
evaluated using an index.

• Statisticalmetadata describes the size of each table and the distribution of its field
values. The query optimizer uses this metadata to estimate the cost of a query.

The metadata for the first three categories is generated when a table, view, or
index is created. Statistical metadata is generated each time the database is updated.

The metadata manager is the component of the database engine that stores and
retrieves its metadata. The SimpleDB metadata manager is comprised of four
separate managers, corresponding to each of the four metadata types. The remaining
sections of this chapter cover these managers in detail.

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_7

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_7

7.2 Table Metadata

The SimpleDB class TableMgr manages table data. Its API, shown in Fig. 7.1,
consists of a constructor and two methods. The constructor is called once, during
system startup. The method createTable takes the table’s name and schema as
arguments; the method calculates the record offsets and saves it all in the catalog.
The method getLayout goes to the catalog, extracts the metadata for the specified
table, and returns a Layout object containing the metadata.

The class TableMgrTest in Fig. 7.2 demonstrates these methods. It first
defines a schema containing an integer field named “A” and a string field named

TableMgr
public TableMgr(boolean isnew, Transaction tx);
public void createTable(String tblname, Schema sch,

Transaction tx);

public Layout getLayout(String tblname, Transactcion tx);

Fig. 7.1 The API for the SimpleDB table manager

public class TableMgrTest {
public static void main(String[] args) throws Exception {

SimpleDB db = new SimpleDB("tblmgrtest", 400, 8);
Transaction tx = db.newTx();
TableMgr tm = new TableMgr(true, tx);

Schema sch = new Schema();
sch.addIntField("A");
sch.addStringField("B", 9);
tm.createTable("MyTable", sch, tx);

Layout layout = tm.getLayout("MyTable", tx);
int size = layout.slotSize();
Schema sch2 = layout.schema();
System.out.println("MyTable has slot size " + size);
System.out.println("Its fields are:");
for (String fldname : sch2.fields()) {

String type;
if (sch2.type(fldname) == INTEGER)

type = "int";
else {

int strlen = sch2.length(fldname);
type = "varchar(" + strlen + ")";

}
System.out.println(fldname + ": " + type);

}
tx.commit();

}
}

Fig. 7.2 Using the table manager methods

190 7 Metadata Management

“B.” It then calls createTable to create a table named “MyTable” having this
schema. The code then calls getLayout to retrieve the calculated layout.

The metadata manager saves its metadata in the part of the database called the
catalog. But how does it implement the catalog? The most common strategy is for
the database engine to store catalog information in database tables. SimpleDB uses
two tables to hold its table metadata: the table tblcat stores metadata specific to
each table, and the table fldcat stores metadata specific to each field of each table.
These tables have the following fields:

tblcat(TblName, SlotSize)
fldcat(TblName, FldName, Type, Length, Offset)

There is one record in tblcat for each database table and one record in fldcat
for each field of each table. The SlotSize field gives the length of the slot in bytes,
as calculated by Layout. The Length field gives the length of the field in
characters, as specified in its table’s schema. For an example, the catalog tables
corresponding to the university database of Fig. 1.1 are shown in Fig. 7.3. Note
how the table’s layout information has been “flattened” into a series of fldcat
records. The Type values in table fldcat contain the values 4 and 12; these values
are the codes for types INTEGER and VARCHAR that are defined in the JDBC class
Types.

Catalog tables can be accessed the same as any user-created table. For example,
the SQL query of Fig. 7.4 retrieves the names and length of all fields in the
STUDENT table.1

The catalog tables even contain records describing their own metadata. These
records are not shown in Fig. 7.3. Instead, Exercise 7.1 asks you to determine them.
Figure 7.5 shows the code for the class CatalogTest, which prints the record
length of each table and the offset of each field. If you run the code, you will see that
the metadata for the catalog tables is also printed.

Figure 7.6 gives the code for TableMgr. The constructor creates the schemas for
the catalog tables tblcat and fldcat and calculates their Layout objects. If the
database is new, it also creates the two catalog tables.

The createTablemethod uses a table scan to insert records into the catalog. It
inserts one record into tblcat for the table and one record into fldcat for each
field of the table.

The getLayout method opens table scans on the two catalog tables and scans
them for records corresponding to the specified table name. It then constructs the
requested Layout object from those records.

1Note that the constant “student” is in lower case, even though the table was defined in upper case.
The reason is that all table and field names in SimpleDB are stored in lower case, and constants in
SQL statements are case-sensitive.

7.2 Table Metadata 191

https://doi.org/10.1007/978-3-030-33836-7_1

fldcat TblName FldName Type Length Offset

student sid 4 0 4

student sname 12 10 8

student majorid 4 0 22

student gradyear 4 0 26

dept did 4 0 4

dept dname 12 8 8

course cid 4 0 4

course title 12 20 8

course deptid 4 0 32

section sectid 4 0 4

section courseid 4 0 8

section prof 12 8 12

section year 4 0 24

enroll eid 4 0 4

enroll studentid 4 0 8

enroll sectionid 4 0 12

enroll grade 12 2 16

tblcat TblName SlotSize

student 30

dept 20

course 36

section 28

enroll 22

Fig. 7.3 Catalog tables for the university database

select FldName, Length
from fldcat
where TblName = 'student'

Fig. 7.4 An SQL query to retrieve metadata

192 7 Metadata Management

7.3 View Metadata

A view is a table whose records are computed dynamically from a query. That query
is called the definition of the view and is specified when the view is created. The
metadata manager stores the definition of each newly created view and retrieves its
definition when requested.

The SimpleDB class ViewMgr handles this responsibility. The class stores view
definitions in the catalog table viewcat, one record per view. The table has the
following fields:

viewcat(ViewName, ViewDef)

public class CatalogTest {
public static void main(String[] args) throws Exception {

SimpleDB db = new SimpleDB("catalogtest", 400, 8);
Transaction tx = db.newTx();
TableMgr tm = new TableMgr(true, tx);

Schema sch = new Schema();
sch.addIntField("A");
sch.addStringField("B", 9);
tm.createTable("MyTable", sch, tx);

System.out.println("All tables and their lengths:");
Layout layout = tm.getLayout("tblcat", tx);
TableScan ts = new TableScan(tx, "tblcat", layout);
while (ts.next()) {

String tname = ts.getString("tblname");
int size = ts.getInt("slotsize");
System.out.println(tname + " " + size);

}
ts.close();

System.out.println("All fields and their offsets:");
layout = tm.getLayout("fldcat", tx);
ts = new TableScan(tx, "fldcat", layout);
while (ts.next()) {

String tname = ts.getString("tblname");
String fname = ts.getString("fldname");
int offset = ts.getInt("offset");
System.out.println(tname + " " + fname + " " + offset);

}
ts.close();

}

Fig. 7.5 Using table scans to read the catalog tables

7.3 View Metadata 193

public class TableMgr {
public static final int MAX_NAME = 16; // table or field name
private Layout tcatLayout, fcatLayout;

public TableMgr(boolean isNew, Transaction tx) {
Schema tcatSchema = new Schema();
tcatSchema.addStringField("tblname", MAX_NAME);
tcatSchema.addIntField("slotsize");
tcatLayout = new Layout(tcatSchema);

Schema fcatSchema = new Schema();
fcatSchema.addStringField("tblname", MAX_NAME);
fcatSchema.addStringField("fldname", MAX_NAME);
fcatSchema.addIntField("type");
fcatSchema.addIntField("length");
fcatSchema.addIntField("offset");
fcatLayout = new Layout(fcatSchema);

if (isNew) {

createTable("tblcat", tcatSchema, tx);
createTable("fldcat", fcatSchema, tx);

}
}
public void createTable(String tblname, Schema sch,
 Transaction tx) {

Layout layout = new Layout(sch);
// insert one record into tblcat
TableScan tcat = new TableScan(tx, "tblcat", tcatLayout);
tcat.insert();
tcat.setString("tblname", tblname);
tcat.setInt("slotsize", layout.slotSize());
tcat.close();

// insert a record into fldcat for each field
TableScan fcat = new TableScan(tx, "fldcat", fcatLayout);
for (String fldname : sch.fields()) {

fcat.insert();
fcat.setString("tblname", tblname);
fcat.setString("fldname", fldname);
fcat.setInt ("type", sch.type(fldname));
fcat.setInt ("length", sch.length(fldname));
fcat.setInt ("offset", layout.offset(fldname));

}
fcat.close();

}
public Layout getLayout(String tblname, Transaction tx) {

int size = -1;
TableScan tcat = new TableScan(tx, "tblcat", tcatLayout);
while(tcat.next())

if(tcat.getString("tblname").equals(tblname)) {
size = tcat.getInt("slotsize");
break;

}

Fig. 7.6 The code for the SimpleDB class TableMgr

194 7 Metadata Management

The code for ViewMgr appears in Fig. 7.7. Its constructor is called during system
startup and creates the viewcat table if the database is new. The methods
createView and getViewDef both use a table scan to access the catalog
table—createView inserts a record into the table, and getViewDef iterates
through the table looking for the record corresponding to the specified view name.

View definitions are stored as varchar strings, which means that there is a
relatively small limit on the length of a view definition. The current limit of
100 characters is, of course, completely unrealistic, as a view definition could be
thousands of characters long. A better choice would be to implement the ViewDef
field as a clob type, such as clob(9999).

7.4 Statistical Metadata

Another form of metadata managed by a database system is the statistical informa-
tion about each table in the database, such as how many records it has and the
distribution of their field values. These statistics are used by the query planner to
estimate costs. Experience has shown that a good set of statistics can significantly
improve the execution time of queries. Consequently, commercial metadata man-
agers tend to maintain detailed, comprehensive statistics, such as value and range
histograms for each field in each table and correlation information between fields in
different tables.

For simplicity, this section considers only the following three kinds of statistical
information:

• The number of blocks used by each table T
• The number of records in each table T
• For each field F of table T, the number of distinct F-values in T

String fldname = fcat.getString("fldname");
int fldtype = fcat.getInt("type");
int fldlen = fcat.getInt("length");
int offset = fcat.getInt("offset");
offsets.put(fldname, offset);
sch.addField(fldname, fldtype, fldlen);

}

fcat.close();
return new Layout(sch, offsets, size);

}
}

Schema sch = new Schema();
Map<String,Integer> offsets = new HashMap<String,Integer>();
TableScan fcat = new TableScan(tx, "fldcat", fcatLayout);
while(fcat.next())

if(fcat.getString("tblname").equals(tblname)) {

Fig. 7.6 (continued)

7.4 Statistical Metadata 195

These statistics are denoted by B(T), R(T), and V(T,F) respectively.
Figure 7.8 gives some example statistics for the university database. The values

correspond to a university that admits about 900 students per year and offers about
500 sections per year; the university has kept this information for the last 50 years.
The values in Fig. 7.8 try to be realistic and do not necessarily correspond to values
that might be calculated from Fig. 1.1. Instead, the figures assume that 10 STUDENT
records fit per block, 20 DEPT records per block, and so on.

Look at the V(T,F) values for the STUDENT table. The fact that SId is a key of
STUDENT means that V(STUDENT, SId) ¼ 45,000. The assignment V(STU-
DENT, SName) ¼ 44,960 means that 40 of the 45,000 students have duplicate
names. The assignment V(STUDENT, GradYear) ¼ 50 means that at least one
student graduated in each of the last 50 years. And the assignment V(STUDENT,

class ViewMgr {
private static final int MAX_VIEWDEF = 100; // max view def chars
TableMgr tblMgr;

public ViewMgr(boolean isNew, TableMgr tblMgr, Transaction tx) {
this.tblMgr = tblMgr;
if (isNew) {

Schema sch = new Schema();
sch.addStringField("viewname", TableMgr.MAX_NAME);
sch.addStringField("viewdef", MAX_VIEWDEF);
tblMgr.createTable("viewcat", sch, tx);

}
}

public void createView(String vname, String vdef,
 Transaction tx) {

Layout layout = tblMgr.getLayout("viewcat", tx);
TableScan ts = new TableScan(tx, "viewcat", layout);
ts.setString("viewname", vname);
ts.setString("viewdef", vdef);
ts.close();

}

public String getViewDef(String vname, Transaction tx) {
String result = null;
Layout layout = tblMgr.getLayout("viewcat", tx);
TableScan ts = new TableScan(tx, "viewcat", layout);
while (ts.next())

if (ts.getString("viewname").equals(vname)) {
result = ts.getString("viewdef");
break;

}
ts.close();
return result;

}
}

Fig. 7.7 The code for the SimpleDB class ViewMgr

196 7 Metadata Management

https://doi.org/10.1007/978-3-030-33836-7_1

MajorId)¼ 40 means that each of the 40 departments has had at least one major at
some point.

The SimpleDB class StatMgr manages this statistical information. The data-
base engine holds one StatMgr object. This object has a method getStatInfo,
which returns a StatInfo object for a specified table. The StatInfo object
holds the statistics for that table and has methods blocksAccessed,
recordsOutput, and distinctValues, which, respectively, implement the
statistical functions B(T), R(T), and V(T,F). The API for these classes appears in
Fig. 7.9.

T B(T) R(T) V(T,F)

STUDENT 4,500 45,000

45,000 for F=SId

44,960 for F=SName

50 for F=GradYear

40 for F=MajorId

DEPT 2 40 40 for F=DId, DName

COURSE 25 500
500 for F=CId, Title

40 for F=DeptId

SECTION 2,500 25,000

25,000 for F=SectId

500 for F=CourseId

250 for F=Prof

50 for F=YearOffered

ENROLL 50,000 1,500,000

1,500,000 for F=EId

25,000 for F=SectionId

45,000 for F=StudentId

14 for F=Grade

Fig. 7.8 Example statistics about the university database

StatMgr
public StatMgr(TableMgr tm, Transaction tx);
public StatInfo getStatInfo(String tblname, Layout lo,
 Transaction tx);

StatInfo
public int blocksAccessed();
public int recordsOutput();
public int distinctValues(String fldname);

Fig. 7.9 The API for SimpleDB table statistics

7.4 Statistical Metadata 197

The code fragment in Fig. 7.10 illustrates a typical use of these methods. This
code obtains the statistics for the STUDENT table and prints the value of B(STU-
DENT), R(STUDENT), and V(STUDENT, MajorId).

A database engine can manage statistical metadata in one of two ways. One way
is to store the information in the database catalog, updating it whenever the database
changes. The other is to store the information in memory, calculating it when the
engine is initialized.

The first approach corresponds to creating two new catalog tables, called
tblstats and fldstats, having the following fields:

tblstats(TblName, NumBlocks, NumRecords)
fldstats(TblName, FldName, NumValues)

The tblstats table would have one record for each table T, containing the
values for B(T) and R(T). The fldstats table would have one record for each field
F of each table T, containing the value for V(T,F). The problem with this approach is
the cost of keeping the statistics up to date. Every call to insert, delete,
setInt, and setString would potentially need to update these tables. Addi-
tional disk accesses would be required to write the modified pages to disk. Moreover,
concurrency would be reduced—every update to table T would xlock the blocks
containing T’s statistical records, which would force the transactions that need to
read T’s statistics (as well as the statistics of the other tables having records on the
same pages) to wait.

One viable solution to this problem is to let transactions read the statistics without
obtaining slocks, as in the read-uncommitted isolation level of Sect. 5.4.7. The loss
of accuracy is tolerable because the database system uses these statistics to compare
the estimated execution times of query plans. The statistics therefore do not need to
be accurate, as long as the estimates they produce are reasonable.

The second implementation strategy is to forget about catalog tables and to store
the statistics directly in memory. The statistical data is relatively small and should fit
easily in main memory. The only problem is that the statistics will need to be
computed from scratch each time the server starts. This calculation requires a scan
of each table in the database to count the number of records, blocks, and values seen.

SimpleDB db = ...
Transaction tx = db.newTx();
TableMgr tblmgr = ...
StatMgr statmgr = new StatMgr(tblmgr, tx);
Layout layout = tblmgr.getLayout("student", tx);
StatInfo si = statmgr.getStatInfo("student", layout, tx);
System.out.println(si.blocksAccessed() + " " +

si.recordsOutput() + " " +
si.distinctValues("majorid"));

tx.commit();

Fig. 7.10 Obtaining and printing statistics about a table

198 7 Metadata Management

https://doi.org/10.1007/978-3-030-33836-7_5

If the database is not too large, this computation will not delay the system startup
too much.

This main-memory strategy has two options for dealing with database updates.
The first option is for each update to the database to update the statistics, as before.
The second option is to leave the statistics un-updated but to recalculate them, from
scratch, every so often. This second option relies again on the fact that accurate
statistical information is not necessary, and so it is tolerable to let the statistics get a
bit out of date before refreshing them.

SimpleDB adopts the second option of the second approach. The class StatMgr
keeps a variable, called tableStats, which holds cost information for each table.
The class has a public method statInfo that returns the cost values for a specified
table, and private methods refreshStatistics and refreshTableStats
that recalculate the cost values. The code for the class appears in Fig. 7.11.

The class StatMgr keeps a counter that is incremented each time statInfo
is called. If the counter reaches a particular value (here, 100), then
refreshStatistics is called to recalculate the cost values for all tables. If
statInfo is called on a table for which there are no known values, then
refreshTableStats is called to calculate the statistics for that table.

The code for refreshStatistics loops through the tblcat table. The
body of the loop extracts the name of a table and calls refreshTableStats to
calculate the statistics for that table. The refreshTableStats method loops
through the contents of that table, counting records, and calls size to determine the
number of blocks used. For simplicity, the method does not count field values.
Instead, the StatInfo object makes a wild guess at the number of distinct values
for a field, based on the number of records in its table.

The code for class StatInfo appears in Fig. 7.12. Note that
distinctValues does not use the field value passed into it, because it naïvely
assumes that approximately 1/3 of the values of any field are distinct. Needless to
say, this assumption is pretty bad. Exercise 7.12 asks you to rectify the situation.

7.5 Index Metadata

The metadata for an index consists of its name, the name of the table it is indexing,
and the list of its indexed fields. The index manager is the system component that
stores and retrieves this metadata. The SimpleDB index manager consists of two
classes, IndexMgr and IndexInfo. Their API appears in Fig. 7.13.

An index’s metadata consists of its name, the name of the table being indexed,
and the field it is indexed on. The IndexMgr method createIndex stores this
metadata in the catalog. The getIndexInfo method retrieves the metadata for all
indexes on a specified table. In particular, it returns a map of Indexinfo objects,
keyed by the indexed field. The map’s keyset method tells you the fields of the
table having an available index. The IndexInfo methods provide statistical
information about a chosen index, similar to the class StatInfo. The method

7.5 Index Metadata 199

class StatMgr {
private TableMgr tblMgr;
private Map<String,StatInfo> tablestats;
private int numcalls;

public StatMgr(TableMgr tblMgr, Transaction tx) {
this.tblMgr = tblMgr;
refreshStatistics(tx);

}

public synchronized StatInfo getStatInfo(String tblname,
Layout layout, Transaction tx) {

numcalls++;

if (numcalls > 100)
refreshStatistics(tx);

StatInfo si = tablestats.get(tblname);
if (si == null) {

si = calcTableStats(tblname, layout, tx);
tablestats.put(tblname, si);

}
return si;

}

private synchronized void refreshStatistics(Transaction tx) {
tablestats = new HashMap<String,StatInfo>();
numcalls = 0;
Layout tcatlayout = tblMgr.getLayout("tblcat", tx);
TableScan tcat = new TableScan(tx, "tblcat", tcatlayout);
while(tcat.next()) {

String tblname = tcat.getString("tblname");
Layout layout = tblMgr.getLayout(tblname, tx);
StatInfo si = calcTableStats(tblname, layout, tx);
tablestats.put(tblname, si);

}
tcat.close();

}

private synchronized StatInfo calcTableStats(String tblname,
Layout layout, Transaction tx) {

int numRecs = 0;
int numblocks = 0;
TableScan ts = new TableScan(tx, tblname, layout);
while (ts.next()) {

numRecs++;
numblocks = ts.getRid().blockNumber() + 1;

}
ts.close();
return new StatInfo(numblocks, numRecs);

}
}

Fig. 7.11 The code for the SimpleDB class StatMgr

200 7 Metadata Management

blocksAccessed returns the number of block accesses required to search the
index (not the size of the index). Methods recordsOutput and
distinctValues return the number of records in the index and the number of
distinct values of the indexed field, which are the same values as in the indexed table.

An IndexInfo object also has the method open, which returns the Index
object for the index. The class Index contains methods to search the index, and is
discussed in Chap. 12.

public class StatInfo {
private int numBlocks;
private int numRecs;

public StatInfo(int numblocks, int numrecs) {
this.numBlocks = numblocks;
this.numRecs = numrecs;

}

public int blocksAccessed() {
return numBlocks;

}

public int recordsOutput() {
return numRecs;

}

public int distinctValues(String fldname) {
return 1 + (numRecs / 3); // This is wildly inaccurate.

}
}

Fig. 7.12 The code for the SimpleDB class StatInfo

IndexMgr
public IndexMgr(boolean isnew, TableMgr tmgr, StatMgr smgr,
 Transaction tx);
public createIndex(String iname, String tname, String fname,
 Transaction tx);
public Map(String,IndexInfo> getIndexInfo(String tblname,
 Transaction tx);

IndexInfo
public IndexInfo(String iname, String tname, String fname,
 Transaction tx);
public int blocksAccessed();
public int recordsOutput();
public int distinctValues(String fldname);
public Index open();

Fig. 7.13 The API for SimpleDB index metadata

7.5 Index Metadata 201

https://doi.org/10.1007/978-3-030-33836-7_12

The code fragment of Fig. 7.14 illustrates the use of these methods. The code
creates two indexes on the STUDENT table. It then retrieves their metadata, printing
the name and search cost of each one.

Figure 7.15 gives the code for IndexMgr. It stores index metadata in the catalog
table idxcat. This table has one record for each index and three fields: the name of
the index, the name of the table being indexed, and the name of the indexed field.

The constructor is called during system startup and creates the catalog table if the
database is new. The code for methods createIndex and getIndexInfo is
straightforward. Both methods open a table scan on the catalog table. The method
createIndex inserts a new record into the table. The method getIndexInfo
searches the table for those records having the specified table name and inserts them
into the map.

The code for the class IndexInfo appears in Fig. 7.16. The constructor receives
the name of the index and the indexed field, as well as variables holding the layout
and statistical metadata of its associated table. This metadata allows the
IndexInfo object to construct the schema for the index record and to estimate
the size of the index file.

The method open opens the index by passing the index name and schema to the
HashIndex constructor. The class HashIndex implements a static hashed index
and is discussed in Chap. 12. To use B-Tree indexing instead, replace this construc-
tor with the commented-out one. The method blocksAccessed estimates the
search cost of the index. It first uses the index’s Layout information to determine
the length of each index record and estimate the records per block (RPB) of the index
and the size of the index file. Then it calls the index-specific method searchCost
to calculate the number of block accesses for that index type. The method
recordsOutput estimates the number of index records matching a search key.
And the method distinctValues returns the same value as in the indexed table.

SimpleDB db = ...
Transaction tx = db.newTx();
TableMgr tblmgr = ...
StatMgr statmgr = new StatMgr(tblmgr, tx);
IndexMgr idxmgr = new IndexMgr(true, tblmgr, statmgr, tx);
idxmgr.createIndex("sidIdx", "student", "sid");
idxmgr.createIndex("snameIdx", "student", "sname");

Map<String,IndexInfo> indexes = idxmgr.getIndexInfo("student", tx);
for (String fldname : indexes.keySet()) {

IndexInfo ii = indexes.get(fldname);
System.out.println(fldname + "\t" + ii.blocksAccessed(fldname));

}

Fig. 7.14 Using the SimpleDB index manager

202 7 Metadata Management

https://doi.org/10.1007/978-3-030-33836-7_12

public class IndexMgr {
private Layout layout;
private TableMgr tblmgr;
private StatMgr statmgr;

public IndexMgr(boolean isnew, TableMgr tblmgr, StatMgr statmgr,
Transaction tx) {

if (isnew) {
Schema sch = new Schema();
sch.addStringField("indexname", MAX_NAME);
sch.addStringField("tablename", MAX_NAME);
sch.addStringField("fieldname", MAX_NAME);
tblmgr.createTable("idxcat", sch, tx);

}
this.tblmgr = tblmgr;
this.statmgr = statmgr;
layout = tblmgr.getLayout("idxcat", tx);

}

public void createIndex(String idxname, String tblname,
String fldname,Transaction tx) {

TableScan ts = new TableScan(tx, "idxcat", layout);
ts.insert();
ts.setString("indexname", idxname);
ts.setString("tablename", tblname);
ts.setString("fieldname", fldname);
ts.close();

}

public Map<String,IndexInfo> getIndexInfo(String tblname,
 Transaction tx) {

Map<String,IndexInfo> result = new HashMap<String,IndexInfo>();
TableScan ts = new TableScan(tx, "idxcat", layout);
while (ts.next())

if (ts.getString("tablename").equals(tblname)) {
String idxname = ts.getString("indexname");
String fldname = ts.getString("fieldname");
Layout tblLayout = tblmgr.getLayout(tblname, tx);
StatInfo tblsi = statmgr.getStatInfo(tblname, tbllayout, tx);
IndexInfo ii = new IndexInfo(idxname, fldname,

tblLayout.schema(),tx, tblsi);
result.put(fldname, ii);

}
ts.close();
return result;

}
}

Fig. 7.15 The code for the SimpleDB index manager

7.5 Index Metadata 203

public class IndexInfo {
private String idxname, fldname;
private Transaction tx;
private Schema tblSchema;
private Layout idxLayout;
private StatInfo si;

public IndexInfo(String idxname, String fldname, Schema tblSchema,
Transaction tx, StatInfo si) {

this.idxname = idxname;
this.fldname = fldname;
this.tx = tx;
this.idxLayout = createIdxLayout();
this.si = si;

}

public Index open() {
Schema sch = schema();
return new HashIndex(tx, idxname, idxLayout);

// return new BTreeIndex(tx, idxname, idxLayout);
}

public int blocksAccessed() {
int rpb = tx.blockSize() / idxLayout.slotSize();
int numblocks = si.recordsOutput() / rpb;
return HashIndex.searchCost(numblocks, rpb);

// return BTreeIndex.searchCost(numblocks, rpb);
}

public int recordsOutput() {
return si.recordsOutput() / si.distinctValues(fldname);

}

public int distinctValues(String fname) {
return fldname.equals(fname) ? 1 : si.distinctValues(fldname);

}

private Layout createIdxLayout() {
Schema sch = new Schema();
sch.addIntField("block");
sch.addIntField("id");
if (layout.schema().type(fldname) == INTEGER)

sch.addIntField("dataval");
else {

int fldlen = layout.schema().length(fldname);
sch.addStringField("dataval", fldlen);

}
return new Layout(sch);

}
}

Fig. 7.16 The code for the SimpleDB class IndexInfo

204 7 Metadata Management

7.6 Implementing the Metadata Manager

SimpleDB simplifies the client interface to the metadata manager by hiding the four
separate manager classes TableMgr, ViewMgr, StatMgr, and IndexMgr.
Instead, clients use the class MetadataMgr as the single place to obtain metadata.
The code for MetadataMgr API appears in Fig. 7.17.

This API contains two methods for each type of metadata—one method generates
and saves the metadata, and the other method retrieves it. The only exception is for
statistical metadata, whose generation method is called internally and is thus private.

Figure 7.18 gives the code for the class MetadataMgrTest, which illustrates
the use of these methods.

Part 1 illustrates table metadata. It creates the table MyTable and prints its layout,
as in Fig. 7.2. Part 2 illustrates the statistics manager. It inserts several records into
MyTable and prints the resulting table statistics. Part 3 illustrates the view manager,
creating a view and retrieving the view definition. Part 4 illustrates the index
manager. It creates an index on fields A and B and prints the properties of each index.

The class MetadataMgr is known as a façade class. Its constructor creates the
four manager objects and saves them in private variables. Its methods replicate the
public methods of the individual managers. When a client calls a method on the
metadata manager, that method calls the appropriate local manager to do the work.
Its code appears in Fig. 7.19.

All test programs so far in this book have called the three-argument SimpleDB
constructor. That constructor uses the provided block size and buffer pool size to
customize the system’s FileMgr, LogMgr, and BufferMgr objects. Its purpose
is to help debug the low levels of the system and does not create a MetadataMgr
object.

MetadataMgr
public void createTable(String tblname, Schema sch,
 Transaction tx);
public Layout getLayout(String tblname, Transaction tx);

public void createView(String viewname, String viewdef,
 Transaction tx);
public String getViewDef(String viewname, Transaction tx);

public void createIndex(String idxname, String tblname,
String fldname, Transaction tx);

public Map<String,IndexInfo> getIndexinfo(String tblname,
 Transaction tx);
public StatInfo getStatInfo(String tblname, Layout layout,

 Transaction tx);

Fig. 7.17 The API for the SimpleDB metadata manager

7.6 Implementing the Metadata Manager 205

public class MetadataMgrTest {
public static void main(String[] args) throws Exception {

SimpleDB db = new SimpleDB("metadatamgrtest", 400, 8);
Transaction tx = db.newTx();
MetadataMgr mdm = new MetadataMgr(true, tx);

Schema sch = new Schema();
sch.addIntField("A");
sch.addStringField("B", 9);

// Part 1: Table Metadata
mdm.createTable("MyTable", sch, tx);
Layout layout = mdm.getLayout("MyTable", tx);
int size = layout.slotSize();
Schema sch2 = layout.schema();
System.out.println("MyTable has slot size " + size);
System.out.println("Its fields are:");
for (String fldname : sch2.fields()) {

String type;
if (sch2.type(fldname) == INTEGER)

type = "int";
else {

int strlen = sch2.length(fldname);
type = "varchar(" + strlen + ")";

}
System.out.println(fldname + ": " + type);

}

// Part 2: Statistics Metadata
TableScan ts = new TableScan(tx, "MyTable", layout);
for (int i=0; i<50; i++) {

ts.insert();
int n = (int) Math.round(Math.random() * 50);
ts.setInt("A", n);
ts.setString("B", "rec"+n);

}
StatInfo si = mdm.getStatInfo("MyTable", layout, tx);
System.out.println("B(MyTable) = " + si.blocksAccessed());
System.out.println("R(MyTable) = " + si.recordsOutput());
System.out.println("V(MyTable,A) = " + si.distinctValues("A"));
System.out.println("V(MyTable,B) = " + si.distinctValues("B"));

// Part 3: View Metadata
String viewdef = "select B from MyTable where A = 1";
mdm.createView("viewA", viewdef, tx);
String v = mdm.getViewDef("viewA", tx);
System.out.println("View def = " + v);

// Part 4: Index Metadata
mdm.createIndex("indexA", "MyTable", "A", tx);
mdm.createIndex("indexB", "MyTable", "B", tx);

Fig. 7.18 Testing the MetadataMgr methods

206 7 Metadata Management

SimpleDB has another constructor that has one argument, the database name.
This constructor is used for non-debug situations. It first creates the file, log, and
buffer managers using default values. It then calls the recovery manager to recover
the database (in case recovery is needed) and creates the metadata manager (which, if
the database is new, includes creating the catalog files). The code for the two
SimpleDB constructors appears in Fig. 7.20.

With this one-argument constructor, the code for MetadataMgrTest in
Fig. 7.18 can be rewritten more simply, as shown in Fig. 7.21.

7.7 Chapter Summary

• Metadata is the information about a database, apart from its contents. The
metadata manager is the portion of the database system that stores and retrieves
its metadata.

• Database metadata in SimpleDB falls into four categories:

– Table metadata describes the structure of the table’s records, such as the
length, type, and offset of each field.

– View metadata describes the properties of each view, such as its definition and
creator.

– Index metadata describes the indexes that have been defined on the table.
– Statistical metadata describes the size of each table and the distribution of its

field values.

• The metadata manager saves its metadata in the system catalog. The catalog is
often implemented as tables in the database, called catalog tables. Catalog tables
can be queried the same as any other table in the database.

ii = idxmap.get("B");
System.out.println("B(indexB) = " + ii.blocksAccessed());
System.out.println("R(indexB) = " + ii.recordsOutput());
System.out.println("V(indexB,A) = " + ii.distinctValues("A"));
System.out.println("V(indexB,B) = " + ii.distinctValues("B"));
tx.commit();

}
}

IndexInfo ii = idxmap.get("A");
System.out.println("B(indexA) = " + ii.blocksAccessed());
System.out.println("R(indexA) = " + ii.recordsOutput());
System.out.println("V(indexA,A) = " + ii.distinctValues("A"));
System.out.println("V(indexA,B) = " + ii.distinctValues("B"));

Fig. 7.18 (continued)

7.7 Chapter Summary 207

public class MetadataMgr {
private static TableMgr tblmgr;
private static ViewMgr viewmgr;
private static StatMgr statmgr;
private static IndexMgr idxmgr;

public MetadataMgr(boolean isnew, Transaction tx) {
tblmgr = new TableMgr(isnew, tx);
viewmgr = new ViewMgr(isnew, tblmgr, tx);
statmgr = new StatMgr(tblmgr, tx);
idxmgr = new IndexMgr(isnew, tblmgr, statmgr, tx);

}

public void createTable(String tblname, Schema sch,
 Transaction tx) {

tblmgr.createTable(tblname, sch, tx);
}

public Layout getLayout(String tblname, Transaction tx) {
return tblmgr.getLayout(tblname, tx);

}

public void createView(String viewname, String viewdef,
 Transaction tx) {

viewmgr.createView(viewname, viewdef, tx);
}

public String getViewDef(String viewname, Transaction tx) {
return viewmgr.getViewDef(viewname, tx);

}

public void createIndex(String idxname, String tblname,
String fldname, Transaction tx) {

idxmgr.createIndex(idxname, tblname, fldname, tx);
}

public Map<String,IndexInfo> getIndexInfo(String tblname,
 Transaction tx)

{return idxmgr.getIndexInfo(tblname, tx);
}

}

public StatInfo getStatInfo(String tblname, Layout layout,
 Transaction tx)
{return statmgr.getStatInfo(tblname, layout, tx);

Fig. 7.19 The code for the SimpleDB class MetadataMgr

208 7 Metadata Management

• Table metadata can be stored in two catalog tables—one table stores table
information (such as the slot size), and the other table stores field information
(such as the name, length, and type of each field).

• View metadata consists primarily of the view definition and can be saved in its
own catalog table. The view definition will be an arbitrarily long string, so a
variable-length representation is appropriate.

• Statistical metadata holds information about the size and value distribution of
each table in the database. Commercial database systems tend to maintain
detailed, comprehensive statistics, such as value and range histograms for each
field in each table, and correlation information between fields in different tables.

• A basic set of statistics consists of three functions:

– B(T) returns the number of blocks used by table T.
– R(T) returns the number of records in table T.
– V(T,F) returns the number of distinct F-values in T.

public SimpleDB(String dirname, int blocksize, int buffsize) {
String homedir = System.getProperty(HOME_DIR);
File dbDirectory = new File(homedir, dirname);
fm = new FileMgr(dbDirectory, blocksize);
lm = new LogMgr(fm, LOG_FILE);
bm = new BufferMgr(fm, lm, buffsize);

}

public SimpleDB(String dirname) {
this(dirname, BLOCK_SIZE, BUFFER_SIZE);
Transaction tx = new Transaction(fm, lm, bm);
boolean isnew = fm.isNew();
if (isnew)

System.out.println("creating new database");
else {

System.out.println("recovering existing database");
tx.recover();

}
mdm = new MetadataMgr(isnew, tx);
tx.commit();

Fig. 7.20 The two SimpleDB constructors

public class MetadataMgrTest {
public static void main(String[] args) throws Exception {

SimpleDB db = new SimpleDB("metadatamgrtest");
MetadataMgr mdm = db.mdMgr();
Transaction tx = db.newTx();
...

}

Fig. 7.21 Using the one-argument SimpleDB constructor

7.7 Chapter Summary 209

• Statistics can be stored in catalog tables, or they can be calculated from scratch
each time the database restarts. The former option avoids the long startup time but
can slow down the execution of transactions.

• Index metadata holds information on the name of each index, the table it is
indexed on, and the indexed fields.

7.8 Suggested Reading

The catalog tables used in SimpleDB are about as small as possible and similar to
those used in the early INGRES system (Stonebraker et al. 1976). On the other side
of the spectrum, Oracle currently has such an extensive catalog that a 60-page book
has been written to describe it (Kreines 2003).

Standard SQL defines a standard set of views that provide access to the database
metadata. These views are called the information schema of the database. There are
over 50 defined view tables, which expand upon the metadata described in this
chapter. For example, there are views to display information on triggers, assertions,
constraints, user-defined types, and so on. There are also several views that hold
information about privileges and roles. The idea is that each database system can
store this metadata any way that it chooses, but it is obligated to provide a standard
interface to this metadata. Details can be found in Chap. 16 of Gulutzan and Pelzer
(1999).

Accurate and detailed statistical metadata is critical for good query planning. The
approach taken in this chapter is crude, and commercial systems use much more
sophisticated techniques. The article Gibbons et al. (2002) describes the use of
histograms and shows how they can be maintained efficiently in the face of frequent
updates. Histogram information can be determined in various ways, one of the more
interesting being via wavelet techniques (Matias et al. 1998). It is even possible to
collect statistics on previously run queries, which can then be used to plan related
queries (Bruno and Chaudhuri 2004).

Bruno, N., & Chaudhuri, S. (2004). Conditional selectivity for statistics on query
expressions. In Proceedings of the ACM SIGMOD Conference (pp. 311–322).

Gibbons, P., Matias, Y., & Poosala, V. (2002). Fast incremental maintenance of
incremental histograms. ACM Transactions on Database Systems, 27(3),
261–298.

Gulutzan, P., & Pelzer, T. (1999). SQL-99 complete, really. Lawrence, KA: R&D
Books.

Kreines, D. (2003). Oracle data dictionary pocket reference. Sebastopol, CA:
O’Reilly.

Matias, Y., Vitter, J., & Wang, M. (1998). Wavelet-based histograms for selectivity
estimation. In Proceedings of the ACM SIGMOD Conference (pp. 448–459).

Stonebraker, M., Kreps, P., Wong, E., & Held, G. (1976). The design and
implementation of INGRES. ACM Transactions on Database Systems, 1(3),
189–222.

210 7 Metadata Management

7.9 Exercises

Conceptual Exercises

7.1. Give the tblcat and fldcat records that SimpleDB creates for the tblcat
and fldcat tables. (Hint: Examine the code for TableMgr.)

7.2. Suppose that the only thing transaction T1 does is create table X, and the only
thing transaction T2 does is create table Y.

(a) What possible concurrent schedules can these transactions have?
(b) Could T1 and T2 ever deadlock? Explain.

7.3. Standard SQL also allows a client to add a new field to an existing table. Give
a good algorithm to implement this functionality.

Programming Exercises
7.4. Standard SQL allows a client to remove a field from an existing table. Suppose

that this functionality is implemented in a method of TableMgr called
removeField.

(a) One way to implement this method is to simply modify the field’s record
in fldcat to have a blank fieldname. Write the code for this method.

(b) In part (a), none of the table’s records are changed. What happens to their
deleted field values? Why can’t they ever be accessed?

(c) Another way to implement this method is to remove the field’s record
from fldcat and modify all of the existing data records in the table. This
is considerably more work than in (a). Is it ever worth it? Explain the
trade-offs.

7.5. In the SimpleDB catalog tables, the field tblname of tblcat is its key, and
the field tblname of fldcat is the corresponding foreign key. Another way
to implement these tables would be to use an artificial key (say, tblId) for
tblcat, with a corresponding foreign key in fldcat (say, named
tableId).

(a) Implement this design in SimpleDB.
(b) Is this design better than the original one? (Does it save space? Does it

save block accesses?)

7.6. Suppose that SimpleDB crashes while the catalog tables for a new database are
being created.

(a) Describe what will occur when the database is recovered after system
restart. What problem arises?

(b) Revise the SimpleDB code to fix this problem.

7.7. Write SimpleDB clients to do each of the following tasks, by querying the
tblcat and fldcat tables directly:

7.9 Exercises 211

(a) Print the names and fields of all tables in the database (e.g., in the form of
“T(A, B)”).

(b) Reconstruct and print the text of the SQL create table statement used
to create a particular table (e.g., in the form of “create table T (A integer, B
varchar(7))”).

7.8. What happens when the method getLayout is called with a nonexistent
table name? Revise the code so that null is returned instead.

7.9. What problem can occur when a client creates a table with the same name as a
table already in the catalog? Revise the code to prevent this from happening.

7.10. Revise TableMgr to have the method dropTable, which removes the
table from the database. Do you need to modify the file manager also?

7.11. Revise the SimpleDB code so that statistics are stored in the catalog tables and
updated each time the database is changed.

7.12. Revise the SimpleDB code so that V(T, F) is computed for each table T and
field F. (Hint: Keeping track of the count of each field can be memory-
intensive, as the number of distinct values may be unbounded. A reasonable
idea is to count values for a portion of the table and extrapolate. For example,
one might count how many records are required to read 1000 different values.)

7.13. Suppose that a client creates a table, inserts some records into it, and then does
a rollback.

(a) What happens to the table’s metadata in the catalog?
(b) What happens to the file containing the data? Explain what problem could

occur if a client subsequently creates a table with the same name but a
different schema.

(c) Fix the SimpleDB code so that this problem is solved.

7.14. Modify the index manager so that it also saves the type of the index in the
catalog. Assume that there are two types of index, in classes BTreeIndex
and HashIndex. The class constructor and static method searchCost
have the same arguments in each of these classes.

7.15. The SimpleDB index manager uses the table idxcat to hold index informa-
tion. Another design possibility is to keep index information in the catalog
table fldcat.

(a) Compare the two possibilities. What are the advantages of each way?
(b) Implement this alternative way.

212 7 Metadata Management

Chapter 8
Query Processing

The next three chapters examine how database engines execute SQL queries. The
issue is that an SQL query specifies what data to return but not how to get it. The
solution is for the engine to implement a set of data-retrieval operators, known as
relational algebra. The engine can translate an SQL query to a relational algebra
query which can then be executed. This chapter introduces relational algebra queries
and their implementation. The following two chapters will examine the translation of
SQL into relational algebra.

8.1 Relational Algebra

Relational algebra consists of a set of operators. Each operator performs one
specialized task, taking one or more tables as input and producing one output
table. Complex queries can be constructed by composing these operators in
various ways.

The SimpleDB version of SQL can be implemented using three operators:

• select, whose output table has the same columns as its input table but with some
rows removed

• project, whose output table has the same rows as its input table but with some
columns removed

• product, whose output table consists of all possible combinations of records from
its two input tables

These operators are examined in the following subsections.

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_8

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_8

8.1.1 Select

The select operator takes two arguments: an input table and a predicate. The output
table consists of the input records that satisfy the predicate. A select query always
returns a table having the same schema as the input table but with a subset of the
records.

For example, query Q1 returns a table listing those students who graduated in
2019.

Q1 = select(STUDENT, GradYear=2019)

A predicate can be any boolean combination of terms and corresponds to a
where clause in SQL. For example, query Q2 finds those students who graduated
in 2019 and whose major was either in department 10 or 20.

Q2 = select(STUDENT, GradYear=2019 and (MajorId=10 or MajorId=20))

The output table of one query can be the input to another query. For example,
queries Q3 and Q4 are each equivalent to Q2:

Q3 = select(select(STUDENT, GradYear=2019), MajorId=10 or MajorId=20)

Q4 = select(Q1, MajorId=10 or MajorId=20)

In Q3, the first argument of the outermost query is another query, identical to Q1,
which finds the students who graduated in 2019. The outer query retrieves, from
those records, the students in department 10 or 20. Query Q4 is similar, except that it
uses the name of Q1 in place of its definition.

A relational algebra query can be expressed pictorially, as a query tree. A query
tree contains a node for each table and operator mentioned in the query. The table
nodes are the leaves of the tree, and the operator nodes are non-leaves. An operator
node has a child for each of its input tables. For example, the query tree for Q3
appears in Fig. 8.1.

Fig. 8.1 A query tree for Q3

214 8 Query Processing

8.1.2 Project

The project operator takes two arguments: an input table and a set of field names.
The output table has the same records as the input table, but its schema contains only
those specified fields. For example, query Q5 returns the name and graduation year
of all students:

Q5 = project(STUDENT, {SName, GradYear})

A query can be composed of both project and select operators. Query Q6 returns a
table listing the name of all students majoring in department 10:

Q6 = project(select(STUDENT, MajorId=10), {SName})

The query tree for Q6 appears in Fig. 8.2.
The output table of a project query may have duplicate records. For example, if

there are three students named “pat” having major 10, then the output of Q6 will
contain “pat” three times.

Not all compositions of operators are meaningful. For example, consider the
query you get by inverting Q6:

Q7 = select(project(STUDENT, {SName}), MajorId=10) // Not legal!

This query does not make sense, because the output table of the inner query does
not contain a MajorId field to select on.

8.1.3 Product

The select and project operators act upon a single table. The product operator makes
it possible to combine and compare information from multiple tables. This operator
takes two input tables as arguments. Its output table consists of all combinations of
records from the input tables, and its schema consists of the union of the fields in the
input schemas. The input tables must have disjoint field names so that the output
table will not have two fields with the same name.

Fig. 8.2 A query tree for Q6

8.1 Relational Algebra 215

Query Q8 returns the product of the STUDENT and DEPT tables:

Q8 = product(STUDENT, DEPT)

The university database of Fig. 1.1 showed nine records in STUDENT and three
records in DEPT. Figure 8.3 depicts the output of Q8 given those input tables. The

Q8 SId SName MajorId GradYear DId DName

1 joe 10 2021 10 compsci

1 joe 10 2021 20 math

1 joe 10 2021 30 drama

2 amy 20 2020 10 compsci

2 amy 20 2020 20 math

2 amy 20 2020 30 drama

3 max 10 2022 10 compsci

3 max 10 2022 20 math

3 max 10 2022 30 drama

4 sue 20 2022 10 compsci

4 sue 20 2022 20 math

4 sue 20 2022 30 drama

5 bob 30 2020 10 compsci

5 bob 30 2020 20 math

5 bob 30 2020 30 drama

6 kim 20 2020 10 compsci

6 kim 20 2020 20 math

6 kim 20 2020 30 drama

7 art 30 2021 10 compsci

7 art 30 2021 20 math

7 art 30 2021 30 drama

8 pat 20 2019 10 compsci

8 pat 20 2019 20 math

8 pat 20 2019 30 drama

9 lee 10 2021 10 compsci

9 lee 10 2021 20 math

9 lee 10 2021 30 drama

Fig. 8.3 The output of query Q8

216 8 Query Processing

https://doi.org/10.1007/978-3-030-33836-7_1

output table contains 27 records, 1 record for each pairing of a student record with a
department record. In general, if there are N records in STUDENT and M records in
DEPT, then the output table will contain N�M records (which, by the way, is the
reason why the operator is called “product”).

Query Q8 is not especially meaningful, as it does not take into consideration the
major of each student. This meaning can be expressed in a selection predicate, as
shown in query Q9 and Fig. 8.4:

Q9 = select(product(STUDENT, DEPT), MajorId=Did)

The output table for this query contains only the combinations of records from
STUDENT and DEPT that satisfy the predicate. Thus out of the 27 possible com-
binations, the only combinations that will remain are those for which the student’s
major ID is the same as the department’s ID—in other words, the result table will
consist of students and their major departments. Instead of 27 records, the output
table now has 9 records.

8.2 Scans

A scan is an object that represents the output of a relational algebra query. Scans in
SimpleDB implement the interface Scan; see Fig. 8.5. The Scan methods are a
subset of the TableScan methods, and they have the same behavior. This corre-
spondence should not be surprising—the output of a query is a table, and so it is
natural for queries and tables to be accessed the same way.

For an example, consider the method printNameAndGradYear in Fig. 8.6.
This method iterates through its scan, printing the values of the fields sname and
gradyear for each record.

Fig. 8.4 The query tree for Q9

public interface Scan {
public void beforeFirst();
public boolean next();
public int getInt(String fldname);
public String getString(String fldname);
public Constant getVal(String fldname);
public boolean hasField(String fldname);
public void close();

Fig. 8.5 The SimpleDB Scan interface

8.2 Scans 217

The point of this example is that the method has no idea what query (or table) the
scan represents. It could represent the STUDENT table, or perhaps a query that
selects the students having a particular major, or the students who took a course with
Professor Einstein. The only requirement is that the scan’s output table contains a
student name and a graduation year.

A Scan object corresponds to a node in a query tree. SimpleDB contains a Scan
class for each relational operator. Objects from those classes constitute the internal
nodes of the query tree, and TableScan objects denote the leaves of the tree.
Figure 8.7 shows the scan constructors for tables and the three basic operators
supported by SimpleDB.

The SelectScan constructor takes two arguments: an underlying scan and a
predicate. The underlying scan is the input to the select operator. Since Scan is an
interface, the SelectScan object does not know if its input is a stored table or the
output of another query. This situation corresponds to the fact that the input to a
relational operator can be any table or query.

The selection predicate passed into the SelectScan constructor is of type
Predicate. Section 8.6 discusses the details of how SimpleDB handles predi-
cates; until then, I shall remain somewhat vague on the issue.

Query trees are built by composing scans. There will be a scan for each node of
the tree. For example, Fig. 8.8 gives the SimpleDB code for the query tree of Fig. 8.2
(omitting the details on the selection predicate). The Scan variables s1, s2, and s3
each correspond to a node in the query tree. The tree is built bottom-up: First the
table scan is created, then the select scan, and finally the project scan. Variable s3
holds the final query tree. The while-loop traverses s3, printing each student name.

Figure 8.9 gives the SimpleDB code corresponding to the query tree of Fig. 8.4.
The code contains four scans because the query tree has four nodes. Variable s4
holds the final query tree. Note how the while-loop is nearly identical to the previous

public static void printNameAndGradyear(Scan s) {
s.beforeFirst();
while (s.next()) {

String sname = s.getString("sname");
String gradyr = s.getInt("gradyear");
System.out.println(sname + "\t" + gradyr);

}
s.close();

Fig. 8.6 Printing the name and graduation year of a scan’s records

Scan
public TableScan(Transaction tx, String filename, Layout layout);
public SelectScan(Scan s, Predicate pred);
public ProjectScan(Scan s, List<String> fldlist);
public ProductScan(Scan s1, Scan s2);

Fig. 8.7 The API of the SimpleDB constructors that implement Scan

218 8 Query Processing

one. In the interest of saving space, the loop only prints three field values for each
output record, but it can easily be modified to include all six field values.

Transaction tx = db.newTx();
MetadataMgr mdm = db.MetadataMgr();

// the STUDENT node
Layout layout = mdm.getLayout("student", tx);
Scan s1 = new TableScan(tx, "student", layout);

// the Select node
Predicate pred = new Predicate(. . .); // majorid=10
Scan s2 = new SelectScan(s1, pred);

// the Project node
List<String> c = Arrays.asList("sname");
Scan s3 = new ProjectScan(s2, c);

while (s3.next())

s3.close();
System.out.println(s3.getString("sname"));

Fig. 8.8 Representing Fig. 8.2 as a scan

Transaction tx = db.newTx();
MetadataMgr mdm = db.MetadataMgr();

// the STUDENT node
Layout layout1 = mdm.getLayout("student", tx);
Scan s1 = new TableScan(tx, "student", layout1);

// the DEPT node
Layout layout2 = mdm.getLayout("dept", tx);
Scan s2 = new TableScan(tx, "dept", layout2);

// the Product node
Scan s3 = new ProductScan(s1, s2);

// the Select node
Predicate pred = new Predicate(. . .); //majorid=did
Scan s4 = new SelectScan(s3, pred);

while (s4.next())
System.out.println(s4.getString("sname")

+ ", " + s4.getString("gradyear")
+ ", " + s4.getString("dname"));

s4.close();

Fig. 8.9 Representing Fig. 8.4 as a scan

8.2 Scans 219

Finally, note that the close method gets called only on the outermost scan of a
query tree. Closing a scan automatically closes its underlying scans.

8.3 Update Scans

A query defines a virtual table. The Scan interface has methods that allow clients to
read from this virtual table but not update it. Not all scans can be meaningfully
updated. A scan is updatable if every output record r in the scan has a corresponding
record r0 in an underlying database table. In this case, an update to r is defined as an
update to r0.

Updatable scans support the interface UpdateScan; see Fig. 8.10. The first five
methods of the interface are basic modification operations. The other two methods
involve the identifier of the stored record underlying the scan’s current record. The
getRid method returns this identifier, and moveToRid positions the scan at the
specified stored record.

The only two classes in SimpleDB that implement UpdateScan are
TableScan and SelectScan. As an example of their use, consider Fig. 8.11.
Part (a) shows an SQL statement that changes the grade of every student who took
section 53, and part (b) gives the code that implements this statement. The code first
creates a select scan of all enrollment records for section 53; it then iterates through
the scan, changing the grade of each record.

Variable s2 calls the method setString, so it must be declared as an update
scan. On the other hand, the first argument to the SelectScan constructor is a
scan, which means that it need not be declared as an update scan. Instead, the code
for s2’s setString method will cast its underlying scan (i.e., s1) to an update
scan; if that scan is not updatable, a ClassCastException will be thrown.

public interface UpdateScan extends Scan {
public void setInt(String fldname, int val);
public void setString(String fldname, String val);
public void setVal(String fldname, Constant val);
public void insert();
public void delete();

public RID getRid();
public void moveToRid(RID rid);

}

Fig. 8.10 The SimpleDB UpdateScan interface

220 8 Query Processing

8.4 Implementing Scans

The SimpleDB engine contains four Scan classes: the class TableScan and a
class for the operators select, project, and product. Chapter 6 examined
TableScan. The following subsections discuss the three operator classes.

8.4.1 Select Scans

The code for SelectScan appears in Fig. 8.12. The constructor holds the scan of
its underlying input table. A scan’s current record is the same as the current record of
its underlying scan, which means that most methods can be implemented by simply
calling the corresponding method of that scan.

The only nontrivial method is next. The job of this method is to establish a new
current record. The code loops through the underlying scan, looking for a record that
satisfies the predicate. If such a record is found then it becomes the current record,
and the method returns true. If there is no such record then the while loop will
complete, and the method will return false.

Select scans are updatable. The UpdateScan methods assume that the under-
lying scan is also updatable; in particular, they assume that they can cast the
underlying scan to UpdateScan without causing a ClassCastException.
Since the scans created by the SimpleDB update planner only involve table scans
and select scans, an occurrence of such an exception should not occur.

update ENROLL
set Grade = 'C' where SectionId = 53

(a)

Transaction tx = db.newTx();
MetadataMgr mdm = db.MetadataMgr();

Layout layout = mdm.getLayout("enroll", tx);
Scan s1 = new TableScan(tx, "enroll", layout);

Predicate pred = new Predicate(. . .); // SectionId=53
UpdateScan s2 = new SelectScan(s1, pred);

while (s2.next())
s2.setString("grade", "C");

s2.close();

(b)

Fig. 8.11 Representing an SQL update statement as an update scan. (a) An SQL statement to
modify the grades of students in section 53, (b) the SimpleDB code corresponding to the statement

8.4 Implementing Scans 221

https://doi.org/10.1007/978-3-030-33836-7_6

public class SelectScan implements UpdateScan {
private Scan s;
private Predicate pred;

public SelectScan(Scan s, Predicate pred) {
this.s = s;
this.pred = pred;

}

// Scan methods

public void beforeFirst() {
s.beforeFirst();

}

public boolean next() {
while (s.next())

if (pred.isSatisfied(s))
return true;

return false;
}

public int getInt(String fldname) {
return s.getInt(fldname);

}

public String getString(String fldname) {
return s.getString(fldname);

}

public Constant getVal(String fldname) {
return s.getVal(fldname);

}

public boolean hasField(String fldname) {
return s.hasField(fldname);

}

public void close() {
s.close();

}

// UpdateScan methods

public void setInt(String fldname, int val) {
UpdateScan us = (UpdateScan) s;
us.setInt(fldname, val);

}

Fig. 8.12 The code for the SimpleDB class SelectScan

222 8 Query Processing

8.4.2 Project Scans

The code for ProjectScan appears in Fig. 8.13. The list of output fields is passed
into the constructor and is used to implement the method hasField. The other
methods simply forward their requests to the corresponding method of the underly-
ing scan. The getVal, getInt, and getString methods check to see if the
specified fieldname is in the field list; if not, an exception is generated.

The class ProjectScan does not implement UpdateScan, even though
projections are updatable. Exercise 8.12 asks you to complete the implementation.

8.4.3 Product Scans

The code for ProductScan appears in Fig. 8.14. A product scan needs to be able
to iterate through all possible combinations of records from its underlying scans s1

public void delete() {
UpdateScan us = (UpdateScan) s;
us.delete();

}

public void insert() {
UpdateScan us = (UpdateScan) s;
us.insert();

}

public RID getRid() {
UpdateScan us = (UpdateScan) s;
return us.getRid();

}

public void moveToRid(RID rid) {
UpdateScan us = (UpdateScan) s;
us.moveToRid(rid);

}
}

public void setString(String fldname, String val) {
UpdateScan us = (UpdateScan) s;
us.setString(fldname, val);

}

public void setVal(String fldname, Constant val) {
UpdateScan us = (UpdateScan) s;
us.setVal(fldname, val);

}

Fig. 8.12 (continued)

8.4 Implementing Scans 223

public class ProjectScan implements Scan {
private Scan s;
private Collection<String> fieldlist;

public ProjectScan(Scan s, List<String> fieldlist) {
this.s = s;
this.fieldlist = fieldlist;

}

public void beforeFirst() {
s.beforeFirst();

}

public boolean next() {
return s.next();

}

public int getInt(String fldname) {
if (hasField(fldname))

return s.getInt(fldname);
else

throw new RuntimeException("field not found.");
}

public String getString(String fldname) {
if (hasField(fldname))

return s.getString(fldname);
else

throw new RuntimeException("field not found.");
}

public Constant getVal(String fldname) {
if (hasField(fldname))

return s.getVal(fldname);
else

throw new RuntimeException("field not found.");

}

public boolean hasField(String fldname) {
return fieldlist.contains(fldname);

}

public void close() {
s.close();

}
}

Fig. 8.13 The code for the SimpleDB class ProjectScan

224 8 Query Processing

public class ProductScan implements Scan {
private Scan s1, s2;

public ProductScan(Scan s1, Scan s2) {
this.s1 = s1;
this.s2 = s2;
s1.next();

}

public void beforeFirst() {
s1.beforeFirst();
s1.next();
s2.beforeFirst();

}

public boolean next() {
if (s2.next())

return true;
else {

s2.beforeFirst();
return s2.next() && s1.next();

}
}
public int getInt(String fldname) {

if (s1.hasField(fldname))
return s1.getInt(fldname);

else
return s2.getInt(fldname);

}

public String getString(String fldname) {
if (s1.hasField(fldname))

return s1.getString(fldname);
else

return s2.getString(fldname);
}

public Constant getVal(String fldname) {
if (s1.hasField(fldname))

return s1.getVal(fldname);
else

return s2.getVal(fldname);
}

public boolean hasField(String fldname) {
return s1.hasField(fldname) || s2.hasField(fldname);

}

public void close() {
s1.close();
s2.close();

}

Fig. 8.14 The code for the SimpleDB class ProductScan

8.4 Implementing Scans 225

and s2. It does so by starting at the first record of s1 and iterating through each
record of s2, then moving to the second record of s1 and iterating through s2, etc.
Conceptually, it is like having a nested loop with the outer loop iterating s1 and the
inner loop iterating s2.

The method next implements this “nested loops” idea as follows. Each call to
next moves to the next record of s2. If s2 has such a record, then it can return
true. If not, then the iteration of s2 is complete, so the method moves to the next
record of s1 and the first record of s2. If this is possible, then it returns true; if
there are no more records of s1, then the scan is complete and next returns false.

The getVal, getInt, and getStringmethods simply access the field of the
appropriate underlying scan. Each method checks to see if the specified field is in
scan s1. If so, then it accesses the field using s1; otherwise, it accesses the field
using s2.

8.5 Pipelined Query Processing

The implementations of these three relational algebra operators have two character-
istics in common:

• They generate their output records one at a time, as needed.
• They do not save their output records, nor do they save any intermediate

computation.

Such implementations are called pipelined. This section analyzes pipelined
implementations and their properties.

Consider a TableScan object. It holds a record page, which holds a buffer,
which holds a page containing the current record. The current record is just a location
in that page. The record doesn’t need to be removed from its page; if a client requests
the value of a field, then the record manager simply extracts that value from the page
and sends it back to the client. Each call to next positions the table scan at its next
record, which may cause it to hold a different record page.

Now consider a SelectScan object. Each call to its next method repeatedly
calls next on its underlying scan until the current record of the underlying scan
satisfies the predicate. But of course, there is no actual “current record”—if the
underlying scan is a table scan, then the current record is just a location in the page
held by the table scan. And if the underlying scan is another kind of scan (such as the
product scan in Figs. 8.4 and 8.9), then the values of the current record are
determined from the current records of the table scans that are in that node’s subtree.

Each time a pipelined scan processes another call to next, it starts its search from
where it left off. As a result, the scan requests only as many records as its needs from
its underlying scan to determine the next output record.

A pipelined scan does not keep track of the records it has selected. Consequently,
if the client asks for the records a second time, the scan will need to perform the
entire search all over again.

226 8 Query Processing

The term “pipelined” refers to the flow of the method calls down the query tree
and the flow of result values back up the tree. For example, consider a call to the
method getInt. Each node in the tree passes that call down to one of its child
nodes until a leaf node is reached. That leaf node (which is a table scan) extracts the
desired value from its page and returns the value back up the tree. Or consider a call
to the method next. Each node makes one or more calls to next (and possibly
beforeFirst, in the case of a product node) on its child nodes until it is satisfied
that its children contain the contents of the next record. It then returns success to its
parent node (or failure, if no such record exists).

Pipelined implementations can be exceptionally efficient. For example, consider
the query tree of Fig. 8.15, which retrieves the names of the students graduating in
2020 with major 10.

The project and select nodes in this tree incur no additional block accesses to the
STUDENT table beyond those needed for the table scan. To see why, first consider
the project node. Each call to next on that node will simply call next on its child
node and pass back the return value of that node. In other words, the project node
doesn’t change the number of block accesses performed by the rest of the query.

Now consider the select nodes. A call to next on the outer select node will call
next on the inner select node. The inner node will repeatedly call next on its child
until the current record satisfies the predicate “MajorId ¼ 10.” The inner select node
then returns true, and the outer select node examines the current record. If its grad
year is not 2020, then the outer node will call next on the inner node again and
await another current record. The only way for the outer select node to return true
is if that record satisfies both predicates. This process continues each time the outer
node calls next, with the underlying table scan continually moving to its next
record until both predicates are satisfied. When the table scan recognizes that there
are no more STUDENT records, its next method will return false, and the value
of false will propagate up the tree. In other words, STUDENT is scanned only
once, which is exactly the same as if the query had executed just a table scan. It
follows that the select nodes in this query are cost-free.

Although pipelined implementations are very efficient in these cases, there are
other cases when they are not so good. Once such case is when a select node is on the
right side of a product node, where it will get executed multiple times. Instead of
performing the selection over and over, it may be better to use an implementation
that materializes the output records and stores them in a temporary table. Such
implementations are the topic of Chap. 13.

Fig. 8.15 A query tree containing multiple select nodes

8.5 Pipelined Query Processing 227

https://doi.org/10.1007/978-3-030-33836-7_13

8.6 Predicates

A predicate specifies a condition that returns true or false for each row of a given
scan. If the condition returns true, the row is said to satisfy the predicate. An SQL
predicate is structured as follows:

• A predicate is a term or the boolean combination of terms.
• A term is a comparison between two expressions.
• An expression consists of operations on constants and field names.
• A constant is a value from a predetermined set of types, such as integers and

strings.

For example, consider the following predicate in standard SQL:

(GradYear>2021 or MOD(GradYear,4)=0) and MajorId=DId

This predicate consists of three terms (shown in bold). The first two terms
compare the field name GradYear (or a function of GradYear) against a con-
stant, and the third term compares two field names. Each term contains two expres-
sions. For example, the second term contains the expressions MOD(GradYear,4)
and 0.

SimpleDB greatly simplifies the allowable constants, expressions, terms, and
predicates. A SimpleDB constant can only be an integer or string, an expression
can only be a constant or a field name, a term can compare expressions only for
equality, and a predicate can create only conjuncts of terms. Exercises 8.7–8.9 ask
you to extend SimpleDB predicates to be more expressive.

Consider the following predicate:

SName = 'joe' and MajorId = DId

The code fragment of Fig. 8.16 shows how to create this predicate in SimpleDB.
Note how the predicate is created inside out, starting with the constant and expres-
sions, then the terms, and finally the predicates.

Figure 8.17 gives the code for the class Constant. Each Constant object
contains an Integer variable and a String variable. Only one of these variables
will be non-null, depending on which constructor was called. The methods equals,
compareTo, hasCode, and toString use whichever variable is non-null.

The code for the class Expression appears in Fig. 8.18. It also has two
constructors, one for a constant expression and one for a field name expression.
Each constructor assigns a value to its associated variable. The method
isFieldName provides a convenient way to determine if the expression denotes
a field name or not. The method evaluate returns the value of the expression with
respect to a scan’s current output record. If the expression is a constant, then the scan
is irrelevant, and the method simply returns the constant. If the expression is a field,

228 8 Query Processing

then the method returns the field’s value from the scan. The appliesTo method is
used by the query planner to determine the scope of the expression.

Terms in SimpleDB are implemented by the interface Term, whose code appears
in Fig. 8.19. Its constructor takes two arguments, which denote the left-side and
right-side expressions. The most important method is isSatisfied, which returns
true if both expressions evaluate to the same value in the given scan. The remaining
methods help the query planner determine the effect and scope of the term. For
example, the method reductionFactor determines the expected number of
records that will satisfy the predicate and will be discussed in more detail in
Chap. 10. The methods equatesWithConstant and equatesWithField
help the query planner decide when to use indexing and will be discussed in
Chap. 15.

The code for class Predicate appears in Fig. 8.20. A predicate is implemented
as a list of terms, and a predicate responds to its methods by calling the
corresponding methods on each of its terms. The class has two constructors. One
constructor has no arguments and creates a predicate having no terms. Such a
predicate is always satisfied and corresponds to the predicate true. The other
constructor creates a predicate having a single term. The method conjoinWith
adds the terms from the argument predicate to the specified predicate.

8.7 Chapter Summary

• A relational algebra query is composed of operators. Each operator performs one
specialized task. The composition of the operators in a query can be written as a
query tree.

• The chapter describes the three operators that are useful for understanding and
translating the SimpleDB version of SQL. They are:

– select, whose output table has the same columns as its input table but with
some rows removed

Expression lhs1 = new Expression("SName");
Constant c = new Constant("joe");
Expression rhs1 = new Expression(c);
Term t1 = new Term(lhs1, rhs1);

Expression lhs2 = new Expression("MajorId");
Expression rhs2 = new Expression("DId");
Term t2 = new Term(lhs2, rhs2);

Predicate pred1 = new Predicate(t1);
Predicate pred2 = new Predicate(t2);
pred1.conjoinWith(pred2);

Fig. 8.16 SimpleDB code to create a predicate

8.7 Chapter Summary 229

https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_15

– project, whose output table has the same rows as its input table but with some
columns removed

– product, whose output table consists of all possible combinations of records
from its two input tables

• A scan is an object that represents a relational algebra query tree. Each relational
operator has a corresponding class that implements the Scan interface; objects

public class Constant implements Comparable<Constant> {
private Integer ival = null;
private String sval = null;

public Constant(Integer ival) {
this.ival = ival;

}

public Constant(String sval) {
this.sval = sval;

}

public int asInt() {
return ival;

}

public String asString() {
return sval;

}

public boolean equals(Object obj) {
Constant c = (Constant) obj;
return (ival != null) ? ival.equals(c.ival)
 : sval.equals(c.sval);

}

public int compareTo(Constant c) {
return (ival!=null) ? ival.compareTo(c.ival)
 : sval.compareTo(c.sval);

}

public int hashCode() {
return (ival != null) ? ival.hashCode() : sval.hashCode();

}

public String toString() {
return (ival != null) ? ival.toString() : sval.toString();

}
}

Fig. 8.17 The class Constant

230 8 Query Processing

from those classes constitute the internal nodes of the query tree. There is also a
scan class for tables, whose objects constitute the leaves of the tree.

• The Scan methods are essentially the same as in TableScan. Clients iterate
through a scan, moving from one output record to the next and retrieving field
values. The scan manages the implementation of the query, by moving appropri-
ately through record files and comparing values.

• A scan is updatable if every record r in the scan has a corresponding record r0 in
some underlying database table. In this case, an update to virtual record r is
defined as an update to stored record r0.

• The methods of each scan class implement the intent of that operator. For
example:

public class Expression {
private Constant val = null;
private String fldname = null;

public Expression(Constant val) {
this.val = val;

}
public Expression(String fldname) {

this.fldname = fldname;
}

public boolean isFieldName() {
return fldname != null;

}

public Constant asConstant() {
return val;

}

public String asFieldName() {
return fldname;

}

public Constant evaluate(Scan s) {
return (val != null) ? val : s.getVal(fldname);

}

public boolean appliesTo(Schema sch) {
return (val != null) ? true : sch.hasField(fldname);

}

public String toString() {
return (val != null) ? val.toString() : fldname;

}
}

Fig. 8.18 The class Expression

8.7 Chapter Summary 231

private Expression lhs, rhs;

public class Term {

public Term(Expression lhs, Expression rhs) {
this.lhs = lhs;
this.rhs = rhs;

}

public boolean isSatisfied(Scan s) {
Constant lhsval = lhs.evaluate(s);
Constant rhsval = rhs.evaluate(s);
return rhsval.equals(lhsval);

}

public boolean appliesTo(Schema sch) {
return lhs.appliesTo(sch) && rhs.appliesTo(sch);

}

public int reductionFactor(Plan p) {
String lhsName, rhsName;
if (lhs.isFieldName() && rhs.isFieldName()) {

lhsName = lhs.asFieldName();
rhsName = rhs.asFieldName();
return Math.max(p.distinctValues(lhsName),

p.distinctValues(rhsName));
}
if (lhs.isFieldName()) {

lhsName = lhs.asFieldName();
return p.distinctValues(lhsName);

}
if (rhs.isFieldName()) {

rhsName = rhs.asFieldName();
return p.distinctValues(rhsName);

}
// otherwise, the term equates constants
if (lhs.asConstant().equals(rhs.asConstant()))

return 1;
else

return Integer.MAX_VALUE;
}

public Constant equatesWithConstant(String fldname) {
if (lhs.isFieldName() &&

lhs.asFieldName().equals(fldname) &&
!rhs.isFieldName())
return rhs.asConstant();

else if (rhs.isFieldName() &&
rhs.asFieldName().equals(fldname) &&
!lhs.isFieldName())

return lhs.asConstant();
else

return null;

Fig. 8.19 The code for the SimpleDB class Term

232 8 Query Processing

– A select scan checks each record in its underlying scan and returns only those
that satisfy its predicate.

– A product scan returns a record for every combination of records from its two
underlying scans.

– A table scan opens a record file for the specified table, which pins buffers and
obtains locks as necessary.

• These scan implementations are called pipelined implementations. A pipelined
implementation does not try to read ahead, cache, sort, or otherwise preprocess
its data.

• A pipelined implementation does not construct output records. Each leaf in the
query tree is a table scan, containing a buffer that holds the current record of that
table. The “current record” of the operation is determined from the records in each
buffer. Requests to get field values are directed down the tree to the appropriate
table scan; results are returned from table scans back up to the root.

• Scans that use pipelined implementations operate on a need-to-know basis. Each
scan will request only as many records from its children as it needs to determine
its next record.

8.8 Suggested Reading

Relational algebra is defined in nearly every introductory database text, although
each text tends to have its own syntax. A detailed presentation of relational algebra
and its expressive power can be found in Atzeni and DeAntonellis (1992). That book
also introduces relational calculus, which is a query language based on predicate
logic. The interesting thing about relational calculus is that it can be extended to

else if (rhs.isFieldName() &&
rhs.asFieldName().equals(fldname) &&
lhs.isFieldName())

return lhs.asFieldName();
else

return null;
}

public String toString() {
return lhs.toString() + "=" + rhs.toString();

}
}

public String equatesWithField(String fldname) {
if (lhs.isFieldName() &&

lhs.asFieldName().equals(fldname) &&
rhs.isFieldName())
return rhs.asFieldName();

Fig. 8.19 (continued)

8.8 Suggested Reading 233

public class Predicate {
private List<Term> terms = new ArrayList<Term>();

public Predicate() {}

public Predicate(Term t) {
terms.add(t);

}

public void conjoinWith(Predicate pred) {
terms.addAll(pred.terms);

}

public boolean isSatisfied(Scan s) {
for (Term t : terms)

if (!t.isSatisfied(s))
return false;

return true;
}

public int reductionFactor(Plan p) {
int factor = 1;
for (Term t : terms)

factor *= t.reductionFactor(p);
return factor;

}

public Predicate selectSubPred(Schema sch) {
Predicate result = new Predicate();
for (Term t : terms)

if (t.appliesTo(sch))
result.terms.add(t);

if (result.terms.size() == 0)
return null;

else
return result;

}

public Predicate joinSubPred(Schema sch1, Schema sch2) {
Predicate result = new Predicate();
Schema newsch = new Schema();
newsch.addAll(sch1);
newsch.addAll(sch2);
for (Term t : terms)

if (!t.appliesTo(sch1) &&
!t.appliesTo(sch2) &&
t.appliesTo(newsch))

result.terms.add(t);
if (result.terms.size() == 0)

return null;

Fig. 8.20 The code for the SimpleDB class Predicate

234 8 Query Processing

allow recursive queries (i.e., queries in which the output table is also mentioned in
the query definition). Recursive relational calculus is called datalog and is related to
the Prolog programming language. A discussion of datalog and its expressive power
also appears in Atzeni and DeAntonellis (1992).

The topic of pipelined query processing is a small piece of the query-processing
puzzle, which also includes the topics of later chapters. The article Graefe (1993)
contains comprehensive information about query-processing techniques; Section 1
has a large discussion of scans and pipelined processing. The article Chaudhuri
(1998) discusses query trees, in addition to statistical gathering and optimization.

Atzeni, P., & DeAntonellis, V. (1992). Relational database theory. Upper Saddle
River, NJ: Prentice-Hall.

}
return null;

}

public String equatesWithField(String fldname) {
for (Term t : terms) {

String s = t.equatesWithField(fldname);
if (s != null)

return s;
}

return null;
}

public String toString() {
Iterator<Term> iter = terms.iterator();
if (!iter.hasNext())

return "";
String result = iter.next().toString();
while (iter.hasNext())

result += " and " + iter.next().toString();
return result;

}
}

public Constant equatesWithConstant(String fldname) {
for (Term t : terms) {

Constant c = t.equatesWithConstant(fldname);
if (c != null)

return c;

else
return result;

}

Fig. 8.20 (continued)

8.8 Suggested Reading 235

Chaudhuri, S. (1998). An overview of query optimization in relational systems. In
Proceedings of the ACM Principles of Database Systems Conference (pp. 34–43).

Graefe, G. (1993). Query evaluation techniques for large databases. ACM Comput-
ing Surveys, 25(2), 73–170.

8.9 Exercises

Conceptual Exercises

8.1. What is the output of a product operation if either one of its inputs is empty?
8.2. Implement the following query as a scan, using Fig. 8.9 as a template.

select sname, dname, grade
from STUDENT, DEPT, ENROLL, SECTION
where SId=StudentId and SectId=SectionId and DId=MajorId
and YearOffered=2020

8.3. Consider the code of Fig. 8.9.

(a) What locks will the transaction need to obtain in order to execute this
code?

(b) For each of these locks, give a scenario that would cause the code to wait
for that lock.

8.4. Consider the code for ProductScan.

(a) What problem can occur when the first underlying scan has no records?
How should the code be fixed?

(b) Explain why no problems occur when the second underlying scan has no
records.

8.5. Suppose you want to find all pairs of students by taking the product of
STUDENT with itself.

(a) One way is to create a table scan on STUDENT and use it twice in the
product, as in the following code fragment:

Layout layout = mdm.getLayout("student", tx);
Scan s1 = new TableScan(tx, "student", layout);
Scan s2 = new ProductScan(s1, s1);

Explain why this will produce incorrect (and strange) behavior when the
scan is executed.

(b) A better way is to create two different table scans on STUDENT and
create a product scan on them. This returns all combinations of STUDENT
records but has a problem. What is it?

236 8 Query Processing

Programming Exercises

8.6. The getVal, getInt, and getString methods in ProjectScan check
that their argument field names are valid. None of the other scan classes do
this. For each of the other scan classes:

(a) Say what problem will occur (and in what method) if those methods are
called with an invalid field.

(b) Fix the SimpleDB code so that an appropriate exception is thrown.

8.7. Currently, SimpleDB supports only integer and string constants.

(a) Revise SimpleDB to have other kinds of constant, such as short integers,
byte arrays, and dates.

(b) Exercise 3.17 asked you to modify the class Page to have get/set methods
for types such as short integers, dates, etc. If you have done this exercise,
add similar get/set methods to Scan and UpdateScan (and their
various implementation classes), as well as to the record manager, the
transaction manager, and the buffer manager. Then modify the methods
getVal and setVal appropriately.

8.8. Revise expressions to handle arithmetic operators on integers.
8.9. Revise the class Term to handle the comparison operators < and >.

8.10. Revise the class Predicate to handle arbitrary combinations of the boolean
connectives and, or and not.

8.11. In Exercise 6.13, you extended the SimpleDB record manager to handle
database null values. Now extend the query processor to handle nulls. In
particular:

• Modify the class Constant appropriately.
• Modify the methods getVal and setVal in TableScan so that they

recognize null values and handle them appropriately.
• Determine which of the various Expression, Term, and Predicate

classes need to be modified to handle null constants.

8.12. Revise the class ProjectScan to be an update scan.
8.13. Exercise 6.10 asked you to write methods previous and afterLast for

class TableScan.

(a) Modify SimpleDB so that all scans have these methods.
(b) Write a program to test your code. Note that you will not be able to test

your changes on the SimpleDB engine unless you also extend its imple-
mentation of JDBC. See Exercise 11.5.

8.14. The rename operator takes three arguments: an input table, the name of a field
from the table, and a new field name. The output table is identical to the input
table, except that the specified field has been renamed. For example, the
following query renames the field SName to StudentName:

8.9 Exercises 237

rename(STUDENT, SName, StudentName)

Write a class RenameScan to implement this operator. This class will be
needed in Exercise 10.13.

8.15. The extend operator takes three arguments: an input table, an expression, and a
new field name. The output table is identical to the input table, except that it
also contains a new field whose value is determined by the expression. For
example, the following query extends STUDENT with a new field (called
JuniorYear) that calculates the year when the student was a junior:

extend(STUDENT, GradYear-1, JuniorYear)

Write a class ExtendScan to implement this operator. This class will be
needed in Exercise 10.14.

8.16. The union relational operator takes two arguments, both of which are tables.
Its output table contains those records that appear somewhere in the input
tables. A union query requires that both underlying tables have the same
schema; the output table will also have that schema. Write a class
UnionScan to implement this operator. This class will be needed in Exercise
10.15.

8.17. The semijoin operator takes three arguments: two tables and a predicate. It
returns the records in the first table that have a “matching” record in the second
table. For example, the following query returns those departments that have at
least one student major:

semijoin(DEPT, STUDENT, Did=MajorId)

Analogously, the antijoin operator returns the records in the first table that
have no matching records. For example, the following query returns depart-
ments having no student majors:

antijoin(DEPT, STUDENT, Did=MajorId)

Write the classes SemijoinScan and AntijoinScan to implement these
operators. These classes will be needed in Exercise 10.16.

238 8 Query Processing

Chapter 9
Parsing

A JDBC client submits an SQL statement to the database engine as a string. The
engine must extract from this string the information needed to create a query tree.
This extraction process has two stages: a syntax-based stage, known as parsing, and
a semantics-based stage, known as planning. This chapter covers parsing. Planning
is covered in Chap. 10.

9.1 Syntax Versus Semantics

The syntax of a language is a set of rules that describe the strings that could possibly
be meaningful statements. For example, consider the following string:

select from tables T1 and T2 where b - 3

There are several reasons why this string is not syntactically legal:

• The select clause must contain something.
• The identifier tables is not a keyword and will be treated as a table name.
• Table names need to be separated by commas, not the keyword and.
• The string “b – 3” does not denote a predicate.

Each one of these problems causes this string to be completely meaningless as an
SQL statement. There is no way that the engine could ever figure out how to execute
it, regardless of what the identifiers tables, T1, T2, and b happen to denote.

The semantics of a language specifies the actual meaning of a syntactically
correct string. Consider the following syntactically legal string:

select a from x, z where b = 3

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_9

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_9

You can infer that this statement is a query that requests one field (named a) from
two tables (named x and z) and has predicate b ¼ 3. Thus, the statement is possibly
meaningful.

Whether the statement is actually meaningful depends on semantic information
about x, z, a, and b. In particular, x and z must be names of tables such that these
tables contain a field named a and a numeric field named b. This semantic infor-
mation can be determined from the database’s metadata. The parser knows nothing
about metadata and thus cannot evaluate the meaningfulness of an SQL statement.
Instead, the responsibility for examining the metadata belongs to the planner and will
be discussed in Chap. 10.

9.2 Lexical Analysis

The first task of the parser is to split the input string into “chunks” called tokens. The
portion of the parser that performs this task is called the lexical analyzer.

Each token has a type and a value. The SimpleDB lexical analyzer supports five
token types:

• Single-character delimiters, such as the comma
• Integer constants, such as 123
• String constants, such as 'joe'
• Keywords, such as select, from, and where
• Identifiers, such as STUDENT, x, and glop34a

Whitespace characters (spaces, tabs, and newlines) are generally not part of
tokens; the only exception is inside of string constants. The purpose of whitespace
is to enhance readability and separate tokens from each other.

Consider again the previous SQL statement:

select a from x, z where b = 3

The lexical analyzer creates ten tokens for it, shown in Fig. 9.1.
Conceptually, the behavior of a lexical analyzer is straightforward—it reads the

input string one character at a time, stopping when it determines that the next token
has been read. The complexity of a lexical analyzer is in direct proportion to the set
of token types: the more token types to look for, the more complex the
implementation.

Java supplies two different built-in tokenizers (their term for lexical analyzers):
one in class StringTokenizer and one in class StreamTokenizer. The
string tokenizer is simpler to use, but it only supports two kinds of token: delimiters
and words (which are the substrings between delimiters). This is not appropriate for
SQL, in particular because the string tokenizer does not understand numbers or
quoted strings. On the other hand, the stream tokenizer has an extensive set of token
types, including support for all five types used by SimpleDB.

240 9 Parsing

https://doi.org/10.1007/978-3-030-33836-7_10

Figure 9.2 gives the code for the class TokenizerTest, which illustrates the
use of StreamTokenizer. The code tokenizes a given line of input and prints the
type and value of each token.

The call tok.ordinaryChar('.') tells the tokenizer to interpret a period as
a delimiter. (Even though periods are not used in SimpleDB, it is important to
identify them as delimiters to keep them from being accepted as part of an identifier.)
Conversely, the call tok.wordChars('_', '_') tells the tokenizer to interpret
underscores as part of identifiers. The call tok.lowerCaseMode(true) tells
the tokenizer to convert all string tokens (but not quoted strings) to lower case, which
lets SQL be case insensitive for keywords and identifiers.

The method nextToken positions the tokenizer at the next token in the stream;
a return value of TT_EOF indicates that there are no more tokens. The tokenizer’s
public variable ttype holds the type of the current token. The value TT_NUMBER
indicates a numeric constant, TT_WORD denotes an identifier or keyword, and the
integer representation of a single quote denotes a string constant. The type of a
single-character delimiter token is the integer representation of that character.

9.3 The SimpleDB Lexical Analyzer

The SteamTokenizer class is a general-purpose lexical analyzer, but it can be
awkward to use. The SimpleDB class Lexer provides an easier way for the parser to
access the token stream. There are two kinds of methods that the parser can call:
methods that ask about the current token and methods that tell the lexical analyzer to
“eat” the current token, returning its value and moving to the next token. Each token
type has a corresponding pair of methods. The API for these ten methods appear in
Fig. 9.3.

The first five methods return information about the current token. The method
matchDelim returns true if the current token is a delimiter having the specified

TYPE VALUE
keyword select
identifier a
keyword from
identifier x
delimiter ,
identifier z
keyword where
identifier b
delimiter =
intconstant 3

Fig. 9.1 Tokens produced by the lexical analyzer

9.3 The SimpleDB Lexical Analyzer 241

value. Similarly, matchKeyword returns true if the current token is a keyword
having the specified value. The other three matchXXX methods return true if the
current token is of the proper type.

The last five methods “eat” the current token. Each method calls its corresponding
matchXXX method. If that method returns false, then an exception is thrown;
otherwise, the next token becomes current. In addition, the methods
eatIntConstant, eatStringConstant, and eatId return the value of
the current token.

public class TokenizerTest {
private static Collection<String> keywords =

Arrays.asList("select", "from", "where", "and", "insert",
 "into", "values", "delete", "update", "set",
 "create", "table","int", "varchar", "view", "as",
 "index", "on");

public static void main(String[] args) throws IOException {
String s = getStringFromUser();
StreamTokenizer tok = new StreamTokenizer(new StringReader(s));
tok.ordinaryChar('.');
tok.wordChars('_', '_');
tok.lowerCaseMode(true); // convert ids and keywords to
 lower case
while (tok.nextToken() != TT_EOF)

printCurrentToken(tok);
}

private static String getStringFromUser() {
System.out.println("Enter tokens:");
Scanner sc = new Scanner(System.in);
String s = sc.nextLine();
sc.close();
return s;

}

private static void printCurrentToken(StreamTokenizer tok)
 throws IOException {

if (tok.ttype == TT_NUMBER)
System.out.println("IntConstant " + (int)tok.nval);

else if (tok.ttype == TT_WORD) {
String word = tok.sval;
if (keywords.contains(word))

System.out.println("Keyword " + word);
else

System.out.println("Id " + word);
}
else if (tok.ttype == '\'')

System.out.println("StringConstant " + tok.sval);
else

System.out.println("Delimiter " + (char)tok.ttype);
}

Fig. 9.2 The class TokenizerTest

242 9 Parsing

The class LexerTest in Fig. 9.4 illustrates the use of these methods. The code
reads lines of input. It expects each line to be of the form “A ¼ c” or “c¼ A,” where
A is an identifier and c is an int constant. An input line in any other form generates an
exception.

The code for Lexer appears in Fig. 9.5. Its constructor sets up the stream
tokenizer. The methods eatIntConstant, eatStringConstant, and
eatId return the value of the current token. The method initKeywords con-
structs a collection of the keywords used in SimpleDB’s version of SQL.

public class LexerTest {
public static void main(String[] args) {

String x = "";
int y = 0;
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {

String s = sc.nextLine();
Lexer lex = new Lexer(s);
if (lex.matchId()) {

x = lex.eatId();
lex.eatDelim('=');
y = lex.eatIntConstant();

}
else {

y = lex.eatIntConstant();
lex.eatDelim('=');
x = lex.eatId();

}
System.out.println(x + " equals " + y);

}
sc.close();

}
}

Fig. 9.4 The class LexerTest

public boolean matchDelim(char d);
public boolean matchIntConstant();
public boolean matchStringConstant();
public boolean matchKeyword(String w);
public boolean matchId();

public void eatDelim(char d);
public int eatIntConstant();
public String eatStringConstant();
public void eatKeyword(String w);
public String eatId();

Lexer

Fig. 9.3 The API for the SimpleDB lexical analyzer

9.3 The SimpleDB Lexical Analyzer 243

public class Lexer {
private Collection<String> keywords;
private StreamTokenizer tok;

public Lexer(String s) {
initKeywords();
tok = new StreamTokenizer(new StringReader(s));
tok.ordinaryChar('.');
tok.wordChars('_', '_');
tok.lowerCaseMode(true);
nextToken();

}

//Methods to check the status of the current token

public boolean matchDelim(char d) {
return d == (char)tok.ttype;

}

public boolean matchIntConstant() {
return tok.ttype == StreamTokenizer.TT_NUMBER;

}

public boolean matchStringConstant() {
return '\'' == (char)tok.ttype;

}

public boolean matchKeyword(String w) {
return tok.ttype == StreamTokenizer.TT_WORD &&
 tok.sval.equals(w);

}

public boolean matchId() {
return tok.ttype == StreamTokenizer.TT_WORD &&

!keywords.contains(tok.sval);
}

//Methods to "eat" the current token

public void eatDelim(char d) {
if (!matchDelim(d))

throw new BadSyntaxException();
nextToken();

}

public int eatIntConstant() {
if (!matchIntConstant())

throw new BadSyntaxException();
int i = (int) tok.nval;
nextToken();
return i;

}

Fig. 9.5 The code for the SimpleDB class Lexer

244 9 Parsing

The StreamTokenizer method nextToken throws an IOException.
The Lexer method nextToken transforms this exception to a
BadSyntaxException, which is passed back to the client (and turned into an
SQLException, as will be described in Chap. 11).

public String eatStringConstant() {
if (!matchStringConstant())

throw new BadSyntaxException();
String s = tok.sval;
nextToken();
return s;

}

public void eatKeyword(String w) {
if (!matchKeyword(w))

throw new BadSyntaxException();
nextToken();

}

public String eatId() {
if (!matchId())

throw new BadSyntaxException();
String s = tok.sval;
nextToken();
return s;

}

private void nextToken() {
try {

tok.nextToken();
}
catch(IOException e) {

throw new BadSyntaxException();
}

}

private void initKeywords() {
keywords = Arrays.asList("select", "from", "where", "and",

"insert","into", "values", "delete", "update",
"set", "create", "table", "varchar",
"int", "view", "as", "index", "on");

}
}

Fig. 9.5 (continued)

9.3 The SimpleDB Lexical Analyzer 245

https://doi.org/10.1007/978-3-030-33836-7_11

9.4 Grammars

A grammar is a set of rules that describe how tokens can be legally combined. The
following is an example of a grammar rule:

<Field> := IdTok

The left side of a grammar rule specifies a syntactic category. A syntactic
category denotes a particular concept in the language. In the above rule, <Field>
denotes the concept of a field name. The right side of a grammar rule is a pattern that
specifies the set of strings that belong to the syntactic category. In the above rule, the
pattern is simply IdTok, which matches any identifier token. Thus, <Field>
contains the set of strings corresponding to identifiers.

Each syntactic category can be thought of as its own mini-language. For example,
“SName” and “Glop” are members of <Field>. Remember that the identifiers need
not be meaningful—they just need to be identifiers. So “Glop” is a perfectly good
member of <Field>, even in the SimpleDB university database. However, “select”
would not be a member of <Field>, because it is a keyword token, not an identifier
token.

The pattern on the right side of a grammar rule can contain references to both
tokens and syntactic categories. Tokens that have well-known values (i.e., keywords
and delimiters) appear explicitly. Other tokens (identifiers, integer constants, and
string constants) are written as IdTok, IntTok, and StrTok respectively. Three
meta-characters (‘[’, ‘]’, and ‘|’) are used as punctuation; these characters are not
delimiters in the language, so they can be used to help express patterns. To illustrate,
consider the following four additional grammar rules:

<Constant> := StrTok | IntTok
<Expression> := <Field> | <Constant>
<Term> := <Expression> = <Expression>
<Predicate> := <Term> [AND <Predicate>]

The first rule defines the category <Constant>, which stands for any constant—
string or integer. The meta-character ‘|’means “or.” Thus, the category <Constant>
matches either string tokens or integer tokens, and its contents (as a language) will
contain all string constants as well as all integer constants.

The second rule defines the category<Expression>, which denotes operator-free
expressions. The rule specifies that an expression is either a field or a constant.

The third rule defines the category<Term>, which denotes simple equality terms
between expressions (as in the SimpleDB class Term). For example, the following
strings belong to <Term>:

DeptId = DId
'math' = DName

246 9 Parsing

SName = 123
65 = 'abc'

Recall that the parser does not check for type consistency; thus the last two strings
are syntactically correct even though they are semantically incorrect.

The fourth rule defines the category <Predicate>, which stands for a boolean
combination of terms, similar to the SimpleDB class Predicate. The meta-
characters ‘[’ and ‘]’ denote something optional. Thus, the right side of the rule
matches any sequence of tokens that is either a <Term>, or a <Term> followed by
an AND keyword token followed (recursively) by another <Predicate>. For exam-
ple, the following strings belong to <Predicate>:

DName = 'math'
Id = 3 AND DName = 'math'
MajorId = DId AND Id = 3 AND DName = 'math'

The first string is of the form <Term>. The second two strings are of the form
<Term> AND <Predicate>.

If a string belongs to a particular syntactic category, you can draw a parse tree to
depict why. A parse tree has syntactic categories as its internal nodes and tokens as
its leaf nodes. The children of a category node correspond to the application of a
grammar rule. For example, Fig. 9.6 contains the parse tree for the following string:

DName = 'math' AND GradYear = SName

In this figure, the tree’s leaf nodes appear along the bottom of the tree, to make it
easier to read the input string. Starting from the root node, this tree asserts that the
entire string is a <Predicate> because “DName¼'math'” is a <Term> and
“GradYear¼SName” is a <Predicate>. You can expand each of the subtrees
similarly. For example, “DName¼'math'” is a <Term> because both “DName”
and “'math'” belong to <Expression>.

Fig. 9.6 A parse tree for the string DName ¼ 'math' AND GradYear ¼ SName

9.4 Grammars 247

Figure 9.7 lists the entire grammar for the subset of SQL supported by SimpleDB.
The grammar rules are divided into nine sections: one section for common constructs
such as predicates, expressions, and fields; one section for queries; and seven
sections for the various kinds of update statement.

Lists of items appear frequently in SQL. In a query, for example, the select
clause contains a comma-separated list of fields, the from clause contains a comma-
separated list of identifiers, and the where clause contains an AND-separated list of
terms. Each list is specified in the grammar using the same recursive technique that
you saw for<Predicate>. Also note how the “option-bracket” notation is used in the
rules for <Query>, <Delete>, and <Modify>, to allow them to have optional
where clauses.

I mentioned that the parser cannot enforce type compatibility because it cannot
know the types of the identifiers it sees. The parser also cannot enforce compatible
list sizes. For example, an SQL insert statement must mention the same number
of values as field names, but the grammar rule for <Insert> requires only that the

<Field> := IdTok
<Constant> := StrTok | IntTok
<Expression> := <Field> | <Constant>
<Term> := <Expression> = <Expression>
<Predicate> := <Term> [AND <Predicate>]

<Query> := SELECT <SelectList> FROM <TableList> [WHERE <Predicate>]
<SelectList> := <Field> [, <SelectList>]
<TableList> := IdTok [, <TableList>]

<UpdateCmd> := <Insert> | <Delete> | <Modify> | <Create>
<Create> := <CreateTable> | <CreateView> | <CreateIndex>

<Insert> := INSERT INTO IdTok (<FieldList>) VALUES (<ConstList>)
<FieldList> := <Field> [, <FieldList>]
<ConstList> := <Constant> [, <ConstList>]

<Delete> := DELETE FROM IdTok [WHERE <Predicate>]

<Modify> := UPDATE IdTok SET <Field> = <Expression> [WHERE <Predicate>]

<CreateTable> := CREATE TABLE IdTok (<FieldDefs>)
<FieldDefs> := <FieldDef> [, <FieldDefs>]
<FieldDef> := IdTok <TypeDef>
<TypeDef> := INT | VARCHAR (IntTok)

<CreateView> := CREATE VIEW IdTok AS <Query>

<CreateIndex> := CREATE INDEX IdTok ON IdTok (<Field>)

Fig. 9.7 The grammar for the SimpleDB subset of SQL

248 9 Parsing

string have a <FieldList> and a <ConstList>. The planner must be responsible for
verifying that these lists are the same size (and are type compatible).1

9.5 Recursive-Descent Parsers

A parse tree can be thought of as a proof that a given string is syntactically legal. But
how do you determine the parse tree? How can a database engine determine if a
string is syntactically legal?

Programming-language researchers have developed numerous parsing algo-
rithms for this purpose. The complexity of a parsing algorithm is usually in propor-
tion to the complexity of the grammars it can support. Fortunately for us, our SQL
grammar is about as simple as you can get, and so it can use the simplest possible
parsing algorithm, known as recursive descent.

In a basic recursive-descent parser, each syntactic category is implemented by a
void method. A call to this method will “eat” those tokens that comprise the parse
tree for that category and return. The method throws an exception when the tokens
do not correspond to a parse tree for that category.

Consider the first five grammar rules from Fig. 9.7, which form the subset of SQL
corresponding to predicates. A Java class corresponding to this grammar appears in
Fig. 9.8.

Consider the method field, which makes one call to the lexical analyzer (and
ignores any return values). If the next token is an identifier, then the call returns
successfully and that token will be eaten. If not, then the method throws the
exception back to the caller. Similarly, consider the method term. Its first call to
expression eats the tokens corresponding to a single SQL expression, its call to
eatDelim eats the equals-sign token, and its second call to expression eats the
tokens corresponding to another SQL expression. If any of these method calls did
not find the tokens it expected, it would throw an exception, which the termmethod
would pass on to its caller.

Grammar rules that contain alternatives are implemented using if statements.
The condition of the if statement looks at the current token in order to decide what
to do. For a trivial example, consider the method constant. If the current token is
a string constant then the method eats it; otherwise, the method tries to eat an integer
constant. If the current token is neither a string constant nor an integer constant, then
the call to lex.eatIntConstant will generate the exception. For a less trivial
example, consider the method expression. Here the method knows that if the

1This situation is certainly not desirable; in fact, it would be really nice to have a grammar in which
equal list sizes are enforced. However, one can use automata theory to prove that no such grammar
is possible.

9.5 Recursive-Descent Parsers 249

current token is an identifier then it must look for a field; otherwise it must look for a
constant.2

The method predicate illustrates how a recursive rule is implemented. It first
calls the method term and then checks to see if the current token is the keyword
AND. If so, it eats the AND-token and calls itself recursively. If the current token is not
an AND, then it knows it has seen the last term in the list and returns. Consequently, a
call to predicate will eat as many tokens as it can from the token stream—if it
sees an AND-token it keeps going, even if it has already seen a valid predicate.

The interesting thing about recursive-descent parsing is that the sequence of
method calls determines the parse tree for the input string. Exercise 9.4 asks you
to modify the code of each method to print its name, appropriately indented; the
result will resemble a sideways parse tree.

9.6 Adding Actions to the Parser

The basic recursive-descent parsing algorithm returns normally when the input string
is syntactically valid. Although this behavior is somewhat interesting, it is not
especially useful. To that end, the basic parser needs to be modified to return

private Lexer lex;

public PredParser(String s) {
lex = new Lexer(s);

}

public void field() {
lex.eatId();

}

public void constant() {
if (lex.matchStringConstant())

lex.eatStringConstant();
else

lex.eatIntConstant();
}

public void expression() {
if (lex.matchId())

field();
else

constant();
}

public void term() {
expression();
lex.eatDelim('=');
expression();

}

public void predicate() {
term();
if (lex.matchKeyword("and")) {

lex.keyword("and");
predicate();

}
}

}

public class PredParser {

Fig. 9.8 The code for a simplified recursive-descent parser for predicates

2This example also demonstrates the limitations of recursive-descent parsing. If a grammar rule has
two alternatives that both require the same first token, then there would be no way to know which
alternative to take and recursive descent will not work. In fact, you may have noticed that the
grammar of Fig. 9.7 has this very problem. Exercise 9.3 addresses the issue.

250 9 Parsing

information that the planner needs. This modification is called adding actions to the
parser.

In general, an SQL parser should extract information such as table names, field
names, predicates, and constants from the SQL statement. What gets extracted
depends on the kind of SQL statement it is.

• For a query: a list of field names (from the select clause), a collection of table
names (from the from clause), and a predicate (from the where clause)

• For an insertion: a table name, a list of field names, and a list of values
• For a deletion: a table name and a predicate
• For a modification: a table name, the name of the field to be modified, an

expression denoting the new field value, and a predicate
• For a table creation: a table name and its schema
• For a view creation: a table name and its definition
• For index creation: an index name, a table name, and the name of the indexed

field

This information can be extracted from the token stream via the return values
of the Lexer methods. Thus, the strategy for modifying each parser method
is straightforward: Get the return values from calls to eatId,
eatStringConstant, and eatIntConstant, assemble them into an appro-
priate object, and return the object to the method’s caller.

Figure 9.9 gives the code for the class Parser, whose methods implement the
grammar of Fig. 9.7. The following subsections examine this code in detail.

9.6.1 Parsing Predicates and Expressions

The heart of the parser deals with the five grammar rules that define predicates and
expressions, because they are used to parse several different kinds of SQL statement.
Those methods in Parser are the same as in PredParser (in Fig. 9.8), except
that they now contain actions and return values. In particular, the method field
grabs the fieldname from the current token and returns it. The methods constant,
expression, term, and predicate are similar, returning a Constant object,
an Expression object, a Term object, and a Predicate object.

9.6.2 Parsing Queries

The method query implements the syntactic category <Query>. As the parser
parses a query, it acquires the three items needed by the planner—the field names,
the table names, and the predicate—and saves them in a QueryData object. The
class QueryData makes these values available via its methods fields, tables,
and pred; see Fig. 9.10. The class also has a method toString, which re-creates
the query string. This method will be needed when processing view definitions.

9.6 Adding Actions to the Parser 251

// Methods for parsing predicates and their components

public String field() {
return lex.eatId();

}

public Constant constant() {
if (lex.matchStringConstant())

return new Constant(lex.eatStringConstant());
else

return new Constant(lex.eatIntConstant());
}

public Expression expression() {
if (lex.matchId())

return new Expression(field());
else

return new Expression(constant());
}

public Term term() {
Expression lhs = expression();
lex.eatDelim('=');
Expression rhs = expression();
return new Term(lhs, rhs);

}

public Predicate predicate() {
Predicate pred = new Predicate(term());
if (lex.matchKeyword("and")) {

lex.eatKeyword("and");
pred.conjoinWith(predicate());

}
return pred;

}

// Methods for parsing queries

public QueryData query() {
lex.eatKeyword("select");
List<String> fields = selectList();
lex.eatKeyword("from");
Collection<String> tables = tableList();
Predicate pred = new Predicate();
if (lex.matchKeyword("where")) {

lex.eatKeyword("where");
pred = predicate();

}
return new QueryData(fields, tables, pred);

public class Parser {
private Lexer lex;

public Parser(String s) {
lex = new Lexer(s);

}

Fig. 9.9 The code for the SimpleDB class Parser

252 9 Parsing

}
private List<String> selectList() {

List<String> L = new ArrayList<String>();
L.add(field());
if (lex.matchDelim(',')) {

lex.eatDelim(',');
L.addAll(selectList());

}
return L;

}
private Collection<String> tableList() {

Collection<String> L = new ArrayList<String>();
L.add(lex.eatId());
if (lex.matchDelim(',')) {

lex.eatDelim(',');
L.addAll(tableList());

}
return L;

}

// Methods for parsing the various update commands

public Object updateCmd() {
if (lex.matchKeyword("insert"))

return insert();
else if (lex.matchKeyword("delete"))

return delete();
else if (lex.matchKeyword("update"))

return modify();
else

return create();
}
private Object create() {

lex.eatKeyword("create");
if (lex.matchKeyword("table"))

return createTable();
else if (lex.matchKeyword("view"))

return createView();
else

return createIndex();
}

// Method for parsing delete commands

public DeleteData delete() {
lex.eatKeyword("delete");

lex.eatKeyword("from");
String tblname = lex.eatId();
Predicate pred = new Predicate();
if (lex.matchKeyword("where")) {

lex.eatKeyword("where");
pred = predicate();

}
return new DeleteData(tblname, pred);

Fig. 9.9 (continued)

9.6 Adding Actions to the Parser 253

// Methods for parsing insert commands

public InsertData insert() {
lex.eatKeyword("insert");
lex.eatKeyword("into");
String tblname = lex.eatId();
lex.eatDelim('(');
List<String> flds = fieldList();
lex.eatDelim(')');
lex.eatKeyword("values");
lex.eatDelim('(');
List<Constant> vals = constList();
lex.eatDelim(')');
return new InsertData(tblname, flds, vals);

}
private List<String> fieldList() {

List<String> L = new ArrayList<String>();
L.add(field());
if (lex.matchDelim(',')) {

lex.eatDelim(',');
L.addAll(fieldList());

}
return L;

}
private List<Constant> constList() {

List<Constant> L = new ArrayList<Constant>();
L.add(constant());
if (lex.matchDelim(',')) {

lex.eatDelim(',');
L.addAll(constList());

}
return L;

}

// Method for parsing modify commands
public ModifyData modify() {

lex.eatKeyword("update");
String tblname = lex.eatId();
lex.eatKeyword("set");
String fldname = field();
lex.eatDelim('=');
Expression newval = expression();
Predicate pred = new Predicate();
if (lex.matchKeyword("where")) {

lex.eatKeyword("where");
pred = predicate();

}
return new ModifyData(tblname, fldname, newval, pred);

}
// Method for parsing create table commands

public CreateTableData createTable() {
lex.eatKeyword("table");
String tblname = lex.eatId();
lex.eatDelim('(');
Schema sch = fieldDefs();

Fig. 9.9 (continued)

254 9 Parsing

lex.eatDelim(')');
return new CreateTableData(tblname, sch);

}
private Schema fieldDefs() {

Schema schema = fieldDef();
if (lex.matchDelim(',')) {

lex.eatDelim(',');
Schema schema2 = fieldDefs();
schema.addAll(schema2);

}
return schema;

}
private Schema fieldDef() {

String fldname = field();
return fieldType(fldname);

}
private Schema fieldType(String fldname) {

Schema schema = new Schema();
if (lex.matchKeyword("int")) {

lex.eatKeyword("int");
schema.addIntField(fldname);

}
else {

lex.eatKeyword("varchar");
lex.eatDelim('(');
int strLen = lex.eatIntConstant();
lex.eatDelim(')');
schema.addStringField(fldname, strLen);

}
return schema;

}
// Method for parsing create view commands

public CreateViewData createView() {
lex.eatKeyword("view");
String viewname = lex.eatId();
lex.eatKeyword("as");
QueryData qd = query();
return new CreateViewData(viewname, qd);

}
// Method for parsing create index commands

public CreateIndexData createIndex() {
lex.eatKeyword("index");
String idxname = lex.eatId();
lex.eatKeyword("on");
String tblname = lex.eatId();
lex.eatDelim('(');
String fldname = field();
lex.eatDelim(')');
return new CreateIndexData(idxname, tblname, fldname);

Fig. 9.9 (continued)

9.6 Adding Actions to the Parser 255

9.6.3 Parsing Updates

The parser method updateCmd implements the syntactic category<UpdateCmd>,
which denotes the union of the various SQL update statements. This method will be
called during the execution of the JDBC method executeUpdate, to determine
the kind of update the command denotes. The method uses the initial tokens of the
string to identify the command, and then dispatches to the particular parser method
for that command. Each update method has a different return type, because each one
extracts different information from its command string; thus, the method
updateCmd returns a value of type Object.

public class QueryData {
private List<String> fields;
private Collection<String> tables;
private Predicate pred;

public QueryData(List<String> fields, Collection<String> tables,
Predicate pred) {

this.fields = fields;
this.tables = tables;
this.pred = pred;

}

public List<String> fields() {
return fields;

}

public Collection<String> tables() {
return tables;

}

public Predicate pred() {
return pred;

}

public String toString() {
String result = "select ";
for (String fldname : fields)

result += fldname + ", ";
result = result.substring(0, result.length()-2); //zap final comma
result += " from ";
for (String tblname : tables)

result += tblname + ", ";
result = result.substring(0, result.length()-2); //zap final comma
String predstring = pred.toString();
if (!predstring.equals(""))

result += " where " + predstring;
return result;

}
}

Fig. 9.10 The code for the SimpleDB class QueryData

256 9 Parsing

9.6.4 Parsing Insertions

The parser method insert implements the syntactic category <Insert>. This
method extracts three items: the table name, the field list, and the value list. The
class InsertData, shown in Fig. 9.11, holds these values and makes them
available via accessor methods.

9.6.5 Parsing Deletions

Deletion statements are handled by the method delete. The method returns an
object of class DeleteData; see Fig. 9.12. The class constructor stores the table
name and predicate from the specified deletion statement and provides methods
tableName and pred to access them.

9.6.6 Parsing Modifications

Modification statements are handled by the method modify. The method returns an
object of class ModifyData, as shown in Fig. 9.13. This class is very similar to that

public class InsertData {
private String tblname;
private List<String> flds;
private List<Constant> vals;

public InsertData(String tblname, List<String> flds,
List<Constant> vals) {

this.tblname = tblname;
this.flds = flds;
this.vals = vals;

}

public String tableName() {
return tblname;

}

public List<String> fields() {
return flds;

}

public List<Constant> vals() {
return vals;

}
}

Fig. 9.11 The code for the SimpleDB class InsertData

9.6 Adding Actions to the Parser 257

public class DeleteData {
private String tblname;
private Predicate pred;

public DeleteData(String tblname, Predicate pred) {
this.tblname = tblname;
this.pred = pred;

}

public String tableName() {

return tblname;
}

public Predicate pred() {
return pred;

}
}

Fig. 9.12 The code for the SimpleDB class DeleteData

public class ModifyData {
private String tblname;
private String fldname;
private Expression newval;
private Predicate pred;

public ModifyData(String tblname, String fldname,
Expression newval, Predicate pred) {

this.tblname = tblname;
this.fldname = fldname;
this.newval = newval;
this.pred = pred;

}

public String tableName() {
return tblname;

}

public String targetField() {
return fldname;

}

public Expression newValue() {
return newval;

}

public Predicate pred() {
return pred;

}
}

Fig. 9.13 The code for the SimpleDB class ModifyData

258 9 Parsing

of DeleteData. The difference is that this class also holds the assignment
information: the fieldname of the left-hand side of the assignment and the expression
of the right-hand side of the assignment. The additional methods targetField
and newValue return this information.

9.6.7 Parsing Table, View, and Index Creation

The syntactic category <Create> specifies the three SQL creation statements
supported by SimpleDB. Table creation statements are handled by the syntactic
category <CreateTable> and its method createTable. The methods fieldDef
and fieldType extract the information of one field and save it in its own Schema
object. The method fieldDefs then adds this schema to the table’s schema. The
table name and schema are returned inside a CreateTableData object, whose
code appears in Fig. 9.14.

View creation statements are handled by the method createView. The method
extracts the name and definition of the view and returns them in an object of type
CreateViewData; see Fig. 9.15. The handling of the view definition is unusual. It
needs to be parsed as a <Query>, in order to detect badly formed view definitions.
However, the metadata manager doesn’t want to save the parsed representation of
the definition; it wants the actual query string. Consequently, the
CreateViewData constructor re-creates the view definition by calling
toString on the returned QueryData object. In effect, the toString method
“unparses” the query.

An index is a data structure that the database system uses to improve query
efficiency; indexes are the topic of Chap. 12. The createIndex parser method
extracts the index name, table name, and field name and saves them in a
CreateIndexData object; see Fig. 9.16.

public class CreateTableData {
private String tblname;
private Schema sch;

public CreateTableData(String tblname, Schema sch) {
this.tblname = tblname;
this.sch = sch;

}

public String tableName() {
return tblname;

}

public Schema newSchema() {
return sch;

}
}

Fig. 9.14 The code for the SimpleDB class CreateTableData

9.6 Adding Actions to the Parser 259

https://doi.org/10.1007/978-3-030-33836-7_12

9.7 Chapter Summary

• The syntax of a language is a set of rules that describe the strings that could
possibly be meaningful statements.

public class CreateViewData {
private String viewname;
private QueryData qrydata;

public CreateViewData(String viewname, QueryData qrydata) {
this.viewname = viewname;
this.qrydata = qrydata;

}

public String viewName() {
return viewname;

}

public String viewDef() {
return qrydata.toString();

}
}

Fig. 9.15 The code for the SimpleDB class CreateViewData

public class CreateIndexData {
private String idxname, tblname, fldname;

public CreateIndexData(String idxname, String tblname,
String fldname) {

this.idxname = idxname;
this.tblname = tblname;
this.fldname = fldname;

}

public String indexName() {
return idxname;

}

public String tableName() {
return tblname;

}

public String fieldName() {
return fldname;

}
}

Fig. 9.16 The code for the SimpleDB class CreateIndexData

260 9 Parsing

• The parser is responsible for ensuring that its input string is syntactically correct.
• The lexical analyzer is the portion of the parser that splits the input string into a

series of tokens.
• Each token has a type and a value. The SimpleDB lexical analyzer supports five

token types:

– Single-character delimiters, such as the comma
– Integer constants, such as 123
– String constants, such as 'joe'
– Keywords, such as select, from, and where
– Identifiers, such as STUDENT, x, and glop34a

• Each token type has two methods: methods that ask about the current token and
methods that tell the lexical analyzer to “eat” the current token, returning its value
and moving to the next token.

• A grammar is a set of rules that describe how tokens can be legally combined.

– The left side of a grammar rule specifies its syntactic category. A syntactic
category denotes a particular concept in the language.

– The right side of a grammar rule specifies the contents of that category, which
is the set of strings that satisfy the rule.

• A parse tree has syntactic categories as its internal nodes and tokens as its leaf
nodes. The children of a category node correspond to the application of a
grammar rule. A string is in a syntactic category iff it has a parse tree having
that category as its root.

• A parsing algorithm constructs a parse tree from a syntactically legal string. The
complexity of the parsing algorithm is usually in proportion to the complexity of
the grammars it can support. A simple parsing algorithm is known as recursive
descent.

• A recursive-descent parser has a method for each grammar rule. Each method
calls the methods corresponding to the items in the right side of the rule.

• Each method in a recursive-descent parser extracts the values of the tokens it
reads and returns them. An SQL parser should extract information such as table
names, field names, predicates, and constants from the SQL statement. What gets
extracted depends on the kind of SQL statement it is:

– For a query: a collection of field names (from the select clause), a collec-
tion of table names (from the from clause), and a predicate (from the where
clause)

– For an insertion: a table name, a list of field names, and a list of values
– For a deletion: a table name and a predicate
– For a modification: a table name, the name of the field to be modified, an

expression denoting the new field value, and a predicate
– For a table creation: a table name and its schema
– For a view creation: a table name and its definition
– For index creation: an index name, a table name, and the name of the indexed

field

9.7 Chapter Summary 261

9.8 Suggested Reading

The area of lexical analysis and parsing has received a tremendous amount of
attention, going back over 60 years. The book (Scott, 2000) gives an excellent
introduction to the various algorithms in current use. Numerous SQL parsers are
available over the web, such as Zql (zql.sourceforge.net). An SQL grammar can be
found in the appendix of Date and Darwen (2004). A copy of the SQL-92 standard,
which describes SQL and its grammar, is at the URL www.contrib.andrew.cmu.edu/
~shadow/sql/sql1992.txt. If you have never looked at a standards document, you
should check this out just for the experience.

Date, C., & Darwen, H. (2004). A guide to the SQL standard (4th ed.). Boston, MA:
Addison Wesley.

Scott, M. (2000). Programming language pragmatics. San Francisco, CA: Morgan
Kaufman.

9.9 Exercises

Conceptual Problems

9.1. Draw a parse tree for the following SQL statements.

(a) select a from x where b = 3
(b) select a, b from x,y,z
(c) delete from x where a = b and c = 0
(d) update x set a = b where c = 3
(e) insert into x (a,b,c) values (3, 'glop', 4)
(f) create table x (a varchar(3), b int, c varchar(2))

9.2. For each of the following strings, state where the exception will be generated
when it is parsed and why. Then execute each query from a JDBC client and
see what happens.

(a) select from x
(b) select x x from x
(c) select x from y z
(d) select a from where b=3
(e) select a from y where b -=3
(f) select a from y where

9.3. The parser method create does not correspond to the SQL grammar of
Fig. 9.7.

(a) Explain why the grammar rule for <Create> is too ambiguous to be used
for recursive-descent parsing.

262 9 Parsing

http://zql.sourceforge.net
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

(b) Revise the grammar so that it corresponds to how the create method
actually works.

Programming Problems

9.4. Revise each parser method corresponding to a recursive rule so that it uses a
while-loop instead of recursion.

9.5. Revise the class PredParser (from Fig. 9.8) to print the parse tree resulting
from the sequence of method calls.

9.6. Exercise 8.8 asked you to modify expressions to handle arithmetic.

(a) Revise the SQL grammar similarly.
(b) Revise the SimpleDB parser to implement the grammar changes.
(c) Write a JDBC client to test the server. For example, write a program to

execute an SQL query that increments the graduation year of all students
having major 30.

9.7. Exercise 8.9 asked you to modify terms.

(a) Revise the SQL grammar similarly.
(b) Revise the SimpleDB parser to implement the grammar changes.
(c) Write a JDBC client to test the server. For example, write a program to

execute an SQL query that retrieves the names of all students who
graduated before 2010.

9.8. Exercise 8.10 asked you to modify predicates.

(a) Revise the SQL grammar similarly.
(b) Revise the SimpleDB parser to implement the grammar changes.
(c) Write a JDBC client to test the server. For example, write a program to

execute an SQL query that retrieves the names of all students having
majors 10 or 20.

9.9. SimpleDB also does not allow parentheses in its predicates.

(a) Revise the SQL grammar appropriately (either with or without having
done Exercise 9.8).

(b) Revise the SimpleDB parser to implement the grammar changes.
(c) Write a JDBC client to test out your changes.

9.10. Join predicates can be specified in standard SQL by means of the JOIN
keyword in the from clause. For example, the following two queries are
equivalent:

select SName, DName
from STUDENT, DEPT
where MajorId = Did and GradYear = 2020

9.9 Exercises 263

select SName, DName
from STUDENT join DEPT on MajorId = Did
where GradYear = 2020

(a) Revise the SQL lexical analyzer to include the keywords “join” and “on.”
(b) Revise the SQL grammar to handle explicit joins.
(c) Revise the SimpleDB parser to implement your grammar changes. Add

the join predicate to the predicate you get from the where clause.
(d) Write a JDBC program that tests out your changes.

9.11. In standard SQL, a table can have an associated range variable. Field refer-
ences from that table are prefixed by that range variable. For example, the
following query is equivalent to either of the queries from Exercise 9.10:

select s.SName, d.DName
from STUDENT s, DEPT d
where s.MajorId = d.Did and s.GradYear = 2020

(a) Revise the SimpleDB grammar to allow for this feature.
(b) Revise the SimpleDB parser to implement your grammar changes. You

will also have to modify the information returned by the parser. Note that
you will not be able to test your changes on the SimpleDB server unless
you also extend the planner; see Exercise 10.13.

9.12. The keyword AS can be used in standard SQL to extend the output table with
computed values. For example:

select SName, GradYear-1 as JuniorYear from STUDENT

(a) Revise the SimpleDB grammar to allow an optional AS expression after
any fields in the select clause.

(b) Revise the SimpleDB lexical analyzer and parser to implement your
grammar changes. How should the parser make this additional information
available? Note that you will not be able to test your changes on the
SimpleDB server unless you also extend the planner; see Exercise 10.14.

9.13. The keyword UNION can be used in standard SQL to combine the output
tables of two queries. For example:

select SName from STUDENT where MajorId = 10
union
select SName from STUDENT where MajorId = 20

(a) Revise the SimpleDB grammar to allow a query to be the union of two
other queries.

(b) Revise the SimpleDB lexical analyzer and parser to implement your
grammar changes. Note that you will not be able to test your changes on

264 9 Parsing

the SimpleDB server unless you also extend the planner; see Exercise
10.15.

9.14. Standard SQL supports nested queries in the where clause. For example,

select SName from STUDENT
where MajorId in select Did from DEPT where DName = 'math'

(a) Revise the SimpleDB grammar to allow a term to be of the form
“fieldname op query,” where op is either “in” or “not in.”

(b) Revise the SimpleDB lexical analyzer and parser to implement your
grammar changes. Note that you will not be able to test your changes on
the SimpleDB server unless you also extend the planner; see Exercise
10.16.

9.15. In standard SQL, the “�” character can be used in the select clause to
denote all fields of a table. If SQL supports range variables (as in Exercise
9.11), then the “�” can likewise be prefixed by a range variable.

(a) Revise the SimpleDB grammar to allow “�” to appear in queries.
(b) Revise the SimpleDB parser to implement your grammar changes. Note

that you will not be able to test your changes on the SimpleDB server
unless you also extend the planner; see Exercise 10.17.

9.16. In Standard SQL, one can insert records into a table via the following variant
on the insert statement:

insert into MATHSTUDENT(SId, SName)
select SId, SName
from STUDENT, DEPT
where MajorId = DId and DName = 'math'

That is, the records returned by the select statement are inserted into the
specified table. (The above statement assumes that an emptyMATHSTUDENT
table has already been created.)

(a) Revise the SimpleDB SQL grammar to handle this form of insertion.
(b) Revise the SimpleDB parser code to implement your grammar. Note that

you will not be able to run JDBC queries until you also modify the
planner; see Exercise 10.18.

9.17. Exercise 8.7 asked you to create new types of constant.

(a) Modify the SimpleDB SQL grammar to allow these types to be used in a
create table statement.

(b) Do you need to introduce new constant literals? If so, modify the
<Constant> syntactic category.

(c) Revise the SimpleDB parser code to implement your grammar.

9.9 Exercises 265

9.18. Exercise 8.11 asked you to implement null values. This exercise asks you to
revise SQL to understand nulls.

(a) Revise the SimpleDB grammar to accept the keyword null as a constant.
(b) Revise the SimpleDB parser to implement the grammar change from part

(a).
(c) In standard SQL, a term can be of the form GradYear is null, which

returns true if the expression GradYear is a null value. The two key-
words is null are treated as a single operator having one argument.
Revise the SimpleDB grammar to have this new operator.

(d) Revise the SimpleDB parser and the class Term to implement the gram-
mar changes from part (c).

(e) Write a program in JDBC to test your code. Your program can set values
to null (or use an unassigned value of a newly inserted record) and then
execute a query that involves is null. Note that your program will not
be able to print null values until you modify the SimpleDB implementa-
tion of JDBC; see Exercise 11.6.

9.19. The open-source software package javacc (see the URL javacc.github.io/
javacc) builds parsers from grammar specifications. Use javacc to create a
parser for the SimpleDB grammar. Then replace the existing parser with your
new one.

9.20. The class Parser contains a method for each syntactic category in the
grammar. Our simplified SQL grammar is small, and so the class is manage-
able. However, a full-featured grammar would cause the class to be signifi-
cantly larger. An alternative implementation strategy is to put each syntactic
category in its own class. The constructor of the class would perform the
parsing for that category. The class would also have methods that returned the
values extracted from the parsed tokens. This strategy creates a large number
of classes, each of which is relatively small. Rewrite the SimpleDB parser
using this strategy.

266 9 Parsing

http://javacc.github.io/javacc
http://javacc.github.io/javacc

Chapter 10
Planning

During the first step of query processing, the parser extracts the relevant data from an
SQL statement. The next step is to turn that data into a relational algebra query tree.
This step is called planning. This chapter examines the basic planning process. It
examines what the planner needs to do to verify that an SQL statement is semanti-
cally meaningful and looks at two rudimentary plan-construction algorithms.

An SQL statement can have many equivalent query trees, often with wildly
different costs. A database system that hopes to be commercially viable must have
a planning algorithm that finds efficient plans. Chapter 15 addresses the difficult
topic of creating optimal plans.

10.1 Verification

The first responsibility of a planner is to determine whether a given SQL statement is
actually meaningful. The planner needs to verify the following things about the
statement:

• The mentioned tables and fields actually exist in the catalog.
• The mentioned fields are not ambiguous.
• The actions on fields are type-correct.
• All constants are the correct size and type for their fields.

All of the information required to perform this verification can be found by
examining the schemas of the mentioned tables. For example, the absence of a
schema indicates that the mentioned table does not exist. Similarly, the absence of a
field in any of the schemas indicates that the field does not exist, and its presence in
multiple schemas indicates the possibility of ambiguity.

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_10

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_10

The planner should also determine type correctness of predicates, modification
assignments, and inserted values by examining the type and length of each men-
tioned field. For a predicate, the arguments to each operator in an expression must be
of compatible types, as must the expressions in each term. A modification assigns an
expression to a field; both of these types must be compatible. And for an insertion
statement, the type of each inserted value must be compatible with the type of its
associated field.

A SimpleDB planner can obtain the necessary table schemas via the getLayout
method of the metadata manager. However, the planner currently does not perform
any explicit verification. Exercises 10.4–10.8 ask you to rectify this situation.

10.2 The Cost of Evaluating a Query Tree

The second responsibility of a planner is to construct a relational algebra query tree
for the query. One complication is that an SQL query can be implemented by several
different query trees, each having its own execution time. The planner is responsible
for choosing the most efficient one.

But how can the planner calculate the efficiency of a query tree? Recall that the
most important contributor to the running time of a query is the number of blocks it
accesses. The cost of a query tree is therefore defined as the number of block
accesses required to completely iterate through the query’s scan.

The cost of a scan can be calculated by recursively calculating the cost of its
children and then applying a cost formula based on the type of scan. Figure 10.1
gives formulas for three cost functions. Each relational operator has its own formulas
for these functions. The cost functions are:

s B(s) R(s) V(s,F)

TableScan(T) B(T) R(T) V(T,F)

SelectScan(s1,A=c) B(s1) R(s1)/V(s1,A)
1 if F A
V(s1,F) if F A

SelectScan(s1,A=B) B(s1)
R(s1) /
max{V(s1,A),V(s1,B)}

min{V(s1,A), V(s1,B)}
if F A,B

V(s1,F) if F A,B

ProjectScan(s1,L) B(s1) R(s1) V(s1,F)

ProductScan(s1,s2) B(s1) + R(s1)*B(s2) R(s1)*R(s2)
V(s1,F) if F is in s1
V(s2,F) if F is in s2

Fig. 10.1 The cost formulas for scans

268 10 Planning

B(s) ¼ the number of block accesses required to construct the output of scan s.
R(s) ¼ the number of records in the output of scan s.
V(s, F) ¼ the number of different F-values in the output of scan s.

These functions are analogous to the blocksAccessed, recordsOutput,
and distinctValues methods of the statistics manager. The difference is that
they apply to scans instead of tables.

A quick examination of Fig. 10.1 shows the interrelationship among the three cost
functions. Given a scan s, the planner wants to calculate B(s). But if s is the product
of two tables, then the value of B(s) depends on the number of blocks of the two
tables as well as the number of records in its left-side scan. And if the left-side scan
involves a select operator, then the number of its records depends on the number of
distinct values of the fields mentioned in the predicate. In other words, the planner
needs all three functions.

The following subsections derive the cost functions shown in Fig. 10.1 and give
an example of how they can be used to calculate the cost of a query tree.

10.2.1 The Cost of a Table Scan

Each table scan in a query holds its current record page, which holds a buffer, which
pins a page. When the records in that page have been read, its buffer is unpinned and
a record page for the next block in the file takes its place. Thus, a single pass through
the table scan will access each block exactly once, pinning a single buffer at a time.

Therefore, when s is a table scan, the values for B(s), R(s), and V(s, F) are the
number of blocks, records, and distinct values in the underlying table.

10.2.2 The Cost of a Select Scan

A select scan s has a single underlying scan; call it s1. Each call to method nextwill
cause the select scan to make one or more calls to s1.next; the method will return
false when the call to s1.next returns false. Each call to getInt,
getString, or getVal simply requests the field value from s1 and requires no
block accesses. Thus, iterating though a select scan requires exactly the same
number of block accesses as its underlying scan. That is:

B(s) = B(s1)

The calculation of R(s) and V(s, F) depends on the selection predicate. As an
example, I shall analyze the common cases where the selection predicate equates a
field either to a constant or to another field.

10.2 The Cost of Evaluating a Query Tree 269

Selection on a Constant
Suppose that the predicate is of the form A¼c for some field A. Assuming that the
values in A are equally distributed, there will be R(s1)/V(s1, A) records that match
the predicate. That is:

R(s) = R(s1) / V(s1, A)

The equal-distribution assumption also implies that the values of the other fields
are still equally distributed in the output. That is:

V(s, A) = 1
V(s, F) = V(s1, F) for all other fields F

Selection on a Field
Now suppose that the predicate is of the form A¼B for fields A and B. In this case, it
is reasonable to assume that the values in fields A and B are somehow related. In
particular, assume that if there are more B-values than A-values (i.e., V(s1, A) <
V(s1, B)), then every A-value appears somewhere in B; and if there are more
A-values than B-values, the opposite is true. (This assumption is certainly true in
the typical case that A and B have a key-foreign key relationship.) So suppose that
there are more B-values than A-values, and consider any record in s1. Its A-value has
a 1/V(s1, B) chance of matching with its B-value. Similarly, if there are more
A-values than B-values, then its B-value has a 1/V(s1, A) chance of matching its
A-value. Thus:

R(s) = R(s1) / max{V(s1, A), V(s1, B)}

The equal-distribution assumption also implies that the each A-value will be
equally likely to match with a B-value. Thus, we have:

V(s, F) = min(V(s1, A), V(s1, B)} for F = A or B
V(s, F) = V(s1, F) for all fields F other than A or B

10.2.3 The Cost of a Project Scan

As with select scans, a project scan has a single underlying scan (called s1) and
requires no additional block accesses beyond those required by its underlying scan.
Moreover, a projection operation does not change the number of records, nor does it
change the values of any records. Thus:

B(s) = B(s1)
R(s) = R(s1)
V(s, F) = V(s1, F) for all fields F

270 10 Planning

10.2.4 The Cost of a Product Scan

A product scan has two underlying scans, s1 and s2. Its output consists of all
combinations of records from s1 and s2. As the scan is traversed, the underlying
scan s1 will be traversed once, and the underlying scan s2 will be traversed once for
each record of s1. The following formulas follow:

B(s) = B(s1) + (R(s1)�B(s2))
R(s) = R(s1) � R(s2)
V(s, F) = V(s1, F) or V(s2, F), depending on which schema F belongs to

It is extremely interesting and important to realize that the formula for B(s) is not
symmetric with respect to s1 and s2. That is, the statement

Scan s3 = new ProductScan(s1, s2);

can result in a different number of block accesses than the logically equivalent
statement

Scan s3 = new ProductScan(s2, s1);

How different can it be? Define

RPB(s) = R(s) / B(s)

That is, RPB(s) denotes the “records per block” of scan s—the average number of
output records that result from each block access of s. The above formula can then be
rewritten as follows:

B(s) = B(s1) + (RPB(s1)�B(s1)�B(s2))

The dominating term is RPB(s1)�B(s1)�B(s2). If you compare this term
with the term you get by swapping s1 with s2, you can see that the cost of the
product scan will usually be lowest when s1 is the underlying scan with the
lowest RPB.

For example, suppose that s1 is a table scan of STUDENT and s2 is a table scan
of DEPT. Since STUDENT records are larger than DEPT records, more DEPT
records fit in a block, which means that STUDENT has a smaller RPB than DEPT.
The above analysis shows that the fewest number of disk accesses occur when the
scan for STUDENT is first.

10.2 The Cost of Evaluating a Query Tree 271

10.2.5 A Concrete Example

Consider a query that returns the names of those students majoring in math.
Figure 10.2a depicts a query tree for that query, and Fig. 10.2b gives SimpleDB
code for the corresponding scan.

Figure 10.3 calculates the cost of each scan in Fig. 10.2b, using the statistical
metadata from Fig. 7.8. The entries for s1 and s2 simply duplicate the statistics for
STUDENT and DEPT in Fig. 7.8. The entry for s3 says that the selection on DName
returns 1 record but requires searching both blocks of DEPT to find it. Scan s4
returns all combinations of the 45,000 STUDENT records with the 1 selected record;
the output is 45,000 records. However, the operation requires 94,500 block accesses,
because the single math-department record must be found 45,000 times and each
time requires a 2-block scan of DEPT. (The other 4500 block accesses come from the
single scan of STUDENT.) The selection on MajorId in scan s5 reduces the
output to 1125 records (45,000 students/40 departments) but does not change the

(a)

SimpleDB db = new SimpleDB("studentdb");
Transaction tx = db.newTx();
MetadataMgr mdm = db.mdMgr();
Layout slayout = mdm.getLayout("student", tx);
Layout dlayout = mdm.getLayout("dept", tx);
Scan s1 = new TableScan(tx, "student", slayout);
Scan s2 = new TableScan(tx, "dept", dlayout);
Predicate pred1 = new Predicate(. . .); //dname='math'
Scan s3 = new SelectScan(s2, pred1);
Scan s4 = new ProductScan(s1, s3);
Predicate pred2 = new Predicate(. . .); //majorid=did
Scan s5 = new SelectScan(s4, pred2);
List<String> fields = Arrays.asList("sname");
Scan s6 = new ProjectScan(s5, fields);

(b)

Fig. 10.2 Finding the names of students majoring in math. (a) The query tree, (b) the
corresponding SimpleDB scan

272 10 Planning

https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7

number of block accesses required. And of course, the projection doesn’t change
anything.

It may seem strange that the database system recomputes the math-department
record 45,000 times and at considerable cost; however, this is the nature of pipelined
query processing. (In fact, this is a situation where the non-pipelined
implementations of Chap. 13 are useful.)

Looking at the RPB figures for STUDENT and s3, you can see that
RPB(STUDENT) ¼ 10 and RPB(s3) ¼ 0.5. Since products are fastest when the
scan with the smaller RPB is on the left side, a more efficient strategy would be to
define s4 as follows:

s4 = new ProductScan(s3, STUDENT)

Exercise 10.3 asks you to show that in this case, the operation would have
required only 4502 block accesses. The difference is due primarily to the fact that
the selection is now computed only once.

s B(s) R(s) V(s,F)

s1 4,500 45,000

45,000 for F=SId
44,960 for F=SName
50 for F=GradYear
40 for F=MajorId

s2 2 40 40 for F=DId, DName

s3 2 1 1 for F=DId, DName

s4 94,500 45,000

45,000 for F=SId
44,960 for F=SName
50 for F=GradYear
40 for F=MajorId
1 for F=DId, DName

s5 94,500 1,125

1,125 for F=SId
1,124 for F=SName
50 for F=GradYear
1 for F=MajorId, DId, DName

s6 94,500 1,125 1,124 for F=SName

Fig. 10.3 The cost of the scans in Fig. 10.2

10.2 The Cost of Evaluating a Query Tree 273

https://doi.org/10.1007/978-3-030-33836-7_13

10.3 Plans

The SimpleDB object that calculates the cost of a query tree is called a plan. Plans
implement the interface Plan, whose code appears in Fig. 10.4.

This interface supports the methods blocksAccessed, recordsOutput,
and distinctValues, which calculate the values B(s), R(s), and V(s, F) for the
query. The method schema returns the schema of the output table. The query
planner can use this schema to verify type correctness and to look for ways to
optimize the plan. Finally, every plan has the method open, which creates its
corresponding scan.

Plans and scans are conceptually similar, in that they both denote a query tree.
The difference is that a plan accesses the metadata of the tables in the query, whereas
a scan accesses their data. When you submit an SQL query, the database planner may
create several plans for the query and use their metadata to choose the most efficient
one. It then uses that plan’s open method to create the desired scan.

A plan is constructed similarly to a scan. There is a Plan class for each relational
algebra operator, plus the class TablePlan for handling stored tables. For exam-
ple, the code of Fig. 10.5 retrieves the names of those students majoring in math, the
same query as in Fig. 10.2. The only difference is that Fig. 10.5 constructs the query
tree using plans, converting the final plan to a scan.

public interface Plan {
public Scan open();
public int blocksAccessed();
public int recordsOutput();
public int distinctValues(String fldname);
public Schema schema();

}

Fig. 10.4 The SimpleDB Plan interface

SimpleDB db = new SimpleDB("studentdb");
MetadataMgr mdm = db.mdMgr();
Transaction tx = db.newTx();
Plan p1 = new TablePlan(tx, "student", mdm);
Plan p2 = new TablePlan(tx, "dept", mdm);
Predicate pred1 = new Predicate(. . .); //dname='math'
Plan p3 = new SelectPlan(p2, pred1);
Plan p4 = new ProductPlan(p1, p3);
Predicate pred2 = new Predicate(. . .); //majorid=did
Plan p5 = new SelectPlan(p4, pred2);
List<String> fields = Arrays.asList("sname");
Plan p6 = new ProjectPlan(p5, fields);
Scan s = p6.open();

Fig. 10.5 Using plans to create a query

274 10 Planning

Figures 10.6, 10.7, 10.8, 10.9, and 10.10 give the code for classes TablePlan,
SelectPlan, ProjectPlan, and ProductPlan. Class TablePlan obtains
its cost estimates directly from the metadata manager. The other classes use the
formulas of the previous section to compute their estimates.

Cost estimation for select plans is more complex than for the other operators,
because the estimates depend on the predicate. A predicate, therefore, has methods
reductionFactor and equatesWithConstant for use by the select plan.
Method reductionFactor is used by recordsAccessed to calculate the
extent to which the predicate reduces the size of the input table. Method
equatesWithConstant is used by distinctValues to determine whether
the predicate equates the specified field with a constant.

The constructors of ProjectPlan and ProductPlan create their schemas
from the schemas of their underlying plans. The ProjectPlan schema is created

public class TablePlan implements Plan {
private Transaction tx;
private String tblname;
private Layout layout;
private StatInfo si;

public TablePlan(Transaction tx, String tblname, MetadataMgr md) {
this.tx = tx;
this.tblname = tblname;
layout = md.getLayout(tblname, tx);
si = md.getStatInfo(tblname, layout, tx);

}

public Scan open() {
return new TableScan(tx, tblname, layout);

}

public int blocksAccessed() {
return si.blocksAccessed();

}

public int recordsOutput() {
return si.recordsOutput();

}

public int distinctValues(String fldname) {
return si.distinctValues(fldname);

}

public Schema schema() {
return layout.schema();

}
}

Fig. 10.6 The code for the SimpleDB class TablePlan

10.3 Plans 275

by looking up each field of the underlying field list and adding that information to the
new schema. The ProductPlan schema is the union of the underlying schemas.

The open method for each of these plan classes is straightforward. In general,
constructing a scan from a plan has two steps: First, the method recursively con-
structs a scan for each underlying plan. Second, it passes those scans into the Scan
constructor for the operator.

public class SelectPlan implements Plan {
private Plan p;
private Predicate pred;

public SelectPlan(Plan p, Predicate pred) {
this.p = p;
this.pred = pred;

}

public Scan open() {
Scan s = p.open();
return new SelectScan(s, pred);

}

public int blocksAccessed() {
return p.blocksAccessed();

}

public int recordsOutput() {
return p.recordsOutput() / pred.reductionFactor(p);

}

public int distinctValues(String fldname) {
if (pred.equatesWithConstant(fldname) != null)

return 1;
else {

String fldname2 = pred.equatesWithField(fldname);

if (fldname2 != null)
return Math.min(p.distinctValues(fldname),

p.distinctValues(fldname2));
else

return p.distinctValues(fldname);
}

}

public Schema schema() {
return p.schema();

}
}

Fig. 10.7 The code for the SimpleDB class SelectPlan

276 10 Planning

10.4 Query Planning

Recall that the parser takes an SQL query string as input and returns a QueryData
object as output. This section tackles the problem of how to construct a plan from
that QueryData object.

10.4.1 The SimpleDB Query Planning Algorithm

SimpleDB supports a simplified subset of SQL that contains no computation, no
sorting, no grouping, no nesting, and no renaming. Consequently, all of its SQL
queries can be implemented by a query tree that uses only the three operators select,
project, and product. An algorithm for creating such a plan appears in Fig. 10.10.

public class ProjectPlan implements Plan {
private Plan p;
private Schema schema = new Schema();

public ProjectPlan(Plan p, List<String> fieldlist) {
this.p = p;
for (String fldname : fieldlist)

schema.add(fldname, p.schema());
}

public Scan open() {
Scan s = p.open();
return new ProjectScan(s, schema.fields());

}

public int blocksAccessed() {
return p.blocksAccessed();

}

public int recordsOutput() {
return p.recordsOutput();

}

public int distinctValues(String fldname) {
return p.distinctValues(fldname);

}

public Schema schema() {
return schema;

}
}

Fig. 10.8 The code for the SimpleDB class ProjectPlan

10.4 Query Planning 277

public class ProductPlan implements Plan {
private Plan p1, p2;
private Schema schema = new Schema();

public ProductPlan(Plan p1, Plan p2) {
this.p1 = p1;
this.p2 = p2;
schema.addAll(p1.schema());
schema.addAll(p2.schema());

}

public Scan open() {
Scan s1 = p1.open();
Scan s2 = p2.open();
return new ProductScan(s1, s2);

}

public int blocksAccessed() {
return p1.blocksAccessed()

+ (p1.recordsOutput() * p2.blocksAccessed());
}

public int recordsOutput() {
return p1.recordsOutput() * p2.recordsOutput();

}

public int distinctValues(String fldname) {
if (p1.schema().hasField(fldname))

return p1.distinctValues(fldname);
else

return p2.distinctValues(fldname);
}

public Schema schema() {
return schema;

}
}

Fig. 10.9 The code for the SimpleDB class ProductPlan

1. Construct a plan for each table T in the from clause.
a) If T is a stored table, then the plan is a table plan for T.
b) If T is a view, the plan is the result of calling this algorithm recursively on T’s definition.

2. Take the product of these table plans, in the order given.
3. Select on the predicate in the where clause.
4. Project on the fields in the select clause.

Fig. 10.10 The basic query planning algorithm for the SimpleDB subset of SQL

278 10 Planning

For an example of this query planning algorithm, consider Fig. 10.11. Part
(a) gives an SQL query that retrieves the name of students who received an “A”
with Professor Einstein. Part (b) is the query tree produced by the algorithm.

Figure 10.12 illustrates the query planning algorithm for an equivalent query that
uses a view. Part (a) gives the view definition and the query, part (b) depicts the
query tree for the view, and part (c) depicts the tree for the entire query.

Note how the final tree consists of the product of the two tables and the view tree,
followed by a selection and a projection. This final tree is equivalent to, but
somewhat different from, the tree of Fig. 10.11b. In particular, part of the original
selection predicate has been “pushed” down the tree, and there is an intermediate
projection. The query optimization techniques of Chap. 15 take advantage of such
equivalences.

10.4.2 Implementing the Query Planning Algorithm

The SimpleDB class BasicQueryPlanner implements the basic query planning
algorithm; its code appears in Fig. 10.13. Each of the four steps in the code
implements the corresponding step in that algorithm.

The basic query planning algorithm is rigid and naïve. It generates the product
plans in the order returned by the method QueryData.tables. Note that this
order is completely arbitrary—any other ordering of the tables would produce an
equivalent scan. The performance of this algorithm will therefore be erratic (and

select SName
from STUDENT, ENROLL, SECTION
where SId = StudentId
and SectionId = SectId
and Grade = 'A'
and Prof = 'einstein'

(a)

(b)

Fig. 10.11 Applying the basic query planning algorithm to an SQL query

10.4 Query Planning 279

https://doi.org/10.1007/978-3-030-33836-7_15

often poor) because it doesn’t use the plan metadata to help determine the order of
the product plans.

Figure 10.14 shows a small improvement to the planning algorithm. It still
considers the tables in the same order, but it now creates two product plans for
each table—one where it is on the left side of the product, and one where it is on the
right side—and keeps the plan having smallest cost.

This algorithm is better than the basic planning algorithm, but it still depends too
much on the order of the tables in the query. The planning algorithms in commercial
database systems are much more sophisticated. They not only analyze the cost of
many equivalent plans; they also implement additional relational operations that can
be applied in special circumstances. Their goal is to choose the most efficient plan

create view EINSTEIN as
select SectId from SECTION where Prof = 'einstein'

select SName
from STUDENT, ENROLL, EINSTEIN
where SId = StudentId and SectionId = SectId and Grade = 'A'

(a)

(b)

(c)

Fig. 10.12 Applying the basic query planning algorithm in the presence of views. (a) The SQL
query, (b) the tree for the view, (c) the tree for the entire query

280 10 Planning

(and thereby be more desirable than their competition). These techniques are the
subject of Chaps. 12, 13, 14, and 15.

10.5 Update Planning

This section examines how a planner should process update statements. The
SimpleDB class BasicUpdatePlanner provides a straightforward implementa-
tion of an update planner; its code appears in Fig. 10.15. This class
contains one method for each kind of update. These methods are discussed in the
following subsections.

public class BasicQueryPlanner implements QueryPlanner {
private MetadataMgr mdm;

public BasicQueryPlanner(MetadataMgr mdm) {
this.mdm = mdm;

}

public Plan createPlan(QueryData data, Transaction tx) {
//Step 1: Create a plan for each mentioned table or view.
List<Plan> plans = new ArrayList<Plan>();
for (String tblname : data.tables()) {

String viewdef = mdm.getViewDef(tblname, tx);
if (viewdef != null) { // Recursively plan the view.

Parser parser = new Parser(viewdef);
QueryData viewdata = parser.query();
plans.add(createPlan(viewdata, tx));

}
else

plans.add(new TablePlan(tblname, tx, mdm));
}
//Step 2: Create the product of all table plans
Plan p = plans.remove(0);
for (Plan nextplan : plans)

p = new ProductPlan(p, nextplan);

//Step 3: Add a selection plan for the predicate
p = new SelectPlan(p, data.pred());

//Step 4: Project on the field names
return new ProjectPlan(p, data.fields());

}
}

Fig. 10.13 The code for the SimpleDB class BasicQueryPlanner

10.5 Update Planning 281

https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_15

10.5.1 Delete and Modify Planning

The scan for a delete (or modify) statement is a select scan that retrieves those
records to be deleted (or modified). For example, consider the following modifica-
tion statement:

update STUDENT
set MajorId = 20
where MajorId = 30 and GradYear = 2020

and the following deletion statement:

delete from STUDENT
where MajorId = 30 and GradYear = 2020

These statements have the same scan, namely, all students in department 30 grad-
uating in 2020. The methods executeDelete and executeModify create and
iterate through this scan, performing the appropriate action on each of its records. In
the case of the modification statement, each record is modified; in the case of the
deletion statement, each record is deleted.

Looking at the code, you can see that both methods create the same plan, which is
similar to the plan created by the query planner (except that the query planner would
also add a project plan). Both methods also open the scan and iterate through it in the
same way. The executeDelete method calls delete on each record in the
scan, whereas executeModify performs a setVal operation on the modified
field of each record in the scan. Both methods also keep a count of the affected
records, which is returned to the caller.

public class BetterQueryPlanner implements QueryPlanner {
...
public Plan createPlan(QueryData data, Transaction tx) {

...
//Step 2: Create the product of all table plans
// At each step, choose the plan having smallest cost
Plan p = plans.remove(0);
for (Plan nextplan : plans) {

Plan p1 = new ProductPlan(nextplan, p);
Plan p2 = new ProductPlan(p, nextplan);
p = (p1.blocksAccessed() < p2.blocksAccessed() ? p1 : p2;

}
...

}
}

Fig. 10.14 The code for the SimpleDB class BetterQueryPlanner

282 10 Planning

while(us.next()) {
us.delete();
count++;

}
us.close();
return count;

}
public int executeModify(ModifyData data, Transaction tx) {

Plan p = new TablePlan(data.tableName(), tx, mdm);
p = new SelectPlan(p, data.pred());
UpdateScan us = (UpdateScan) p.open();
int count = 0;
while(us.next()) {

Constant val = data.newValue().evaluate(us);
us.setVal(data.targetField(), val);
count++;

}
us.close();
return count;

}

public int executeInsert(InsertData data, Transaction tx) {
Plan p = new TablePlan(data.tableName(), tx, mdm);
UpdateScan us = (UpdateScan) p.open();
us.insert();
Iterator<Constant> iter = data.vals().iterator();
for (String fldname : data.fields()) {

Constant val = iter.next();
us.setVal(fldname, val);

}
us.close();
return 1;

}
public int executeCreateTable(CreateTableData data, Transaction tx) {

mdm.createTable(data.tableName(), data.newSchema(), tx);
return 0;

}
public int executeCreateView(CreateViewData data, Transaction tx) {

mdm.createView(data.viewName(), data.viewDef(), tx);
return 0;

}
public int executeCreateIndex(CreateIndexData data, Transaction tx) {

mdm.createIndex(data.indexName(), data.tableName(),
 data.fieldName(), tx);
return 0;

public class BasicUpdatePlanner implements UpdatePlanner {
private MetadataMgr mdm;
public BasicUpdatePlanner(MetadataMgr mdm) {

this.mdm = mdm;
}
public int executeDelete(DeleteData data, Transaction tx) {

Plan p = new TablePlan(data.tableName(), tx, mdm);
p = new SelectPlan(p, data.pred());
UpdateScan us = (UpdateScan) p.open();
int count = 0;

Fig. 10.15 The code for the SimpleDB class BasicUpdatePlanner

10.5 Update Planning 283

10.5.2 Insert Planning

The scan corresponding to an insert statement is simply a table scan of the under-
lying table. The executeInsert method begins by inserting a new record into
this scan. It then iterates through the fields and vals lists in parallel, calling
setInt or setString to modify the value of each specified field of the record.
The method returns a 1, denoting that one record was inserted.

10.5.3 Planning for Table, View, and Index Creation

The codes for the methods executeCreateTable, executeCreateView,
and executeCreateIndex are different from the others, because they don’t
require accessing any data records and thus do not require a scan. They simply call
the metadata methods createTable, createView, and createIndex, using
the appropriate information from the parser; they return 0 to indicate that no records
were affected.

10.6 The SimpleDB Planner

The planner is the component of the database engine that transforms an SQL
statement into a plan. The SimpleDB planner is implemented by the class Planner,
whose API appears in Fig. 10.16.

The first argument of both methods is a string representation of an SQL statement.
The method createQueryPlan creates and returns a plan for the input query
string. The method executeUpdate creates a plan for the input string, executes it,
and returns the number of affected records (the same as the executeUpdate
method in JDBC).

A client can obtain a Planner object by calling the static method planner in
the class SimpleDB. Figure 10.17 contains code for the class PlannerTest,
which illustrates the use of the planner. Part 1 of the code illustrates the processing of
an SQL query. The query string is passed into the planner’s createQueryPlan
method, and a plan is returned. Opening that plan returns a scan, whose records are
then accessed and printed. Part 2 of the code illustrates an SQL update command.

public Plan createQueryPlan(String query, Transaction tx);
public int executeUpdate(String cmd, Transaction tx);

Planner

Fig. 10.16 The API for the SimpleDB planner

284 10 Planning

The command string is passed into the planner’s executeUpdate method, which
performs all of the necessary work.

The SimpleDB planner has two methods: one to handle queries and one to handle
updates. These methods both process their input quite similarly; Fig. 10.18 lists
the steps they take. In particular, both methods perform steps 1–3. The methods
differ primarily in what they do with the plan that they create. The method
createQueryPlan simply returns its plan, whereas executeUpdate opens
and executes its plan.

public class PlannerTest {
public static void main(String[] args) {

SimpleDB db = new SimpleDB("studentdb");
Planner planner = db.planner();
Transaction tx = db.newTx();

// part 1: Process a query
String qry = "select sname, gradyear from student";
Plan p = planner.createQueryPlan(qry, tx);
Scan s = p.open();
while (s.next())

System.out.println(s.getString("sname") + " " +
s.getInt("gradyear"));

s.close();

// part 2: Process an update command
String cmd = "delete from STUDENT where MajorId = 30";
int num = planner.executeUpdate(cmd, tx);
System.out.println(num + " students were deleted");

tx.commit();
}

}

Fig. 10.17 The class PlannerTest

1. Parse the SQL statement. The method calls the parser, passing it the input string;
the parser returns an object containing the data from the SQL statement. For example,
the parser returns a QueryData object for a query, an InsertData object for an
insert statement, and so on.

2. Verify the SQL statement. The method examines the QueryData (or InsertData,
 etc.) object to determine if it is semantically meaningful.

3. Create a plan for the SQL statement. The method uses a planning algorithm to determine
a query tree corresponding to the statement, and to create a plan corresponding to that
tree.

4a. Return the plan (for the createQueryPlan method).
4b. Execute the plan (for the executeUpdate method). The method creates a scan by

opening the plan; then it iterates through the scan, making the appropriate update for
each record in the scan and returning the number of records affected.

Fig. 10.18 The steps taken by the two planner methods

10.6 The SimpleDB Planner 285

Figure 10.19 gives the SimpleDB code for the Planner class. The methods are a
straightforward implementation of Fig. 10.18. The method createQueryPlan
creates a parser for its input SQL query, calls the parser method query to parse the
string, verifies the returned QueryData object (at least, the method ought to), and
returns the plan generated by the query planner. The method executeUpdate is
similar: it parses the update string, verifies the object returned by the parser, and calls
the appropriate update planner method to perform the execution.

The object returned by the update parser will be of type InsertData,
DeleteData, etc., according to what kind of update statement was submitted.
The executeUpdate code checks this type in order to determine which planner
method to call.

public class Planner {
private QueryPlanner qplanner;
private UpdatePlanner uplanner;

public Planner(QueryPlanner qplanner, UpdatePlanner uplanner) {
this.qplanner = qplanner;
this.uplanner = uplanner;

}

public Plan createQueryPlan(String cmd, Transaction tx) {
Parser parser = new Parser(cmd);
QueryData data = parser.query();
// code to verify the query should be here...
return qplanner.createPlan(data, tx);

}

public int executeUpdate(String cmd, Transaction tx) {
Parser parser = new Parser(cmd);
Object obj = parser.updateCmd();
// code to verify the update command should be here ...
if (obj instanceof InsertData)

return uplanner.executeInsert((InsertData)obj, tx);

else if (obj instanceof DeleteData)
return uplanner.executeDelete((DeleteData)obj, tx);

else if (obj instanceof ModifyData)
return uplanner.executeModify((ModifyData)obj, tx);

else if (obj instanceof CreateTableData)
return uplanner.executeCreateTable((CreateTableData)obj, tx);

else if (obj instanceof CreateViewData)
return uplanner.executeCreateView((CreateViewData)obj, tx);

else if (obj instanceof CreateIndexData)
return uplanner.executeCreateIndex((CreateIndexData)obj, tx);

else
return 0; // this option should never occur

}
}

Fig. 10.19 The code for the SimpleDB class Planner

286 10 Planning

The Planner object depends on its query planner and update planner to do the
actual planning. These objects are passed into the Planner constructor, which
allows you to configure the planner with different planning algorithms. For example,
Chap. 15 develops a fancy query planner called HeuristicQueryPlanner; you
can use this planner instead of BasicQueryPlanner if you want, simply by
passing a HeuristicQueryPlanner object into the Planner constructor.

The code uses Java interfaces to obtain this plug-and-play capability.
The arguments to the Planner constructor belong to the interfaces
QueryPlanner and UpdatePlanner, whose code appears in Fig. 10.20. The
BasicQueryPlanner and BasicUpdatePlanner classes implement these
interfaces, as do the more sophisticated query and update planners in Chap. 15.

Planner objects are created by the constructor to the SimpleDB class. The
constructor creates a new basic query planner and a new basic update planner and
passes them to the Planner constructor, as shown in Fig. 10.21. To reconfigure the
engine to use a different query planner, you just need to modify the SimpleDB
constructor so that it creates different QueryPlanner and UpdatePlanner
objects.

public interface QueryPlanner {
public Plan createPlan(QueryData data, Transaction tx);

}

public interface UpdatePlanner {
public int executeInsert(InsertData data, Transaction tx);
public int executeDelete(DeleteData data, Transaction tx);
public int executeModify(ModifyData data, Transaction tx);
public int executeCreateTable(CreateTableData data,

 Transaction tx);
public int executeCreateView(CreateViewData data,
 Transaction tx);
public int executeCreateIndex(CreateIndexData data,
 Transaction tx);

}

Fig. 10.20 The code for the SimpleDB QueryPlanner and UpdatePlanner interfaces

public SimpleDB(String dirname) {
...
mdm = new MetadataMgr(isnew, tx);
QueryPlanner qp = new BasicQueryPlanner(mdm);
UpdatePlanner up = new BasicUpdatePlanner(mdm);
planner = new Planner(qp, up);
...

}

Fig. 10.21 The SimpleDB code that creates its planner

10.6 The SimpleDB Planner 287

https://doi.org/10.1007/978-3-030-33836-7_15
https://doi.org/10.1007/978-3-030-33836-7_15

10.7 Chapter Summary

• In order to construct the most cost-effective scan for a given query, the database
system needs to estimate the number of block accesses required to iterate through
a scan. The following estimation functions are defined for a scan s:

– B(s) denotes the number of block accesses required to iterate through s.
– R(s) denotes the number of records output by s.
– V(s,F) denotes the number of distinct F-values in the output of s.

• If s is a table scan, then these functions are equivalent to the statistical metadata
for the table. Otherwise, each operator has a formula for computing the function
based on the values of the functions on its input scans.

• An SQL query may have several equivalent query trees, with each tree
corresponding to a different scan. The database planner is responsible for creating
the scan having the lowest estimated cost. In order to do so, the planner may need
to construct several query trees and compare their costs. It will create a scan only
for the tree having lowest cost.

• A query tree constructed for the purpose of cost comparison is called a plan. Plans
and scans are conceptually similar, in that they both denote a query tree. The
difference is that a plan has methods for estimating costs; it accesses the data-
base’s metadata, but not the actual data. Creating a plan does not incur any disk
accesses. The planner creates multiple plans and compares their costs. It then
chooses the plan having the lowest cost and opens a plan from it.

• The planner is the database engine component that transforms an SQL statement
into a plan.

• In addition, the planner verifies the statement is semantically meaningful, by
checking that:

– The mentioned tables and fields actually exist in the catalog
– The mentioned fields are not ambiguous
– The actions on fields are type-correct
– All constants are the correct size and type for their fields

• The basic query planning algorithm creates a rudimentary plan, as follows:

1. Construct a plan for each table T in the from clause.

(a) If T is a stored table, then the plan is a table plan for T.
(b) If T is a view, then the plan is the result of calling this algorithm

recursively on the definition of T.

2. Take the product of the tables in the from clause, in the order given.
3. Select on the predicate in the where clause.
4. Project on the fields in the select clause.

288 10 Planning

• The basic query planning algorithm generates a naïve and often inefficient plan.
The planning algorithms in commercial database systems perform extensive
analysis of the various equivalent plans, which will be described in Chap. 15.

• Delete and modify statements are treated similarly. The planner creates a select
plan that retrieves those records to be deleted (or modified). The methods
executeDelete and executeModify open the plan and iterate through
the resulting scan, performing the appropriate action on each of its records. In the
case of the modify statement, each record is modified; in the case of the delete
statement, each record is deleted.

• The plan for an insert statement is a table plan for the underlying table. The
executeInsert method opens the plan and inserts a new record into that
resulting scan.

• The plans for the creation statements do not need to create plans, because they do
not access any data. Instead, the methods call the appropriate metadata method to
perform the creation.

10.8 Suggested Reading

The planner in this chapter understands only a small subset of SQL, and I have
touched only briefly on planning issues for the more complex constructs. The article
(Kim, 1982) describes the problems with nested queries and proposes some solu-
tions. The article (Chaudhuri, 1998) discusses strategies for the more difficult
aspects of SQL, including outer joins and nested queries.

Chaudhuri, S. (1998). An overview of query optimization in relational systems. In
Proceedings of the ACM Principles of Database Systems Conference (pp. 34–43).

Kim, W. (1982). On optimizing an SQL-like nested query. ACM Transactions on
Database Systems, 7(3), 443–469.

10.9 Exercises

Conceptual Exercises

10.1. Consider the following relational algebra query:

T1 = select(DEPT, DName='math')
T2 = select(STUDENT, GradYear=2018)
product(T1, T2)

Using the same assumptions as in Sect. 10.2:

(a) Calculate the number of disk accesses required to execute the operation.
(b) Calculate the number of disk accesses required to execute the operation if

the arguments to product are exchanged.

10.9 Exercises 289

https://doi.org/10.1007/978-3-030-33836-7_15

10.2. Calculate B(s), R(s), and V(s, F) for the queries of Figs. 10.11 and 10.12.
10.3. Show that if the arguments to the product operation in Sect. 10.2.5 were

swapped, then the entire operation would require 4502 block accesses.
10.4. Section 10.2.4 stated that the product of STUDENT and DEPT is more

efficient when STUDENT is the outer scan. Using the statistics of Fig. 7.8,
calculate the number of block accesses the product would require.

10.5. For each of the following SQL statements, draw a picture of the plan that
would be generated by the basic planner of this chapter.

(a) select SName, Grade
from STUDENT, COURSE, ENROLL, SECTION
where SId ¼ StudentId and SectId ¼ SectionId
and CourseId ¼ CId and Title ¼ 'Calculus'

(b) select SName
from STUDENT, ENROLL
where MajorId ¼ 10 and SId ¼ StudentId and Grade ¼ 'C'

10.6. For each of the queries in Exercise 10.5, explain what things the planner must
check to verify its correctness.

10.7. For each of the following update statements, explain what things the planner
must check to verify its correctness.

(a) insert into STUDENT(SId, SName, GradYear, MajorId)
values(120, 'abigail', 2012, 30)

(b) delete from STUDENT
where MajorId ¼ 10 and SID in (select StudentId

from ENROLL
where Grade ¼ 'F')

(c) update STUDENT
set GradYear ¼ GradYear + 3
where MajorId in (select DId from DEPT

where DName ¼ 'drama')

Programming Exercises

10.8. The SimpleDB planner does not verify that table names are meaningful.

(a) What problem will occur when a nonexistent table is mentioned in a
query?

(b) Fix the Planner class to verify table names. Throw a
BadSyntaxException if the table is nonexistent.

10.9. The SimpleDB planner does not verify that field names exist and are unique.

(a) What problem will occur when a nonexistent field name is mentioned in a
query?

(b) What problem will occur when tables having common field names are
mentioned in a query?

(c) Fix the code to perform the appropriate verification.

290 10 Planning

https://doi.org/10.1007/978-3-030-33836-7_7

10.10. The SimpleDB planner does not type-check predicates.

(a) What problem will occur if a predicate in an SQL statement is not type-
correct?

(b) Fix the code to perform the appropriate verification.

10.11. The SimpleDB update planner doesn’t check that string constants are the
right size and type for the specified fields in an insert statement, nor does it
verify that the size of the constant and field lists are the same. Fix the code
appropriately.

10.12. The SimpleDB update planner doesn’t verify that the assignment of a new
value to the specified field in a modify statement is type-correct. Fix the code
appropriately.

10.13. Exercise 9.11 asked you to modify the parser to allow range variables, and
Exercise 8.14 asked you to implement the class RenameScan. Range vari-
ables can be implemented by using renaming—first the planner renames each
table field by adding the range variable as a prefix; then it adds the product,
select, and project operators; and then it renames the fields back to their
non-prefixed names.

(a) Write a class RenamePlan.
(b) Revise the basic query planner to perform this renaming.
(c) Write a JDBC program to test out your code. In particular, write a JDBC

program that performs a self-join, such as finding the students having the
same major as Joe.

10.14. Exercise 9.12 asked you to modify the parser to allow the AS keyword in the
select clause, and Exercise 8.15 asked you to implement the class
ExtendScan.

(a) Write the class ExtendPlan.
(b) Revise the basic query planner to add ExtendPlan objects into the

query plan. They should appear after the product plans but before the
project plan.

(c) Write a JDBC program to test out your code.

10.15. Exercise 9.13 asked you to modify the parser to allow the UNION keyword,
and Exercise 8.16 asked you to implement the class UnionScan.

(a) Write a class UnionPlan.
(b) Revise the basic query planner to add UnionPlan objects into the

query plan. They should appear after the project plan.
(c) Write a JDBC program to test out your code.

10.9 Exercises 291

10.16. Exercise 9.14 asked you to modify the parser to allow nested queries, and
Exercise 8.17 asked you to implement the classes SemijoinScan and
AntijoinScan.

(a) Write the classes SemijoinPlan and AntijoinPlan.
(b) Revise the basic query planner to add these objects for these classes into

the query plan. They should appear after the product plans but before the
extend plans.

(c) Write a JDBC program to test out your code.

10.17. Exercise 9.15 asked you to modify the parser to allow “�” to appear in a
query’s select clause.

(a) Revise the planner appropriately.
(b) Write a JDBC client to test out your code.

10.18. Exercise 9.16 asked you to modify the SimpleDB parser to handle a new kind
of insert statement.

(a) Revise the planner appropriately.
(b) Write a JDBC client to test out your code.

10.19. The basic update planner inserts its new record starting from the beginning of
the table.

(a) Design and implement a modification to the planner that efficiently
inserts from the end of the table or perhaps from the end of the previous
insertion.

(b) Compare the benefits of the two strategies. Which do you prefer?

10.20. The SimpleDB basic update planner assumes that the table mentioned in an
update command is a stored table. Standard SQL also allows the table to be
the name of a view, provided that the view is updatable.

(a) Revise the update planner so that views can be updated. The planner
doesn’t need to check for non-updatable views. It should just try to
perform the update and throw an exception if something goes wrong.
Note that you will need to modify ProjectScan to implement
UpdateScan interface, as in Exercise 8.12.

(b) Explain what the planner would have to do to verify that the view
definition was updatable.

10.21. The SimpleDB basic update planner deals with view definitions by
“unparsing” the query and saving the query string in the catalog. The basic
query planner then has to reparse the view definition each time it is used in a
query. An alternative approach is for the create-view planner to save the
parsed version of the query data in the catalog, which can then be retrieved by
the query planner.

292 10 Planning

(a) Implement this strategy. (Hint: Use object-serialization in Java. Serialize
the QueryData object, and use a StringWriter to encode the
object as a string. The metadata method getViewDef can then reverse
the process, reconstructing the QueryData object from the stored
string.)

(b) How does this implementation compare to the approach taken in
SimpleDB?

10.22. Revise the SimpleDB server so that whenever a query is executed, the query
and its corresponding plan are printed in the console window; this informa-
tion will provide interesting insight into how the server is processing the
query. There are two tasks required:

(a) Revise all of the classes that implement the Plan interface so that they
implement the method toString. This method should return a well-
formatted string representation of the plan, similar to a relational algebra
query.

(b) Revise the method executeQuery (in class simpledb.jdbc.
network.RemoteStatementImpl and simpledb.jdbc.
embedded.EmbeddedStatement) so that it prints its input query
and the string from part (a) in the server’s console window.

10.9 Exercises 293

Chapter 11
JDBC Interfaces

This chapter examines how to build JDBC interfaces for a database engine. Writing
an embedded interface is relatively straightforward—you simply need to write each
JDBC class using corresponding classes from the engine. Writing a server-based
interface also requires the development of additional code to implement the server
and handle the JDBC requests. This chapter shows how the use of Java RMI can
simplify this additional code.

11.1 The SimpleDB API

Chapter 2 introduced JDBC as the standard interface for connecting to database
engines and contained several example JDBC clients. Subsequent chapters, how-
ever, did not use JDBC. Instead, those chapters contained test programs that
illustrated different features of the SimpleDB engine. Nevertheless, these test pro-
grams are also database clients; they just happen to access the SimpleDB engine
using the SimpleDB API instead of the JDBC API.

The SimpleDB API consists of the public classes of SimpleDB (such as
SimpleDB, Transaction, BufferMgr, Scan, and so on) and their public
methods. This API is far more extensive than JDBC and can access the low-level
details of the engine. This low-level access allows application programs to customize
the functionality provided by the engine. For example, the test code of Chap. 4
circumvented the transaction manager to access the log and buffer managers directly.

Such low-level access comes at a price. The application writer must have an
intimate knowledge of the target engine’s API, and porting the application to a
different engine (or to use a server-based connection) would require rewriting it to
conform to a different API. The purpose of JDBC is to provide a standard API that,
apart from minor configuration specifications, is the same for any database engine
and configuration mode.

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_11

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_2
https://doi.org/10.1007/978-3-030-33836-7_4
https://doi.org/10.1007/978-3-030-33836-7_11

To implement the JDBC API in SimpleDB, it suffices to observe the correspon-
dence between the two APIs. For example, consider Fig. 11.1. Part (a) contains a
JDBC application that queries the database, prints its result set, and closes it. Part
(b) gives the corresponding application using the SimpleDB API. The code creates a
new transaction, calls the planner to get a plan for an SQL query, opens the plan to
get a scan, iterates through the scan, and closes it.

The code in Fig. 11.1b uses five classes from SimpleDB: SimpleDB, Trans-
action, Planner, Plan, and Scan. The JDBC code uses the interfaces

Driver d = new EmbeddedDriver();
Connection conn = d.connect("studentdb", null);

Statement stmt = conn.createStatement();
String qry = "select sname, gradyear from student";
ResultSet rs = stmt.executeQuery(qry);

while (rs.next())
System.out.println(rs.getString("sname") + " "
 + rs.getInt("gradyear"));

(a)

SimpleDB db = new SimpleDB("studentdb");
Transaction tx = db.newTx();

Planner planner = db.planner();
String qry = "select sname, gradyear from student";
Plan p = planner.createQueryPlan(qry, tx);
Scan s = p.open();

while (s.next())
System.out.println(s.getString("sname") + " "
 + s.getInt("gradyear"));

(b)

rs.close();

s.close();

Fig. 11.1 Two ways to access the database engine. (a) Using the JDBC API, (b) using the
SimpleDB API

JDBC Interface SimpleDB Class

Driver SimpleDB
Connection Transaction
Statement Planner, Plan
ResultSet Scan
ResultSetMetaData Schema

Fig. 11.2 The correspondence between JDBC interfaces and SimpleDB classes

296 11 JDBC Interfaces

Driver, Connection, Statement, and ResultSet. Figure 11.2 shows the
correspondence between these constructs.

The constructs in each row of Fig. 11.2 share a common purpose. For example,
both Connection and Transactionmanage the current transaction, the classes
Statement and Planner process SQL statements, and ResultSet and Scan
iterate through the result of a query. This correspondence is the key to implementing
a JDBC API for SimpleDB.

11.2 Embedded JDBC

The package simpledb.jdbc.embedded contains a class for each of the JDBC
interfaces. The code for the class EmbeddedDriver appears in Fig. 11.3.

The class has an empty constructor. Its only method, connect, creates a
new SimpleDB object for the specified database, passes it to the
EmbeddedConnection constructor, and returns that new object. Note that the
JDBC Driver interface forces the method to declare that it can throw an
SQLException, even though it won’t.

The JDBC Driver interface actually has more methods than just connect,
although none are relevant to SimpleDB. To ensure that EmbeddedDriver can
implement Driver, it extends the class DriverAdapter, which does implement
those methods. The code for DriverAdapter appears in Fig. 11.4.

DriverAdapter implements all the Driver methods by either returning a
default value or by throwing an exception. The EmbeddedDriver class overrides
the method that SimpleDB cares about (namely, connect) and uses the
DriverAdapter implementations of the other methods.

Figure 11.5 contains the code for the class EmbeddedConnection. This class
manages transactions. Most of the work is performed by the Transaction object
currentTx. For example, the commit method calls currentTx.commit and
then creates a new transaction to be the new value of currentTx. The method
createStatement passes a Planner object to the EmbeddedStatement
constructor, as well as a reference to itself.

EmbeddedConnection does not implement Connection directly but
instead extends ConnectionAdapter. The code for ConnectionAdapter
provides default implementations of all the Connection methods and is
omitted here.

public class EmbeddedDriver extends DriverAdapter {
public EmbeddedConnection connect(String dbname, Properties p)

throws SQLException {
SimpleDB db = new SimpleDB(dbname);
return new EmbeddedConnection(db);

}
}

Fig. 11.3 The class EmbeddedDriver

11.2 Embedded JDBC 297

The code for EmbeddedStatement appears in Fig. 11.6. The class is respon-
sible for executing SQL statements. The method executeQuery obtains a plan
from the planner and passes the plan to a new RemoteResultSet object for
execution. The method executeUpdate simply calls the planner’s corresponding
method.

These two methods are also responsible for implementing the JDBC autocommit
semantics. If the SQL statement executes correctly, then it must get committed. The
method executeUpdate tells the connection to commit the current transaction as
soon as the update statement has completed. On the other hand, the method
executeQuery cannot immediately commit because its result set is still in use.
Instead, the Connection object is sent to the EmbeddedResultSet object so
that its close method can commit the transaction.

If something goes wrong during the execution of an SQL statement then the
planner code will throw a runtime exception. These two methods will catch this
exception, roll back the transaction, and throw an SQL exception.

public abstract class DriverAdapter implements Driver {
public boolean acceptsURL(String url) throws SQLException {

throw new SQLException("operation not implemented");
}

public Connection connect(String url, Properties info)
throws SQLException {

throw new SQLException("operation not implemented");
}

public int getMajorVersion() {
return 0;

}

public int getMinorVersion() {
return 0;

}

public DriverPropertyInfo[] getPropertyInfo(String url,
 Properties info) {

return null;
}

public boolean jdbcCompliant() {
return false;

}

public Logger getParentLogger()
 throws SQLFeatureNotSupportedException {

throw new SQLFeatureNotSupportedException("op not implemented");
}

}

Fig. 11.4 The class DriverAdapter

298 11 JDBC Interfaces

The class EmbeddedResultSet contains methods for executing a query plan;
its code appears in Fig. 11.7. Its constructor opens the Plan object given to it and
saves the resulting scan. The methods next, getInt, getString, and close
simply call their corresponding scan methods. The method close also commits the
current transaction, as required by the JDBC autocommit semantics. The
EmbeddedResultSet class obtains a Schema object from its plan. The
getMetaData method passes this Schema object to the EmbeddedMetaData
constructor.

TheEmbeddedMetaData class contains theSchema object that was passed into
its constructor; its code appears in Fig. 11.8. The class Schema contains analogous
methods to those in the ResultSetMetaData interface; the difference is that the
ResultSetMetaData methods refer to fields by column number, whereas the
Schema methods refer to fields by name. The code for EmbeddedMetaData
therefore involves translating the method calls from one way to the other.

class EmbeddedConnection extends ConnectionAdapter {
private SimpleDB db;
private Transaction currentTx;
private Planner planner;

public EmbeddedConnection(SimpleDB db) {
this.db = db;
currentTx = db.newTx();
planner = db.planner();

}

public EmbeddedStatement createStatement() throws SQLException {
return new EmbeddedStatement(this, planner);

}

public void close() throws SQLException {
commit();

}

public void commit() throws SQLException {
currentTx.commit();
currentTx = db.newTx();

}

public void rollback() throws SQLException {
currentTx.rollback();
currentTx = db.newTx();

}

Transaction getTransaction() {
return currentTx;

}
}

Fig. 11.5 The class EmbeddedConnection

11.2 Embedded JDBC 299

11.3 Remote Method Invocation

The rest of this chapter addresses the issue of how to implement a server-based
JDBC interface. The hardest part of implementing server-based JDBC is writing
code for the server. Fortunately, the Java library contains classes that do most of the
work; these classes are known as Remote Method Invocation (or RMI). This section
introduces RMI. The next section shows how to use it to write a server-based JDBC
interface.

class EmbeddedStatement extends StatementAdapter {
private EmbeddedConnection conn;
private Planner planner;

public EmbeddedStatement(EmbeddedConnection conn,
 Planner planner) {

this.conn = conn;
this.planner = planner;

}

public EmbeddedResultSet executeQuery(String qry)
 throws SQLException {

try {
Transaction tx = conn.getTransaction();
Plan pln = planner.createQueryPlan(qry, tx);
return new EmbeddedResultSet(pln, conn);

}
catch(RuntimeException e) {

conn.rollback();
throw new SQLException(e);

}
}

public int executeUpdate(String cmd) throws SQLException {
try {

Transaction tx = conn.getTransaction();
int result = planner.executeUpdate(cmd, tx);
conn.commit();
return result;

}
catch(RuntimeException e) {

conn.rollback();
throw new SQLException(e);

}
}

public void close() throws SQLException {
}

}

Fig. 11.6 The class EmbeddedStatement

300 11 JDBC Interfaces

public class EmbeddedResultSet extends ResultSetAdapter {
private Scan s;
private Schema sch;
private EmbeddedConnection conn;

public EmbeddedResultSet(Plan plan, EmbeddedConnection conn)
throws SQLException {

s = plan.open();
sch = plan.schema();
this.conn = conn;

}

public boolean next() throws SQLException {
try {

return s.next();
}
catch(RuntimeException e) {

conn.rollback();
throw new SQLException(e);

}
}

public int getInt(String fldname) throws SQLException {
try {

fldname = fldname.toLowerCase(); // for case-insensitivity
return s.getInt(fldname);

}
catch(RuntimeException e) {

conn.rollback();
throw new SQLException(e);

}
}

public String getString(String fldname) throws SQLException {
try {

fldname = fldname.toLowerCase(); // for case-insensitivity
return s.getString(fldname);

}
catch(RuntimeException e) {

conn.rollback();
throw new SQLException(e);

}
}
public ResultSetMetaData getMetaData() throws SQLException {

return new EmbeddedMetaData(sch);
}
public void close() throws SQLException {

s.close();
conn.commit();

}
}

Fig. 11.7 The class EmbeddedResultSet

11.3 Remote Method Invocation 301

11.3.1 Remote Interfaces

RMI makes it possible for Java program on one machine (the client) to interact with
objects that live on another machine (the server). To use RMI, you must define one
or more interfaces that extend the Java interface Remote; these are called its remote
interfaces. You also need to write an implementation class for each interface; these
classes will live on the server and are called remote implementation classes. RMI
will automatically create corresponding implementation classes that live on the
client; these are called stub classes. When the client calls a method from a stub
object, the method call is sent across the network to the server and executed there by
the corresponding remote implementation object; the result is then sent back to the
stub object on the client. In short, a remote method is called by the client (using the
stub object) but executed on the server (using the remote implementation object).

SimpleDB implements five remote interfaces in its package simpledb.jdbc.
network: RemoteDriver, RemoteConnection, RemoteStatement,
RemoteResultSet, and RemoteMetaData; their code appears in Fig. 11.9.
These remote interfaces mirror their corresponding JDBC interfaces, with two
differences:

public class EmbeddedMetaData extends ResultSetMetaDataAdapter {
private Schema sch;

public EmbeddedMetaData(Schema sch) {
this.sch = sch;

}

public int getColumnCount() throws SQLException {
return sch.fields().size();

}

public String getColumnName(int column) throws SQLException {
return sch.fields().get(column-1);

}

public int getColumnType(int column) throws SQLException {
String fldname = getColumnName(column);
return sch.type(fldname);

}

public int getColumnDisplaySize(int column) throws SQLException {
String fldname = getColumnName(column);
int fldtype = sch.type(fldname);
int fldlength = (fldtype == INTEGER) ? 6 : sch.length(fldname);
return Math.max(fldname.length(), fldlength) + 1;

}
}

Fig. 11.8 The class EmbeddedMetaData

302 11 JDBC Interfaces

• They only implement the basic JDBC methods shown in Fig. 2.1.
• They throw a RemoteException (as required by RMI) instead of an

SQLException (as required by JDBC).

To get a feel for how RMI works, consider the client-side code fragment of
Fig. 11.10. Each of the variables in the code fragment denotes a remote interface.
However, because the code fragment is on the client, you know that the actual
objects held by these variables are from the stub classes. The fragment doesn’t show
how variable rdvr obtains its stub; it does so via the RMI registry, which will be
discussed in Sect. 11.3.2.

Consider the call to rdvr.connect. The stub implements its connect
method by sending a request over the network to its corresponding
RemoteDriver implementation object on the server. This remote implementation
object executes its connect method on the server, which will cause a new

public interface RemoteDriver extends Remote {
public RemoteConnection connect() throws RemoteException;

}

public interface RemoteConnection extends Remote {
public RemoteStatement createStatement() throws RemoteException;
public void close() throws RemoteException;

}

public interface RemoteStatement extends Remote {
public RemoteResultSet executeQuery(String qry) throws RemoteException;
public int executeUpdate(String cmd) throws RemoteException;

}

public interface RemoteResultSet extends Remote {
public boolean next() throws RemoteException;
public int getInt(String fldname) throws RemoteException;
public String getString(String fldname) throws RemoteException;
public RemoteMetaData getMetaData() throws RemoteException;
public void close() throws RemoteException;

}

public interface RemoteMetaData extends Remote {
public int getColumnCount() throws RemoteException;
public String getColumnName(int column) throws RemoteException;
public int getColumnType(int column) throws RemoteException;
public int getColumnDisplaySize(int column) throws RemoteException;

}

Fig. 11.9 The SimpleDB remote interfaces

RemoteDriver rdvr = ...
RemoteConnection rconn = rdvr.connect();
RemoteStatement rstmt = rconn.createStatement();

Fig. 11.10 Accessing remote interfaces from the client

11.3 Remote Method Invocation 303

https://doi.org/10.1007/978-3-030-33836-7_2

RemoteConnection implementation object to be created on the server. A stub
for this new remote object is sent back to the client, which stores it as the value of
variable rconn.

Now consider the call to rconn.createStatement. The stub object sends a
request to its corresponding RemoteConnection implementation object on the
server. This remote object executes its createStatement method. A
RemoteStatement implementation object gets created on the server, and its
stub is returned to the client.

11.3.2 The RMI Registry

Each client-side stub object contains a reference to its corresponding server-side
remote implementation object. A client, once it has a stub object, is able to interact
with the server through this object, and that interaction may create other stub objects
for the client to use. But the question remains—how does a client get its first stub?
RMI solves this problem by means of a program called the rmi registry. A server
publishes stub objects in the RMI registry, and clients retrieve the stub objects
from it.

The SimpleDB server publishes just one object, of type RemoteDriver. The
publishing is performed by the following three lines of code from the simpledb.
server.StartServer program:

Registry reg = LocateRegistry.createRegistry(1099);
RemoteDriver d = new RemoteDriverImpl();
reg.rebind("simpledb", d);

The method createRegistry starts the RMI registry on the local machine,
using the specified port. (The convention is to use port 1099.) The method call
reg.rebind creates a stub for the remote implementation object d, saves it in the
rmi registry, and makes it available to clients under the name “simpledb.”

A client can request a stub from the registry by calling the method lookup on the
registry. In SimpleDB, this request is made via the following lines in the
NetworkDriver class:

String host = url.replace("jdbc:simpledb://", "");
Registry reg = LocateRegistry.getRegistry(host, 1099);
RemoteDriver rdvr = (RemoteDriver) reg.lookup("simpledb");

The method getRegistry returns a reference to the RMI registry on the
specified host and port. The call to reg.lookup goes to the RMI registry, retrieves
the stub from it named “simpledb,” and returns it to the caller.

304 11 JDBC Interfaces

11.3.3 Thread Issues

When building a large Java program, it is always a good idea to be very clear about
what threads exist at any point. In a server-based execution of SimpleDB, there will
be two sets of threads: the threads on the client machines and the threads on the
server machine.

Each client has its own thread on its machine. This thread continues throughout
the execution of the client; all of a client’s stub objects are called from this thread. On
the other hand, each remote object on the server executes in its own separate thread.
A server-side remote object can be thought of as a “mini-server,” which sits waiting
for its stub to connect to it. When a connection is made, the remote object performs
the requested work, sends the return value back to the client, and waits patiently for
another connection. The RemoteDriver object created by simpledb.
server.Startup runs in a thread that can be thought of as the “database server”
thread.

Whenever a client makes a remote method call, the client thread waits while the
corresponding server thread runs, and resumes when the server thread returns a
value. Similarly, the server-side thread will be dormant until one of its methods is
called and will resume its dormancy when the method completes. Thus, only one of
these client and server threads will be doing anything at any given time. Informally,
it seems as if the client’s thread as actually moving back and forth between the client
and server as remote calls are made. Although this image can help you visualize the
flow of control in a client-server application, it is also important to understand what
is really happening.

One way to distinguish between the client-side and server-side threads is to print
something. A call to System.out.println will show up on the client machine
when called from a client thread and on the server machine when called from a server
thread.

11.4 Implementing the Remote Interfaces

The implementation of each remote interface requires two classes: the stub class and
the remote implementation class. By convention, the name of the remote implemen-
tation class is its interface name appended with the suffix “Impl.” You never need to
know the name of the stub classes.

Fortunately, the communication between server-side objects and their stubs is the
same for all remote interfaces, which means that all communication code can be
provided by the RMI library classes. The programmer only needs to supply the code
specific to each particular interface. In other words, the programmer does not need to
write the stub classes at all and writes only the portions of the remote implementation
classes that specify what the server does for each method call.

11.4 Implementing the Remote Interfaces 305

The class RemoteDriverImpl is the entry point into the SimpleDB server; its
code appears in Fig. 11.11. There will be only one RemoteDriverImpl object
created, by the simpledb.server.Startup bootstrap class, and its stub is the
only object published in the RMI registry. Each time its connect method is called
(via the stub), it creates a new RemoteConectionImpl remote object on the
server and runs it in a new thread. RMI transparently creates the corresponding
RemoteConnection stub object and returns it to the client.

Note how this code is concerned only with server-side objects. In particular, it
contains no network code or references to its associated stub object, and when it
needs to create a new remote object, it only creates the remote implementation object
(and not the stub object). The RMI class UnicastRemoteObject contains all of
the code needed to perform these other tasks.

The functionality of RemoteDriverImpl is essentially the same as
EmbeddedDriver of Fig. 11.3. It differs only in that its connect method has
no arguments. The reason for this difference is that a SimpleDB embedded driver
can choose the database to connect to, whereas the server-based driver must connect
to the database associated with the remote SimpleDB object.

In general, the functionality of each JDBC remote implementation class is
equivalent to the corresponding embedded JDBC class. For another example,
consider the class RemoteConnectionImpl, whose code appears in
Fig. 11.12. Note the close correspondence with the EmbeddedConnection
code of Fig. 11.5. The code for the classes RemoteStatementImpl,
RemoteResultsetImpl, and RemoteMetaDataImpl correspond similarly
to their embedded equivalents and are omitted.

11.5 Implementing the JDBC Interfaces

SimpleDB’s implementation of the RMI remote classes provides all of the features
required by the JDBC interfaces in java.sql, except two: The RMI methods do
not throw SQL exceptions, and they do not implement all of the methods in the
interface. That is, you have viable classes that implement interfaces
RemoteDriver, RemoteConnection, etc., but what you really need are

public class RemoteDriverImpl extends UnicastRemoteObject
implements RemoteDriver {

public RemoteDriverImpl() throws RemoteException {
}

public RemoteConnection connect() throws RemoteException {
return new RemoteConnectionImpl();

}
}

Fig. 11.11 The SimpleDB class RemoteDriverImpl

306 11 JDBC Interfaces

classes that implement Driver, Connection, etc. This is a common problem in
object-oriented programming, and the solution is to implement the required classes
as client-side wrappers of their corresponding stub objects.

To see how the wrapping works, consider the class NetworkDriver, whose
code appears in Fig. 11.13. Its connect method must return an object of type
Connection, which in this case will be a NetworkConnection object. To do
so, it first obtains a RemoteDriver stub from the RMI registry. It then calls the
stub’s connect method to obtain a RemoteConnection stub. The desired
NetworkConnection object is created by passing the RemoteConnection
stub into its constructor.

The code for the other JDBC interfaces is similar. For an example, Fig. 11.14
gives the code for NetworkConnection. Its constructor takes a

class RemoteConnectionImpl extends UnicastRemoteObject
implements RemoteConnection {

private SimpleDB db;
private Transaction currentTx;
private Planner planner;

RemoteConnectionImpl(SimpleDB db) throws RemoteException {
this.db = db;
currentTx = db.newTx();
planner = db.planner();

}

public RemoteStatement createStatement() throws RemoteException {
return new RemoteStatementImpl(this, planner);

}

public void close() throws RemoteException {
currentTx.commit();

}

Transaction getTransaction() {
return currentTx;

}

void commit() {
currentTx.commit();
currentTx = db.newTx();

}

void rollback() {
currentTx.rollback();
currentTx = db.newTx();

}
}

Fig. 11.12 The SimpleDB class RemoteConnectionImpl

11.5 Implementing the JDBC Interfaces 307

RemoteConnection object, which it uses to implement its methods. The code for
createStatement passes the newly created RemoteStatement object to the
NetworkStatement constructor and returns that object. In these classes, when-
ever a stub object throws a RemoteException, that exception is caught and
translated to an SQLException.

public class NetworkDriver extends DriverAdapter {
public Connection connect(String url, Properties prop)
 throws SQLException {

try {
String host = url.replace("jdbc:simpledb://", "");
Registry reg = LocateRegistry.getRegistry(host, 1099);
RemoteDriver rdvr = (RemoteDriver) reg.lookup("simpledb");
RemoteConnection rconn = rdvr.connect();
return new NetworkConnection(rconn);

}
catch (Exception e) {

throw new SQLException(e);
}

}
}

Fig. 11.13 The code for the SimpleDB class NetworkDriver

public class NetworkConnection extends ConnectionAdapter {
private RemoteConnection rconn;

public NetworkConnection(RemoteConnection c) {
rconn = c;

}

public Statement createStatement() throws SQLException {
try {

RemoteStatement rstmt = rconn.createStatement();
return new NetworkStatement(rstmt);

}
catch(Exception e) {

throw new SQLException(e);
}

}
public void close() throws SQLException {

try {
rconn.close();

}
catch(Exception e) {

throw new SQLException(e);
}

}
}

Fig. 11.14 The code for the SimpleDB class NetworkConnection

308 11 JDBC Interfaces

11.6 Chapter Summary

• There are two ways that an application program can access a database: via an
embedded connection and via a server-based connection. SimpleDB, like most
database engines, implements the JDBC API for both types of connection.

• The SimpleDB embedded JDBC connection takes advantage of the fact that each
JDBC interface has a corresponding SimpleDB class.

• SimpleDB implements a server-based connection via the Java Remote Method
Invocation (RMI) mechanism. Each JDBC interface has a corresponding RMI
remote interface. Their primary difference is that they throw
RemoteException (as required by RMI) instead of SQLException
(as required by JDBC).

• Each server-side remote implementation object executes in its own thread,
waiting for a stub to contact it. The SimpleDB startup code creates a remote
implementation object of type RemoteDriver and stores a stub to it in the RMI
registry. When a JDBC client wants a connection to the database system, it
obtains the stub from the registry and calls its connect method.

• The connect method is typical of RMI remote methods. It creates a new
RemoteConnectionImpl object on the server machine, which runs in its
own thread. The method then returns a stub to this object back to the JDBC client.
The client can call Connection methods on the stub, which cause the
corresponding methods to be executed by the server-side implementation object.

• Server-based JDBC clients do not use remote stubs directly, because they imple-
ment the remote interfaces instead of the JDBC interfaces. Instead, the client-side
objects wrap their corresponding stub objects.

11.7 Suggested Reading

There are numerous books dedicated to explaining RMI, such as Grosso (2001). In
addition, Oracle’s RMI tutorial is at https://docs.oracle.com/javase/tutorial/rmi/
index.html.

The driver implementation used by SimpleDB is technically known as a “Type 4”
driver. The online article Nanda (2002) describes and compares the four different
driver types. The companion online article Nanda et al. (2002) leads you through the
construction of an analogous Type 3 driver.

Grosso, W. (2001). Java RMI. Sebastopol, CA: O’Reilly.
Nanda, N. (2002). Drivers in the wild. JavaWorld. Retrieved from www.javaworld.

com/javaworld/jw-07-2000/jw-0707-jdbc.html
Nanda, N., & Kumar, S. (2002). Create your own Type 3 JDBC driver. JavaWorld.

Retrieved from www.javaworld.com/javaworld/jw-05-2002/jw-0517-jdbcdriver.
html

11.7 Suggested Reading 309

https://docs.oracle.com/javase/tutorial/rmi/index.html
https://docs.oracle.com/javase/tutorial/rmi/index.html
http://www.javaworld.com/javaworld/jw-07-2000/jw-0707-jdbc.html
http://www.javaworld.com/javaworld/jw-07-2000/jw-0707-jdbc.html
http://www.javaworld.com/javaworld/jw-05-2002/jw-0517-jdbcdriver.html
http://www.javaworld.com/javaworld/jw-05-2002/jw-0517-jdbcdriver.html

11.8 Exercises

Conceptual Exercises

11.1. Trace the code of the server-based demo client StudentMajor.java, using the
code from the classes in simpledb.jdbc.network. What server-side
objects get created? What client-side objects get created? What threads get
created?

11.2. The RemoteStatementImpl methods executeQuery and
executeUpdate require a transaction. A RemoteStatementImpl
object gets its transaction by calling rconn.getTransaction() each
time executeQuery or executeUpdate is called. A simpler strategy
would be to just pass the transaction to each RemoteStatementImpl
object when it was created, via its constructor. However, this would be a very
bad idea. Give a scenario in which something incorrect could happen.

11.3. We know that remote implementation objects live on the server. But are the
remote implementation classes needed by the client? Are the remote inter-
faces needed by the client? Create a client configuration that contains the
SimpleDB folders sql and remote. What class files can you remove from
these folders without causing the client to break? Explain your results.

Programming Exercises

11.4. Revise the SimpleDB JDBC classes so that they implement the following
methods of ResultSet. Do it for both the embedded and server-based
implementations.

(a) The method beforeFirst, which repositions the result set to before
the first record (i.e., to its original state). Use the fact that scans have a
beforeFirst method which does the same thing.

(b) The method absolute(int n), which positions the result set to the
nth record. (Scans do not have a corresponding absolute method.)

11.5. Exercise 8.13 asked you to implement the scan methods afterLast and
previous.

(a) Modify the ResultSet implementation to contain these methods.
(b) Test your code by modifying the demo JDBC client class SimpleIJ to

print its output tables in reverse order.

11.6. Exercise 9.18 asked you to implement null values in SimpleDB. The JDBC
getInt and getStringmethods do not return null values. A JDBC client
can determine if the most recently retrieved value was null only by using the
wasNull method of ResultSet, as was explained in Exercise 2.8.

(a) Modify the ResultSet implementation to contain this method.
(b) Write a JDBC program to test your code.

310 11 JDBC Interfaces

11.7. The JDBC Statement interface contains a method close, which closes
any result set for that statement that may still be open. Implement this
method.

11.8. Standard JDBC specifies that the method Connection.close should
close all of its statements (as in Exercise 11.7). Implement this feature.

11.9. Standard JDBC specifies that a connection is automatically closed when a
Connection object is garbage collected (e.g., when a client program
completes). This ability is important, as it allows the database system to
release resources that were abandoned by forgetful clients. Use the
finalizer construct in Java to implement this feature.

11.10. SimpleDB implements autocommit mode, in which the system automatically
decides when to commit a transaction. Standard JDBC allows the client to
turn off autocommit mode and to commit and rollback its transactions
explicitly. The JDBC Connection interface has a method
setAutoCommit(boolean ac), which allows a client to turn auto-
commit mode on or off, a method getAutoCommit, which returns the
current auto-commit status, and the methods commit and rollback.
Implement these methods.

11.11. The SimpleDB server allows anyone to connect to it. Modify class
NetworkDriver so that its connect method authenticates users. The
method should extract a username and password from the Properties
object passed into it. The method should then compare them against the
contents of a server-side text file and throw an exception if there is no match.
Assume that new usernames and passwords are added (or dropped) by
simply editing the file on the server.

11.12. Modify RemoteConnectionImpl so that it only allows a limited number
of connections at a time. What should the system do if there are no available
connections left when a client tries to connect?

11.13. Recall from Sect. 2.2.4 that JDBC contains an interface
PreparedStatement, which separates the planning stage of a query
from the execution of its scan. A query can be planned once and executed
multiple times, perhaps with different values for some of its constants.
Consider the following code fragment:

String qry = "select SName from STUDENT where MajorId = ?";
PreparedStatement ps = conn.prepareStatement(qry);
ps.setInt(1, 20);
ResultSet rs = ps.executeQuery();

The “?” character in the query denotes an unknown constant, whose value
will be assigned prior to execution. A query can have multiple unknown
constants. The method setInt (or setString) assigns a value to the ith
unknown constant.

(a) Suppose that the prepared query contains no unknown constants. Then
the PreparedStatement constructor obtains the plan from the

11.8 Exercises 311

planner, and the executeQuery method passes the plan to the
ResultSet constructor. Implement this special case, which involves
changes to the jdbc packages, but no changes to the parser or planner.

(b) Now revise your implementation so that it handles unknown constants.
The parser must be changed to recognize the “?” characters. The planner
must be able to obtain a list of the unknown constants from the
parser; those constants can then be assigned values via setInt and
setString methods.

11.14. Suppose you start up a JDBC client program; however, it takes too long to
finish, so you cancel it using <CTRL-C>.

(a) What impact does this have on the other JDBC clients running on the
server?

(b) When and how will the server notice that your JDBC client program is no
longer running? What will it do when it finds out?

(c) What is the best way for the server to handle this kind of situation?
(d) Design and implement your answer to (c).

11.15. Write a Java class Shutdownwhose main method gracefully shuts down the
server. That is, existing connections are allowed to complete, but no new
connections should be made. When there are no more transactions running,
the code should write a quiescent checkpoint record to the log and write an
“ok to shut down” message on the console. (Hint: The easiest way to shut
down is to remove the SimpleDB object from the RMI registry. Also,
remember that this method will execute in a different JVM from the server.
You therefore will need to modify the server somehow so that it recognizes
that Shutdown has been called.)

312 11 JDBC Interfaces

Chapter 12
Indexing

When querying a table, a user is often interested in only some of its records, such as
the records having a specified value of some field. An index is a file that allows the
database engine to locate such records quickly, without having to search through the
entire table. This chapter considers three common ways to implement an index: static
hashing, extendable hashing, and B-trees. It then develops new relational algebra
operations that take advantage of indexes.

12.1 The Value of Indexing

This book has so far assumed that the records in a table have no particular organi-
zation. However, an appropriate table organization can significantly improve the
efficiency of some queries. For a good example of the issues, consider the white
pages of a paper telephone book.

A telephone book is essentially a large table, whose records list the name,
address, and phone number of each subscriber. This table is sorted by subscriber’s
last name and then by first name. Suppose that you want to retrieve the phone
number for a particular person. The best strategy is to use the fact that the records are
sorted by name. For example, you can do a binary search to locate the phone number
by examining at most log2N listings, where N is the total number of listings. This is
exceptionally quick. (For example, suppose that N ¼ 1,000,000. Then log2N < 20,
which means that you never need to examine more than 20 listings to find someone
in a phonebook of a million people.)

Although a telephone book is great for retrieving listings by subscriber name, it is
not very good for other kinds of retrieval, such as finding the subscriber who has a
particular phone number or lives at a particular address. The only way to get that
information from the telephone book is to examine every single one of its listings.
Such a search can be quite slow.

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_12

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_12

If you want an efficient way to look up subscribers given a phone number, then
you need a telephone book that is sorted by phone number (otherwise known as a
“reverse telephone book”). Of course, this telephone book is useful only if you know
the telephone number. If you have a reverse telephone book and want to know the
telephone number of a particular subscriber, then you would again have to examine
every single one of the book’s listings.

This discussion illustrates an obvious but critical fact about table organization: A
table can be organized only one way at a time. If you want retrievals to be fast given
either a phone number or a subscriber name, then you need two separate copies of the
telephone book, each having a different organization. And if you also wanted fast
retrieval of a phone number given an address, you would need a third copy of the
telephone book, organized by address.

This principle also applies to database tables. If you want to be able to efficiently
find the records in a table having a particular field value, you need a version of the
table organized by that field. Database engines address this need by supporting
indexes. A table can have one or more indexes, each defined on a separate field.
Each index acts as a version of the table organized on its field. For example, an index
on STUDENT’s MajorId field will make it easy to find STUDENT records having
a given major.

Specifically, an index is a file of index records. The index file has one index
record for each record in the associated table. Each index record has two values: the
record identifier of its associated record and the value of the specified field of that
record. SimpleDB calls these fields the index record’s datarid and dataval. Fig-
ure 12.1 depicts the STUDENT table and two indexes for it—one on the field SId

Fig. 12.1 The indexes
SID_IDX and
MAJOR_IDX

314 12 Indexing

and the other on the field MajorId. Each box denotes a record. The dataval for an
index record appears within its box, and the datarid appears as an arrow to the
associated STUDENT record.

The engine organizes the records in an index file according to their datavals.
Sections 12.3–12.5 will examine some sophisticated record organizations. For now,
Fig. 12.1 simply assumes that the index records are sorted by their datavals. This
sorted organization can be used as follows.

Suppose you want to find the STUDENT record whose Sid-value is 6. You first
do a binary search on SID_IDX to find the index record whose dataval is 6; then you
follow its datarid to locate the associated STUDENT record (which turns out to be
the record for Kim).

Suppose instead that you want to find the STUDENT records whose MajorId-
value is 20. You first do a binary search on MAJOR_IDX to find the first index
record whose dataval is 20. Note that because of sorting, the other three index
records having dataval 20 will appear consecutively after it in the file. Iterate through
these four index records; for each one, follow its datarid to locate the associated
STUDENT record.

How efficient is this use of indexes? Without indexes, the best you can do for
either query is to perform a sequential search of STUDENT. Recall the statistics of
Fig. 7.8, which stated that there are 45,000 STUDENT records that fit 10 per block.
Thus, the sequential scan of STUDENT could require 4500 block accesses.

The cost of using the SID_IDX index can be estimated as follows. The index will
have 45,000 records, which means that a binary search of the index would require
examining at most 16 index records (since log2(45,000) < 16); in the worst
case, each of these index records will be in a different block. It takes one more block
access to use the datarid of the chosen index record to access the desired STUDENT
record, resulting in 17 total block accesses—a considerable savings over the
sequential scan.

The cost of using the MAJOR_IDX index can be calculated as follows. The
statistics of Fig. 7.8 stated that there are 40 departments, which means that each
department will have about 1125 majors; consequently, MAJOR_IDX will have
about 1125 records for each dataval. Index records are small, so let’s assume that
they fit 100 per block; thus, the 1125 index records will fit in 12 blocks. Again, a
binary search on the index requires 16 block accesses to find the first index record.
Since all index records having the same dataval are consecutive in the file, iterating
through these 1125 index records will require 12 block accesses. Thus the query
requires 16 + 12 ¼ 28 block accesses of MAJOR_IDX. That’s very efficient. The
issue, however, is the number of STUDENT blocks that need to be accessed. When
each of the 1125 index records follows its datarid, it will independently request a
block of STUDENT. The result is that the query makes 1125 block accesses of
STUDENT and 1125 + 28 ¼ 1153 total block accesses. Although this is consider-
ably more accesses than SID_IDX needed, using MAJOR_IDX is still about four
times faster than doing a sequential search.

Now suppose that there were only 9 departments instead of 40. Then each
department would have 5000 majors, which means that MAJOR_IDX would have
about 5000 index records for each dataval. Consider what happens when you

12.1 The Value of Indexing 315

https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7

execute the previous query. There would now be 5000 MAJOR_IDX records
attempting to get their associated STUDENT record, meaning that there would be
5000 independent block reads of STUDENT! That is, using the index would result in
more block accesses than there are blocks in STUDENT. In this case, using the index
would be worse than simply scanning the STUDENT table directly. The index
would be completely useless.

These observations can be summarized in the following rule: The usefulness of an
index on field A is proportional to the number of different A-values in the table. This
rule implies that an index is most useful when its indexed field is a key of the table
(such as SID_IDX), because every record has a different key value. Conversely, the
rule also implies that an index will be useless if the number of different A-values is
less than the number of records per block (see Exercise 12.15).

12.2 SimpleDB Indexes

The previous section illustrated the ways that an index gets used: you can search the
index for the first record having a specified dataval; you can find all subsequent
index records having that dataval; and you can extract the datarid from a given index
record. The SimpleDB interface Index formalizes these operations. Its code
appears in Fig. 12.2.

These methods are similar to methods in TableScan—a client can position the
index at the beginning and move through its records, can retrieve the contents of the
current index record, and can insert and delete index records. However, because
indexes are used in well-known, specific ways, the methods in Index are more
specific than those in TableScan.

In particular, a SimpleDB client always searches an index by providing a value
(called the search key) and retrieving the index records having a matching dataval.
The method beforeFirst takes this search key as its argument. Subsequent calls
to next move the index to the next record whose dataval equals the search key and
return false if no more such records exist.

Moreover, an index does not need general-purpose getInt and getString
methods, because all index records have the same two fields. Moreover, a client
never needs to retrieve a record’s dataval, because it will always be the search key.

public interface Index {
public void beforeFirst(Constant searchkey);
public boolean next();
public RID getDataRid();
public void insert(Constant dataval, RID datarid);
public void delete(Constant dataval, RID datarid);
public void close();

}

Fig. 12.2 The code for the SimpleDB Index interface

316 12 Indexing

Thus, the only retrieval method it needs is getDataRid, which returns the datarid
of the current index record.

The class IndexRetrievalTest provides an example of index use; see
Fig. 12.3. The code opens the index on MajorId for students having major
20, retrieves the corresponding STUDENT records, and prints their names.

Note that the code uses a table scan to retrieve the STUDENT records, even
though the table is not really “scanned.” Instead, the code calls the table scan’s
moveToRid method to position the scan at the desired record.

The API of the index-related metadata classes appeared in Fig. 7.13. In particular,
the getIndexInfo method in IndexMgr returns a map containing IndexInfo
metadata for all available indexes of the specified table. You obtain the desired
Index object by selecting the appropriate IndexInfo object from the map and
calling its open method.

The class IndexUpdateTest in Fig. 12.4 illustrates how the database engine
deals with updates to a table. The code performs two tasks. The first task inserts a
new record into STUDENT; the second task deletes a record from STUDENT. The
code must deal with the insertion by inserting a corresponding record in each index

public class IndexRetrievalTest {
public static void main(String[] args) {

SimpleDB db = new SimpleDB("studentdb");
Transaction tx = db.newTx();
MetadataMgr mdm = db.mdMgr();

// Open an scan on the data table.
Plan studentplan = new TablePlan(tx, "student", mdm);
Scan studentscan = studentplan.open();

// Open the index on MajorId.
Map<String,IndexInfo> indexes = mdm.getIndexInfo("student", tx);
IndexInfo ii = indexes.get("majorid");
Index idx = ii.open();

// Retrieve all index records having a dataval of 20.
idx.beforeFirst(new Constant(20));
while (idx.next()) {

// Use the datarid to go to the corresponding STUDENT record.
RID datarid = idx.getDataRid();
studentscan.moveToRid(datarid);
System.out.println(studentscan.getString("sname"));

}

// Close the index and the data table.
idx.close();
studentscan.close();
tx.commit();

}
}

Fig. 12.3 Using an index in SimpleDB

12.2 SimpleDB Indexes 317

https://doi.org/10.1007/978-3-030-33836-7_7

Map<String,Index> indexes = new HashMap<>();
Map<String,IndexInfo> idxinfo = mdm.getIndexInfo("student", tx);
for (String fldname : idxinfo.keySet()) {

Index idx = idxinfo.get(fldname).open();
indexes.put(fldname, idx);

}

// Task 1: Insert a new STUDENT record for Sam.
// First, insert the record into STUDENT.
studentscan.insert();
studentscan.setInt("sid", 11);
studentscan.setString("sname", "sam");
studentscan.setInt("gradyear", 2023);
studentscan.setInt("majorid", 30);
// Then insert a record into each of the indexes.
RID datarid = studentscan.getRid();
for (String fldname : indexes.keySet()) {

Constant dataval = studentscan.getVal(fldname);
Index idx = indexes.get(fldname);
idx.insert(dataval, datarid);

}

// Task 2: Find and delete Joe's record.
studentscan.beforeFirst();
while (studentscan.next()) {

if (studentscan.getString("sname").equals("joe")) {
// First, delete the index records for Joe.
RID joeRid = studentscan.getRid();
for (String fldname : indexes.keySet()) {

Constant dataval = studentscan.getVal(fldname);
Index idx = indexes.get(fldname);
idx.delete(dataval, joeRid);

}
// Then delete Joe's record in STUDENT.
studentscan.delete();
break;

}
}

// Print the records to verify the updates.

public class IndexUpdateTest {
public static void main(String[] args) {

SimpleDB db = new SimpleDB("studentdb");
Transaction tx = db.newTx();
MetadataMgr mdm = db.mdMgr();
Plan studentplan = new TablePlan(tx, "student", mdm);
UpdateScan studentscan = (UpdateScan) studentplan.open();

// Create a map containing all indexes for STUDENT.

Fig. 12.4 Updating indexes to reflect changes to data records

318 12 Indexing

for STUDENT, and similarly for the deletion. Note how the code begins by opening
all of the indexes for STUDENT and saving them in a map. The code can then loop
through this map each time it needs to do something to each index.

The code of Figs. 12.3 and 12.4 manipulate indexes without knowing (or caring)
how they are actually implemented. The only requirement is that the indexes
implement the Index interface. Section 12.1 assumed a simple index implementa-
tion that used sorted indexes and binary search. Such an implementation is not used
in practice, because it does not take advantage of the block structure of the index file.
Sections 12.3–12.5 examine three better implementations—two strategies based on
hashing and one based on sorted trees.

12.3 Static Hash Indexes

Static hashing is probably the simplest way to implement an index. Although it is not
the most efficient strategy, it is easy to understand and illustrates the principles most
clearly. Thus it is a good place to begin.

12.3.1 Static Hashing

A static hashed index uses a fixed number N of buckets, numbered from 0 to N-1.
The index also uses a hash function, which maps values to buckets. Each index
record is assigned to the bucket resulting from hashing its dataval. A static hashed
index works as follows:

• To store an index record, put it into the bucket assigned by the hash function.
• To find an index record, hash the search key and examine that bucket.
• To delete an index record, first find it (as above), and then delete it from the

bucket.

studentscan.beforeFirst();
while (studentscan.next()) {

System.out.println(studentscan.getString("sname") + " "
+ studentscan.getInt("sid"));

}
studentscan.close();
for (Index idx : indexes.values())

idx.close();
tx.commit();
}

}

Fig. 12.4 (continued)

12.3 Static Hash Indexes 319

The search cost of a hashed index is inversely proportional to the number of
buckets it has. If an index contains B blocks and has N buckets, then each bucket
contains about B/N blocks, and so searching a bucket requires about B/N block
accesses.

For example, consider an index on SName. Suppose for simplicity that N¼ 3 and
that the hash function maps a string s to the number of letters in s (mod N) that come
earlier in the alphabet than “m.”1 Assume also that three index records fit into a
block. Figure 12.5 depicts the contents of the three index buckets. The figure uses ri
to denote the rid of the ith STUDENT record.

Suppose now that you want to find the datarid of all students named “sue.” You
hash the string “sue” to get bucket 1 and search that bucket. The search requires two
block accesses. Similarly, since “ron” hashes to bucket 0, it takes just one block
access to determine that there are no students named “ron.”

This example uses ridiculously small values for the block size and number of
buckets. For a more realistic sample calculation, assume that the index uses 1024
buckets, which means (assuming that the records hash evenly among the buckets)
that:

• An index of up to 1024 blocks can be searched in only one disk access
• An index of up to 2048 blocks can be searched in only two disk accesses

and so on. To give some perspective to these numbers, note that an index record on
SName requires 22 bytes (14 bytes for the varchar(10) dataval, and 8 bytes for the
datarid); so if you add 1 byte per record to hold the empty/inuse flag, then 178 index
records will fit into a 4K block. An index size of 2048 blocks therefore corresponds
to a data file of about 364,544 records. That is a lot of records to be able to search in
only two disk accesses!

12.3.2 Implementing Static Hashing

Static hashing in SimpleDB is implemented in the class HashIndex, whose code
appears in Fig. 12.6.

Fig. 12.5 A static hash index with three buckets

1This is a remarkably bad hash function, but it helps make the example interesting.

320 12 Indexing

public class HashIndex implements Index {
public static int NUM_BUCKETS = 100;
private Transaction tx;
private String idxname;
private Layout layout;
private Constant searchkey = null;
private TableScan ts = null;

public HashIndex(Transaction tx, String idxname, Layout layout) {
this.tx = tx;
this.idxname = idxname;
this.layout = layout;

}

public void beforeFirst(Constant searchkey) {
close();
this.searchkey = searchkey;
int bucket = searchkey.hashCode() % NUM_BUCKETS;
String tblname = idxname + bucket;
ts = new TableScan(tx, tblname, layout);

}

public boolean next() {
while (ts.next())

if (ts.getVal("dataval").equals(searchkey))
return true;

return false;
}

public RID getDataRid() {
int blknum = ts.getInt("block");
int id = ts.getInt("id");
return new RID(blknum, id);

}

public void insert(Constant val, RID rid) {
beforeFirst(val);
ts.insert();
ts.setInt("block", rid.blockNumber());
ts.setInt("id", rid.slot());
ts.setVal("dataval", val);

}

public void delete(Constant val, RID rid) {
beforeFirst(val);
while(next())

if (getDataRid().equals(rid)) {
ts.delete();
return;

}

Fig. 12.6 The code for the SimpleDB class HashIndex

12.3 Static Hash Indexes 321

This class stores each bucket in a separate table, whose name is the catenation of
the index name and the bucket number. For example, the table for bucket #35 of
index SID_INDEX is named “SID_INDEX35.” The method beforeFirst hashes
the search key and opens a table scan for the resulting bucket. Method next starts
from the current position in the scan and reads records until one is found having the
search key; if no such record is found, the method returns false. The datarid of an
index record is stored as two integers, in fields block and id. Method
getDataRid reads these two values from the current record and constructs the
rid; the method insert does the opposite.

In addition to implementing the methods for the Index interface, the class
HashIndex implements a static method searchCost. This method is called by
IndexInfo.blocksAccessed, as was shown in Fig. 7.15. The IndexInfo
object passes in two arguments to the searchCost method: the number of blocks
in the index and the number of index records per block. It does so because it does not
know how the indexes compute their costs. In the case of static indexing, the search
cost depends only on the index size, and thus the RPB value is ignored.

12.4 Extendable Hash Indexes

The search cost of a static hash index is inversely proportional to the number of
buckets—the more buckets you use, the fewer blocks in each bucket. The best
possible situation would be to have enough buckets so that each bucket would be
exactly one block long.

If an index always stayed the same size, then it would be easy to calculate this
ideal number of buckets. But in practice, indexes grow as new records are inserted
into the database. So how to decide how many buckets to use? Suppose that you
choose the buckets based on the current index size. The problem is that as the index
grows, each bucket will eventually wind up containing many blocks. But if you
choose a larger number of buckets based on future needs, then the currently empty
and nearly empty buckets will create a lot of wasted space until the index grows
into it.

public void close() {
if (ts != null)

ts.close();
}

public static int searchCost(int numblocks, int rpb){
return numblocks / HashIndex.NUM_BUCKETS;

}
}

Fig. 12.6 (continued)

322 12 Indexing

https://doi.org/10.1007/978-3-030-33836-7_7

A strategy known as extendable hashing solves this problem by using a very large
number of buckets, guaranteeing that each bucket will never be more than one block
long.2 Extendable hashing deals with the problem of wasted space by allowing
multiple buckets to share the same block. The idea is that even though there are a
lot of buckets, they all share a small number of blocks, so there is very little wasted
space. It’s a very clever idea.

The sharing of blocks by buckets is achieved by means of two files: the bucket file
and the bucket directory. The bucket file contains the index blocks. The bucket
directory maps buckets to blocks. The directory can be thought of as an array of
integers, one integer for each bucket. Call this array Dir. If an index record hashes
to bucket b, then that record will be stored in block Dir[b] of the bucket file.

For an example, Fig. 12.7 depicts the possible contents of an extendable hash
index on field SId of STUDENT, assuming (for the sake of readability) that:

• Three index records fit into a block.
• Eight buckets are used.
• The hash function h(x) ¼ x mod 8.
• The STUDENT table contains seven records, having ID 1, 2, 4, 5, 7, 8, and 12.

As before, ri denotes the rid of the ith STUDENT record.
Note how the bucket directory Dir is used. The fact that Dir[0] ¼ 0 and Dir

[4]¼ 0means that records hashing to 0 (such as r8) or 4 (such as r4 and r12) will be
placed in block 0. Similarly, records hashing to 1, 3, 5, or 7 will be placed in block
1, and records hashing to 2 or 6 will be placed in block 2. Thus, this bucket directory
allows the index records to be stored in three blocks, instead of eight.

Of course, there are many ways to set up the bucket directory to share the buckets
among three blocks. The directory shown in Fig. 12.7 has a particular logic behind it,
which will be discussed next.

Fig. 12.7 An extendable hash index on the field SId of STUDENT

2An exception must be made when too many records have exactly the same dataval. Since those
records will always hash to the same block, there will be no way a hashing strategy could spread
them across several buckets. In this case, the bucket would have as many blocks as needed to hold
those records.

12.4 Extendable Hash Indexes 323

12.4.1 Sharing Index Blocks

Extendable hashed directories always have 2M buckets; the integer M is called the
maximum depth of the index. A directory of 2M buckets can support hash values that
are M bits long. The example of Fig. 12.7 used M ¼ 3. In practice, M ¼ 32 is a
reasonable choice because integer values have 32 bits.

Initially, an empty bucket file will contain a single block, and all directory entries
will point to this block. In other words, this block is shared by all of the buckets. Any
new index record will be inserted into this block.

Every block in the bucket file has a local depth. A local depth of L means that the
hash value of every record in the block has the same rightmost L bits. The first block
of the file initially has a local depth of 0, because its records can have arbitrary hash
values.

Suppose that a record is inserted into the index but does not fit into its assigned
block. Then that block splits, that is, another block is allocated in the bucket file, and
the records in the full block are distributed among itself and the new block. The
redistribution algorithm is based on the local depth of the block. Since all records in
the block currently have the same rightmost L bits of their hash value, the algorithm
considers the rightmost (L + 1)st bit: all records having a 0 are kept in the original
block, and all records having a 1 are transferred to the new block. Note that the
records in each of these two blocks now have L + 1 bits in common. That is, the local
depth of each block has been increased by 1.

When a block splits, the bucket directory must be adjusted. Let b be the hash
value of the newly inserted index record, that is, b is the number of a bucket.
Suppose that the rightmost L bits of b are bL...b2b1. Then it can be shown (see
Exercise 12.10) that the bucket numbers having these rightmost L bits (which
includes b) all point to the block that just split. Thus the directory must be modified
so that every slot whose rightmost L + 1 bits are 1bL...b2b1 points to the new
block.

For example, suppose that bucket 17 currently maps to a block B having local
depth 2. Since 17 in binary is 1001, its rightmost 2 bits are 01. It follows that all
buckets whose rightmost two bits are 01 map to B, such as 1, 5, 9, 13, 17, and 21.
Now, suppose that block B is full and needs to split. The system allocates a new
block B0 and sets the local depth of both B and B0 to 3. It then adjusts the bucket
directory. Those buckets whose rightmost 3 bits are 001 continue to map to block B
(i.e., their directory entries stay unchanged). But those buckets whose rightmost
3 bits are 101 are changed to map to B0. That is, buckets 1, 9, 17, 25, and so on will
continue to map to B, whereas buckets 5, 13, 21, 29, and so on will now map to B0.

Figure 12.8 gives the algorithm for inserting a record into an extendable hash
index. For an example, consider again an extendable hash index on Sid. Assume
that the bucket directory has 210 buckets (i.e., the maximum depth is 10) and that the
hash function maps each integer n to n%1024. Initially, the bucket file consists of
one block, and all directory entries point to that block. The situation is depicted in
Fig. 12.9a.

324 12 Indexing

Suppose now that you insert index records for students 4, 8, 1, and 12. The first
three insertions go to block 0, but the fourth one causes a split. This split causes the
following events to occur: A new block is allocated, the local depths are increased
from 0 to 1, the directory entries are adjusted, the records in block 0 are re-inserted,
and the record for employee 12 is inserted. The result is shown in Fig. 12.9b. Note
that the odd entries in the bucket directory now point to the new block. The index is
now such that all records having an even hash value (i.e., a rightmost bit of 0) are in
block 0 of the bucket file, and all odd-value records (i.e., a rightmost bit of 1) are in
block 1.

Next, insert index records for employees 5, 7, and 2. The first two records fit into
block 1, but the third one causes block 0 to split again. The result is shown in
Fig. 12.9c. Block 0 of the bucket file now contains all index records whose hash
value ends in 00, and block 2 contains all records whose hash value ends in 10.
Block 1 still contains all records whose hash value ends in 1.

One problem with any hashing strategy is that records are not guaranteed to be
distributed evenly. When a block splits, all of its records may rehash to the same

1. b.
2. Find B Dir[b]. Let L be the local depth of block B.
3a. If the record fits into B, insert it and return.
3b. If the record does not fit in B:

Allocate a new block B in the bucket file.
Set the local depth of both B and B to be L+1.
Adjust the bucket directory so that all buckets having the rightmost

L+1 bits 1bL...b2b1
will point to B .
Re-insert each record from B into the index. (These records will hash either to B or to B .)
Try again to insert the new record into the index.

=

Fig. 12.8 The algorithm for inserting a records into an extendable hash index

Fig. 12.9 Inserting records into an extendable hash index. (a) An index containing one block, (b)
after the first split, (c) after the second split

12.4 Extendable Hash Indexes 325

block; if the new record also hashes to that block, then it still will not fit into the
block, and the block must be split again. If the local depth ever equals the maximum
depth, then no more splitting is possible, and an overflow block must be created to
hold the index records.

12.4.2 Compacting the Bucket Directory

Our examination of extendable hashing still needs to address the size of the bucket
directory. A hash file having a maximum depth of 10 requires a directory of 210

buckets and can be stored in one block, assuming a block size of 4K bytes. However,
if the hash file has a maximum depth of 20, the directory has 220 buckets and
requires 1024 blocks, regardless of the size of the index. You have seen how the size
of the bucket file expands to fit the size of the index. This section shows how the
bucket directory can also start small and expand as needed.

The key idea is to note that the bucket directory entries of Fig. 12.9 are in a
particular pattern. If a block has local depth 1, then every other bucket entry points to
that block. If a block has local depth 2, then every fourth bucket entry points to that
block. And in general, if a block has local depth L, then every 2L bucket entries point
to that block. This pattern means that the highest overall local depth determines the
“period” of the directory. For example, since the highest local depth in Fig. 12.9c is
2, the bucket directory contents repeat every 22 entries.

The fact that the directory entries repeat means that there is no need to store the
entire bucket directory; you only need to store 2d entries, where d is the highest local
depth. We call d the global depth of the index.

The algorithm for searching an index needs a slight modification to accommodate
this change to the bucket directory. In particular, after the search key is hashed, the
algorithm only uses the rightmost d bits of the hash value to determine the bucket
directory entry.

The algorithm for inserting a new index record also needs modification. As with
search, the record’s dataval is hashed, and the rightmost d bits of the hash value
determines the directory entry where the index record is inserted. If the block splits,
then the algorithm proceeds as usual. The only exception is when the split causes the
local depth of the block to become larger than the current global depth of the index.
In this case, the global depth must be incremented before the records can be
rehashed.

Incrementing the global depth means doubling the size of the bucket directory.
Doubling the directory is remarkably easy—since the directory entries repeat, the
second half of the doubled directory is identical to the first half. Once this doubling
has occurred, the splitting process can continue. To illustrate the algorithm, recon-
sider the example of Fig. 12.9. The initial index will have global depth 0, which
means that the bucket directory will have a single entry, pointing to block 0. The
insertion of records for 4, 8, and 1 keep the global depth at 0.

326 12 Indexing

Because the global depth is 0, only the rightmost 0 bits of the hash value are used
to determine the directory entry; in other words, entry 0 is always used regardless of
the hash value. When the record for 12 is inserted, however, the split causes the local
depth of block 0 to increase, which means that the global depth of the index must
also increase, and the bucket directory doubles from one to two entries. Initially both
entries point to block 0; then all entries whose rightmost bit is 1 are adjusted to point
to the new block. The resulting directory has a global depth of 1 and entries Dir
[0] ¼ 0 and Dir[1] ¼ 1.

Now that the global depth is 1, the insertion of records 5 and 7 use the rightmost
1 bits of the hash value, which is 1 in both cases. Thus bucket Dir[1] is used, and
both records are inserted into block 1. The split that occurs after record 2 is inserted
causes the local depth of block 0 to increase to 2, which means the global depth must
also increase. Doubling the directory increases it to four entries, which initially are:
0 1 0 1. The entries having rightmost bits 10 are then adjusted to point to the new
block, leading to a directory whose entries are: 0 1 2 1.

Extendable hashing does not work well when the index contains more records
with the same dataval than can fit in a block. In this case, no amount of splitting can
help, and the bucket directory will expand fully to its maximum size even though
there are relatively few records in the index. To avoid this problem, the insertion
algorithm must be modified to check for this situation and create a chain of overflow
blocks for that bucket without splitting the block.

12.5 B-Tree Indexes

The previous two indexing strategies were based on hashing. We now consider a
way to use sorting. The basic idea is to sort the index records by their datavals.

12.5.1 How to Improve a Dictionary

If you think about it, a sorted index file is a lot like a dictionary. An index file is a
sequence of index records, each of which contains a dataval and a datarid. A
dictionary is a sequence of entries, each of which contains a word and a definition.
When you use a dictionary, you want to find the definitions of a word as quickly as
possible. When you use an index file, you want to find the datarids of a dataval as
quickly as possible. Figure 12.10 summarizes this correspondence.

The close correspondence between dictionaries and sorted indexes means that it
should be possible to apply an understanding of dictionaries to the problem of
implementing a sorted index. Let’s see.

The dictionary on my desk has about 1000 pages. Each page has a heading, which
lists the first and last word on that page. When I am looking for a word, the heading

12.5 B-Tree Indexes 327

helps me find the correct page—I only need to look at the headings, not the contents
of the pages. Once I locate the correct page, I then search it to find my word.

The dictionary also has a table of contents, listing the page where the words
beginning with each letter begin. However, I never use the table of contents because
its information isn’t especially useful. What I would really like is for the table of
contents to contain a row for each page header, as in Fig. 12.11a. This table of
contents is a real improvement because I no longer have to flip through the pages; all
of the header information is in one place.

A 1000-page dictionary will have 1000 headers. Assuming that 100 headers fit on
a page, then the table of contents will be 10 pages long. Searching through 10 pages
is a lot better than searching through 1000, but it is still too much work. What I need
is something that will help me search the table of contents, as in Fig. 12.11b. The
“Guide to the Table of Contents” lists the header information for each page in the
table of contents. The guide will thus contain ten headers and will easily fit on a
single page.

With this setup, I could find any word in my dictionary by looking at exactly three
pages:

• The guide page tells me which page in the table of contents to use.
• That table of contents page tells me which word-content page to use.
• I then search that word-content page to find my word.

If I try this strategy with a very large dictionary (say, over 10,000 pages), then its
table of contents will be over 100 pages long, and the guide will be over 1 page long.

Dictionary Sorted Index File

ENTRY:
[word, definition]. A word can
have more than one definition.

[dataval, datarid]. A dataval can
have more than one datarid.

USAGE: Find the definitions of a given word. Find the datarids for a given dataval.

Fig. 12.10 The correspondence between a dictionary and a sorted index file

Fig. 12.11 An improved table of contents for a dictionary. (a) A row for each page, (b) a row for
each table of contents page

328 12 Indexing

In this case, I could construct a “guide to the guide” page, which would keep me
from having to search the guide. In this case, finding a word requires looking at four
pages.

Looking at the two parts of Fig. 12.11, you can see that the table of contents and
its guide have exactly the same structure. Let’s call these pages the directory of the
dictionary. The table of contents is the level-0 directory, the guide is the level-1
directory, the guide to the guide is the level-2 directory, and so on.

This improved dictionary has the following structure:

• There are numerous word-content pages, in sorted order.
• Each level-0 directory page contains the header for several word-content pages.
• Each level-(N + 1) directory page contains the header for several level-N directory

pages.
• There is a single directory page at the highest level.

This structure can be depicted as a tree of pages, with the highest-level directory
page as its root and the word-content pages as its leaves. Figure 12.12 depicts this
tree.

12.5.2 The B-Tree Directory

The concept of a tree-structured directory can also be applied to sorted indexes. The
index records will be stored in an index file. The level-0 directory will have a record
for each block of the index file. These directory records will be of the form [dataval,
block#], where dataval is the dataval of the first index record in the block, and block#
is the block number of that block.

For example, Fig. 12.13a depicts the index file for a sorted index on the field
SName of STUDENT. This index file consists of three blocks, with each block
containing an unspecified number of records. Figure 12.13b depicts the level-0-
directory for this index file. The directory consists of three records, one for each
index block.

If the records in the directory are sorted by their dataval, then the range of values
in each index block can be determined by comparing adjacent directory entries. For

Fig. 12.12 The improved dictionary, represented as a tree

12.5 B-Tree Indexes 329

example, the three records in the directory of Fig. 12.13b denote the following
information:

• Block 0 of the index file contains index records whose datavals range from “amy”
up to (but not including) “bob.”

• Block 1 contains index records ranging from “bob” up to (but not including)
“max.”

• Block 2 contains index records ranging from “max” to the end.

In general, the dataval in the first directory record is not interesting and is usually
replaced by a special value (such as null), denoting “everything from the
beginning.”

A directory and its index blocks are usually represented graphically as a tree, as
shown in Fig. 12.13c. That tree is an example of a B-tree.3 Note how you can obtain
the actual directory records by pairing each arrow with the dataval preceding it. The
dataval corresponding to the leftmost arrow is omitted in the tree representation,
because it is not needed.

Given a dataval v, the directory can be used to find the index records having that
dataval or to insert a new index record for that dataval. The algorithms appear in
Fig. 12.14.

There are two points to note about these algorithms. The first point is that steps
1 and 2 of these algorithms are identical. In other words, the insertion algorithm will
insert an index record into the same block where the search algorithm will look for
it—which is, of course, exactly what ought to happen. The second point is that each

Fig. 12.13 A B-tree index for Sname. (a) The sorted index file, (b) the sorted level-0 directory, (c)
the tree representation of the index and its directory

3Historically, two slightly different versions of B-tree were developed. The version we are using is
actually known as a B+ tree, because it was developed second; the first version, which I won’t
consider, preempted the B-tree designation. However, because the second version is by far more
common in practice, I shall use the simpler (although slightly incorrect) term to denote it.

330 12 Indexing

algorithm identifies a single index block where the desired records belong; thus, all
index records having the same dataval must be in the same block.

The B-tree of Fig. 12.13 is very simple because the index is so small. As it gets
larger, the algorithm must deal with the following three complications:

• The directory may be several blocks long.
• A newly inserted index record may not fit into the block where it needs to go.
• There may be many index records having the same dataval.

These issues are addressed in the following subsections.

12.5.3 A Directory Tree

Continuing the example of Fig. 12.13, suppose that many more new employees have
been inserted into the database, so that the index file now contains eight blocks. If
you assume (for sake of example) that at most three directory records fit into a block,
then the B-tree directory will need at least three blocks. One idea might be to place
these directory blocks into a file and scan them sequentially; however, such a scan
would not be very efficient. A better idea corresponds to what I did with the
improved dictionary: The B-tree needs a “guide” to the level-0 directory.

That is, there are now two levels of directory blocks. Level 0 contains those
blocks that point to the index blocks. Level 1 contains a block that points to the level
0 blocks. Pictorially, the B-tree might look like the tree of Fig. 12.15. You search this
index by starting at the level-1 block. Suppose, for example, that the search key is
“jim.” The search key lies between “eli” and “lee,” and so you follow the middle
arrow and search the level-0 block containing “joe.” The search key is less than
“joe,” and so you follow the left arrow and look in the index block containing “eli.”
All index records for “jim” (if any) will be in this block.

1. Search the directory block to find the directory record whose range of datavals contains v.
2. Read the index block pointed to by that directory record.
3. Examine the contents of this block to find the desired index records.

(a)

1. Search the directory block to find the directory record whose range of datavals contains v.
2. Read the index block pointed to by that directory record.
3. Insert the new index record into this block.

(b)

Fig. 12.14 Algorithms to find and insert index records into the tree of Fig. 12.13. (a) Finding the
index records having a specified dataval v, (b) inserting a new index record having a specified
dataval v

12.5 B-Tree Indexes 331

In general, whenever a level contains more than one directory block, there will be
directory blocks at the next higher level that point to them. Eventually the highest
level will contain a single block. This block is called the root of the B-tree.

At this point, you should stop to make sure you are able to traverse a B-tree
yourself. Using Fig. 12.15, choose several names and convince yourself that you can
find the index block containing each name. There should be no ambiguity—given a
dataval, there is exactly one index block where index records containing that dataval
must be.

Also note the distribution of names in the directory records of the B-tree. For
example, the value “eli” in the level-one node means that “eli” is the first name in the
subtree pointed to by the middle arrow, which means that it is the first record of the
first index block pointed to by the level-0 directory block. So even though “eli” does
not appear explicitly in that level-0 block, it manages to make an appearance in the
level-1 block. In fact, it turns out that the first dataval of each index block (except the
very first block) appears exactly once in some directory block at some level of the
B-tree.

A search of a B-tree requires accessing one directory block at each level, plus one
index block. Thus the search cost is equal to the number of directory levels plus 1. To
see the practical impact of this formula, consider the example at the end of Sect.
12.3.1, which calculated the search costs for a static hash index on SName using
4K-byte blocks. As before, each index record will be 22 bytes, with 178 index
records fitting into a block. Each directory record is 18 bytes (14 bytes for the dataval
and 4 bytes for the block number), so 227 directory records will fit in a block. Thus:

• A 0-level B-tree, which can be searched using 2 disk accesses, can hold up to
227 � 178 ¼ 40,406 index records.

• A 1-level B-tree, which can be searched using 3 disk accesses, can hold up to
227 � 227 � 178 ¼ 9,172,162 index records.

• A 2-level B-tree, which can be searched using 4 disk accesses, can hold up to
227 � 227 � 227 � 178 ¼ 2,082,080,774 index records.

In other words, B-tree indexes are exceptionally efficient. Any desired data record
can be retrieved in no more than five disk accesses, unless its table is unusually

Fig. 12.15 A B-tree having two directory levels

332 12 Indexing

large.4 If a commercial database system implements only one indexing strategy, it
almost certainly uses a B-tree.

12.5.4 Inserting Records

If you want to insert a new index record, then the algorithm of Fig. 12.14b implies
that there is exactly one index block where it can be inserted. What do you do if that
block has no more room? As with extendable hashing, the solution is to split the
block. Splitting an index block entails the following activities:

• Allocate a new block in the index file.
• Move the high-valued half of the index records into this new block.
• Create a directory record for the new block.
• Insert this new directory record into the same level-0 directory block that pointed

to the original index block.

For example, suppose that all index blocks of Fig. 12.15 are full. To insert the
new index record (hal, r55), the algorithm follows the B-tree directory and deter-
mines that the record belongs in the index block that contains “eli.” It therefore splits
this block, moving the upper half of its records into the new block. Suppose the new
block is block 8 of the index file, and its first record is (jim, r48). The directory record
(jim, 8) will get inserted into the level-0 directory block. The resulting subtree
appears in Fig. 12.16.

In this case, there was room in the level-0 block for the new directory record. If
there is no room, then that directory block also needs to split. For example, return to
Fig. 12.15 and suppose that an index record (zoe, r56) is inserted. This record will
cause the rightmost index block to split—suppose that the new block is number
9 and its first dataval is “tom.” Then (tom, 9) is inserted into the rightmost level-
0 directory block. However, there is no room in that level-0 block, and so it also
splits. Two directory records stay in the original block, and two move to the new
block (which is, say, block 4 of the directory file). The resulting directory and index
blocks appear in Fig. 12.17. Note that the directory record for “sue” still exists but is
not visible in the picture because it is the first record of its block.

Fig. 12.16 The effect of
splitting an index block

4And if you consider buffering, things look even better. If the index is used often, then the root
block and many of the blocks in the level below it will probably already be in buffers, so it is likely
that even fewer disk accesses will be required.

12.5 B-Tree Indexes 333

You are not done. The new level-0 block requires inserting a record into a level-1
directory block, and so the same record-insertion process happens recursively. The
new directory record to be inserted is (sue, 4). The value “sue” is used because it is
the smallest dataval in the subtree of the new directory block. This recursive
insertion of directory records continues up the B-tree. If the root block splits, then
a new root block is created, and the B-tree gains an additional level. This is exactly
what happens in Fig. 12.17. The level-1 block has no room, and so it also splits,
creating a new level-1 block and a new level-2 block to be the root. The resulting
B-tree appears in Fig. 12.18.

Note that splitting a block turns a full block into two half-full blocks. In general,
the capacity of a B-tree will range from 50% to 100%.

12.5.5 Duplicate Datavals

The example of Sect. 12.1 showed that an index is useful only when it is selective. So
even though an index can have an arbitrary number of records with the same dataval,
in practice there will not be that many and most likely not enough to fill multiple
blocks. Nevertheless, a B-tree must be able to handle such cases.

To see what the issues are, suppose that there are several records for the dataval
“ron” in Fig. 12.18. Note that all of those records must be in the same leaf block of

Fig. 12.17 Splitting a directory block

Fig. 12.18 Splitting the root of the B-tree

334 12 Indexing

the B-tree, namely, the block that contains “pat.” Figure 12.19a shows the contents
of that block. Suppose that you insert a record for “peg,” and this record causes the
block to split. Figure 12.19b shows the result of splitting the block evenly: The
records for “ron” wind up in different blocks.

The B-tree of Fig. 12.19b is clearly unacceptable, because the records for Ron
that remained in Pat’s block are not accessible. We have the following rule: When
you split a block, you must place all records having the same dataval in the same
block. This rule is just common sense. When you use the B-tree directory to look for
index records having a particular search key, the directory will always point you to a
single leaf block. If index records with that search key exist in other blocks, they will
never be found.

The consequence of this rule is that it may not be possible to split an index block
evenly. Figure 12.1c depicts the only reasonable way to perform the split, by placing
the five “ron” records in the new block.

An index block can always be split if its records contain at least two different
datavals. The only real problem occurs when all of the records in the index block
have the same dataval. In this case, splitting is of no use. Instead, the best approach is
to use an overflow block.

For example, start from Fig. 12.19c and insert records for several more students
named “ron.” Instead of splitting the block, you should create a new leaf block and
move all but one of the “ron” records into it. This new block is the overflow block.
The old block links to the overflow block, as shown in Fig. 12.20.

Fig. 12.19 Splitting a leaf block that has duplicate values. (a) The original leaf block and its parent,
(b) an incorrect way to split the block, (c) the correct way to split the block

12.5 B-Tree Indexes 335

Note how the old block has been nearly emptied, which allows additional records
to be inserted into it (which may or may not be for students named “ron”). If the
block fills up again, there are two possibilities.

• If there are at least two different datavals in the block, then it splits.
• If the block contains only “ron” records, then another overflow block is created

and chained to the existing one.

In general, a leaf block can contain a chain of overflow blocks. Each overflow
block will be completely filled. The records in the overflow chain will always have
the same dataval, which will always be the same as the dataval of the first record in
the non-overflow block.

Suppose that you are searching for index records having a particular search key.
You follow the B-tree directory to a particular leaf block. If the search key is not the
first key of the block, then you examine the records in the block as before. If the
search key is the first one, then you also need to use the records in the overflow
chain, if one exists.

Although the index records in the B-tree may contain duplicate datavals, the
directory entries will not. The reason is that the only way to get a dataval into a
directory entry is to split a leaf block; the first dataval of the new block is added to the
directory. But the dataval that is first in its block will never get split again—if the
block fills with records having that dataval, an overflow block will be created
instead.

12.5.6 Implementing B-Tree Pages

The SimpleDB code to implement B-trees lives in the package simpledb.
index.btree. This package contains four principal classes: BTreeIndex,
BTreeDir, BTreeLeaf, and BTPage. Classes BTreeDir and BTreeLeaf
implement the directory and index blocks of a B-tree, respectively.5 Although the

Fig. 12.20 Using an overflow chain to store records having the same dataval

5We use the term leaf to denote index blocks, because they form the leaves of the B-tree. The
SimpleDB implementation uses “leaf” to avoid confusion with the BTreeIndex class, which
implements the Index interface.

336 12 Indexing

directory and leaf blocks contain different kinds of records and are used in different
ways, they have common requirements, such as the need to insert entries in sorted
order and to split themselves. The class BTPage contains this common code. The
class BTreeIndex implements the actual B-tree operations, as specified by the
Index interface.

Consider first the class BTPage. Records in a B-tree page have the following
requirements:

• The records need to be maintained in sorted order.
• The records do not need to have a permanent id, which means that they can be

moved around within the page as needed.
• A page needs to be able to split its records with another page.
• Each page needs an integer to serve as a flag. (A directory page uses the flag to

hold its level, and a leaf page uses the flag to point to its overflow block.)

That is, you can think of a B-tree page as holding a sorted list of records
(as opposed to a record page, which holds an unsorted array of records). When a
new record is inserted into the page, its position in the sort order is determined, and
the records following it are shifted one place to the right to make room. Similarly
when a record is deleted, the records following it are shifted to the left to fill in the
hole. In order to implement this list-like behavior, the page must also store an integer
that holds the current number of records in the page.

The code for class BTPage appears in Fig. 12.21. The most interesting method in
this class is findSlotBefore. This method takes a search key k as argument finds
the smallest slot x such that k � dataval(x); it then returns the slot before that.
The reason for this behavior is that it accommodates all of the ways that pages can be
searched. For example, it acts like a beforeFirst operation on leaf pages, so that
a call to next will retrieve the first record having that search key.

Now consider the leaf blocks of the B-tree. The code for the class BTreeLeaf
appears in Fig. 12.22.

The constructor first creates a B-tree page for the specified block and then calls
findSlotBefore to position itself immediately before the first record containing
the search key. A call to nextmoves to the next record and returns true or false
depending on whether that record has the desired search key. The call to
tryOverflow handles the possibility that the leaf block contains an overflow chain.

The methods delete and insert assume that the current slot of the page has
already been set by a call to findSlotBefore. Method delete repeatedly calls
next until it encounters the index record having the specified rid, and then deletes
that record. Method insert moves to the next record, which means that it is now
positioned at the first record greater than or equal to that search key. The new record
is inserted in that spot. Note that if the page already contains records having that
search key, then the new record will be inserted at the front of the list. Method
insert returns an object of type DirEntry (i.e., a directory record). If the
insertion does not cause the block to split, then this return value is null. If a split
occurs, then the return value is the (dataval, blocknumber) entry corresponding to the
new index block.

12.5 B-Tree Indexes 337

public class BTPage {
private Transaction tx;
private BlockId currentblk;
private Layout layout;

public BTPage(Transaction tx, BlockId currentblk, Layout layout) {
this.tx = tx;
this.currentblk = currentblk;
this.layout = layout;
tx.pin(currentblk);

}

public int findSlotBefore(Constant searchkey) {
int slot = 0;
while (slot < getNumRecs() &&
 getDataVal(slot).compareTo(searchkey) < 0)

slot++;
return slot-1;

}
public void close() {

if (currentblk != null)
tx.unpin(currentblk);

currentblk = null;
}

public boolean isFull() {
return slotpos(getNumRecs()+1) >= tx.blockSize();

}

public BlockId split(int splitpos, int flag) {
BlockId newblk = appendNew(flag);
BTPage newpage = new BTPage(tx, newblk, layout);
transferRecs(splitpos, newpage);
newpage.setFlag(flag);
newpage.close();
return newblk;

}
public Constant getDataVal(int slot) {

return getVal(slot, "dataval");
}

public int getFlag() {
return tx.getInt(currentblk, 0);

}

public void setFlag(int val) {
tx.setInt(currentblk, 0, val, true);

}

public BlockId appendNew(int flag) {
BlockId blk = tx.append(currentblk.fileName());
tx.pin(blk);
format(blk, flag);
return blk;

}

Fig. 12.21 The code for the SimpleDB class BTPage

338 12 Indexing

public void format(BlockId blk, int flag) {
tx.setInt(blk, 0, flag, false);
tx.setInt(blk, Integer.BYTES, 0, false); // #records = 0
int recsize = layout.slotSize();
for (int pos=2*Integer.BYTES; pos+recsize<=tx.blockSize();
 pos += recsize)

makeDefaultRecord(blk, pos);
}

private void makeDefaultRecord(BlockId blk, int pos) {
for (String fldname : layout.schema().fields()) {

int offset = layout.offset(fldname);
if (layout.schema().type(fldname) == INTEGER)

tx.setInt(blk, pos + offset, 0, false);
else

tx.setString(blk, pos + offset, "", false);
}

}

// Methods called only by BTreeDir

public int getChildNum(int slot) {
return getInt(slot, "block");

}

public void insertDir(int slot, Constant val, int blknum) {
insert(slot);
setVal(slot, "dataval", val);
setInt(slot, "block", blknum);

}

// Methods called only by BTreeLeaf

public RID getDataRid(int slot) {
return new RID(getInt(slot, "block"), getInt(slot, "id"));

}

public void insertLeaf(int slot, Constant val, RID rid) {
insert(slot);
setVal(slot, "dataval", val);
setInt(slot, "block", rid.blockNumber());
setInt(slot, "id", rid.slot());

}

}

public int getNumRecs() {
return tx.getInt(currentblk, Integer.BYTES);

}

public void delete(int slot) {
for (int i=slot+1; i<getNumRecs(); i++)

copyRecord(i, i-1);
setNumRecs(getNumRecs()-1);
return;

Fig. 12.21 (continued)

12.5 B-Tree Indexes 339

// Private methods

private int getInt(int slot, String fldname) {
int pos = fldpos(slot, fldname);
return tx.getInt(currentblk, pos);

}

private String getString(int slot, String fldname) {
int pos = fldpos(slot, fldname);
return tx.getString(currentblk, pos);

}

private Constant getVal(int slot, String fldname) {
int type = layout.schema().type(fldname);
if (type == INTEGER)

return new Constant(getInt(slot, fldname));
else

return new Constant(getString(slot, fldname));
}

private void setInt(int slot, String fldname, int val) {
int pos = fldpos(slot, fldname);
tx.setInt(currentblk, pos, val, true);

}

private void setString(int slot, String fldname, String val) {
int pos = fldpos(slot, fldname);
tx.setString(currentblk, pos, val, true);

}

private void setVal(int slot, String fldname, Constant val) {
int type = layout.schema().type(fldname);
if (type == INTEGER)

setInt(slot, fldname, val.asInt());
else

setString(slot, fldname, val.asString());
}

for (int i=getNumRecs(); i>slot; i--)
copyRecord(i-1, i);

setNumRecs(getNumRecs()+1);
}

private void copyRecord(int from, int to) {
Schema sch = layout.schema();
for (String fldname : sch.fields())

setVal(to, fldname, getVal(from, fldname));
}

private void setNumRecs(int n) {
tx.setInt(currentblk, Integer.BYTES, n, true);

}
private void insert(int slot) {

Fig. 12.21 (continued)

340 12 Indexing

The class BTreeDir implements directory blocks; its code appears in
Fig. 12.23.

Methods search and insert both start at the root, moving down the tree until
the level-0 directory block associated with the search key is located. Method
search uses a simple while-loop to move down the tree; when the level-0 block
is found, it searches that page and returns the block number of the leaf containing the
search key. Method insert uses recursion to move down the tree. The return value
of the recursive call indicates whether the insertion caused its child page to split; if
so, then the method insertEntry is called to insert a new directory record into
the page. If this insertion causes the page to split, the directory record for the new
page is passed back to the page’s parent. A null value indicates that no split occurred.

The method makeNewRoot is invoked when a call to insert on the root page
returns a non-null value. Since the root must always be at block 0 of the directory
file, this method allocates a new block, copies the contents of block 0 to the new
block, and initializes block 0 as the new root. The new root will always have two
entries: The first entry will refer to the old root; the second entry will refer to the
newly split block (that was passed in as an argument to makeNewRoot).

12.5.7 Implementing the B-Tree Index

Now that you have seen how B-tree pages are implemented, it is time to see how they
are used. The class BTreeIndex implements the methods of the Index interface,
coordinating the use of directory and leaf pages; see Fig. 12.24. Its constructor does

private void transferRecs(int slot, BTPage dest) {
int destslot = 0;
while (slot < getNumRecs()) {

dest.insert(destslot);
Schema sch = layout.schema();
for (String fldname : sch.fields())

dest.setVal(destslot, fldname, getVal(slot, fldname));
delete(slot);
destslot++;

}
}

private int fldpos(int slot, String fldname) {
int offset = layout.offset(fldname);
return slotpos(slot) + offset;

}

private int slotpos(int slot) {
int slotsize = layout.slotSize();
return Integer.BYTES + Integer.BYTES + (slot * slotsize);

}
}

Fig. 12.21 (continued)

12.5 B-Tree Indexes 341

public class BTreeLeaf {
private Transaction tx;
private Layout layout;
private Constant searchkey;
private BTPage contents;
private int currentslot;
private String filename;

public BTreeLeaf(Transaction tx, BlockId blk, Layout layout,
Constant searchkey) {

this.tx = tx;
this.layout = layout;
this.searchkey = searchkey;
contents = new BTPage(tx, blk, layout);
currentslot = contents.findSlotBefore(searchkey);

currentslot = 0 ;

filename = blk.fileName();
}

public void close() {
contents.close();

}

public boolean next() {
currentslot++;
if (currentslot >= contents.getNumRecs())

return tryOverflow();
else if (contents.getDataVal(currentslot).equals(searchkey))

return true;
else

return tryOverflow();
}

public RID getDataRid() {
return contents.getDataRid(currentslot);

}

public void delete(RID datarid) {
while(next())

if(getDataRid().equals(datarid)) {
contents.delete(currentslot);
return;

}
}

public DirEntry insert(RID datarid) {
if (contents.getFlag() >= 0 &&

contents.getDataVal(0).compareTo(searchkey) > 0) {
Constant firstval = contents.getDataVal(0);
BlockId newblk = contents.split(0, contents.getFlag());

contents.setFlag(-1);
contents.insertLeaf(currentslot, searchkey, datarid);

Fig. 12.22 The code for the SimpleDB class BTreeLeaf

342 12 Indexing

return new DirEntry(firstval, newblk.number());
}

currentslot++;
contents.insertLeaf(currentslot, searchkey, datarid);
if (!contents.isFull())

return null;
// else page is full, so split it
Constant firstkey = contents.getDataVal(0);
Constant lastkey = contents.getDataVal(contents.getNumRecs()-1);
if (lastkey.equals(firstkey)) {

// create an overflow block to hold all but the first record
BlockId newblk = contents.split(1, contents.getFlag());
contents.setFlag(newblk.number());
return null;

}
else {

int splitpos = contents.getNumRecs() / 2;
Constant splitkey = contents.getDataVal(splitpos);
if (splitkey.equals(firstkey)) {

// move right, looking for the next key
while (contents.getDataVal(splitpos).equals(splitkey))

splitpos++;
splitkey = contents.getDataVal(splitpos);

}
else {

// move left, looking for first entry having that key
while (contents.getDataVal(splitpos-1).equals(splitkey))

splitpos--;
}
BlockId newblk = contents.split(splitpos, -1);
return new DirEntry(splitkey, newblk.number());

}
}

private boolean tryOverflow() {
Constant firstkey = contents.getDataVal(0);
int flag = contents.getFlag();
if (!searchkey.equals(firstkey) || flag < 0)

return false;
contents.close();
BlockId nextblk = new BlockId(filename, flag);
contents = new BTPage(tx, nextblk, layout);
currentslot = 0;
return true;

}
}

Fig. 12.22 (continued)

12.5 B-Tree Indexes 343

public class BTreeDir {
private Transaction tx;
private Layout layout;
private BTPage contents;
private String filename;

BTreeDir(Transaction tx, BlockId blk, Layout layout) {
this.tx = tx;
this.layout = layout;
contents = new BTPage(tx, blk, layout);
filename = blk.fileName();

}

public void close() {
contents.close();

}

public int search(Constant searchkey) {
BlockId childblk = findChildBlock(searchkey);
while (contents.getFlag() > 0) {

contents.close();
contents = new BTPage(tx, childblk, layout);
childblk = findChildBlock(searchkey);

}
return childblk.number();

}

public void makeNewRoot(DirEntry e) {
Constant firstval = contents.getDataVal(0);
int level = contents.getFlag();
BlockId newblk = contents.split(0, level); //ie, transfer all the recs
DirEntry oldroot = new DirEntry(firstval, newblk.number());
insertEntry(oldroot);
insertEntry(e);
contents.setFlag(level+1);

}

public DirEntry insert(DirEntry e) {
if (contents.getFlag() == 0)

return insertEntry(e);
BlockId childblk = findChildBlock(e.dataVal());
BTreeDir child = new BTreeDir(tx, childblk, layout);
DirEntry myentry = child.insert(e);
child.close();
return (myentry != null) ? insertEntry(myentry) : null;

}

private DirEntry insertEntry(DirEntry e) {
int newslot = 1 + contents.findSlotBefore(e.dataVal());
contents.insertDir(newslot, e.dataVal(), e.blockNumber());
if (!contents.isFull())

return null;
// else page is full, so split it
int level = contents.getFlag();

Fig. 12.23 The code for the SimpleDB class BTreeDir

344 12 Indexing

most of the heavy lifting. It constructs the layout of the leaf records from the supplied
Schema object. It then constructs the schema of the directory records by extracting
the corresponding information from the leaf schema, and from there constructs their
layout. Finally, it formats the root if necessary, inserting an entry that points to block
0 of the leaf file.

Each BTreeIndex object holds an open BTreeLeaf object. This leaf object
keeps track of the current index record: it is initialized by a call to method
beforeFirst, incremented by a call to next, and accessed by calls to
getDataRid, insert, and delete. The method beforeFirst initializes
this leaf object by calling method search from the root directory page. Note that
once the leaf page has been located, the directory is no longer needed, and its pages
can be closed.

Method insert has two parts. The first part locates the appropriate leaf page and
inserts the index record into it. If the leaf page splits, then the method inserts the index
record for the new leaf into the directory, starting the recursion at the root. A non-null
return value from the rootmeans that the root has split, and somakeNewRoot is called.

Method delete deletes the index record from the leaf but does not try to modify
the directory. Another strategy would be to perform the deletion through the B-tree,
as with insertions. Such a strategy would allow the directory blocks to coalesce if
they became sufficiently empty. However, the algorithm for coalescing blocks is
complex and error-prone and is rarely implemented. The reason is that databases
rarely get smaller—deletions are usually followed by other insertions. Consequently,
it makes sense to leave the nearly empty directory blocks in place, assuming that
records will soon be inserted into them.

12.6 Index-Aware Operator Implementations

This section considers the question of how the query planner can take advantage of
indexes. Given an SQL query, the planner has two tasks to perform: it must
determine the appropriate query tree, and it must choose a plan for each operator

int splitpos = contents.getNumRecs() / 2;
Constant splitval = contents.getDataVal(splitpos);
BlockId newblk = contents.split(splitpos, level);
return new DirEntry(splitval, newblk.number());

}

private BlockId findChildBlock(Constant searchkey) {
int slot = contents.findSlotBefore(searchkey);
if (contents.getDataVal(slot+1).equals(searchkey))

slot++;
int blknum = contents.getChildNum(slot);
return new BlockId(filename, blknum);

}
}

Fig. 12.23 (continued)

12.6 Index-Aware Operator Implementations 345

public class BTreeIndex implements Index {
private Transaction tx;
private Layout dirLayout, leafLayout;
private String leaftbl;
private BTreeLeaf leaf = null;
private BlockId rootblk;

public BTreeIndex(Transaction tx, String idxname,
 Layout leafLayout) {

this.tx = tx;
// deal with the leaves
leaftbl = idxname + "leaf";
this.leafLayout = leafLayout;
if (tx.size(leaftbl) == 0) {

BlockId blk = tx.append(leaftbl);
BTPage node = new BTPage(tx, blk, leafLayout);
node.format(blk, -1);

}

// deal with the directory
Schema dirsch = new Schema();
dirsch.add("block", leafLayout.schema());
dirsch.add("dataval", leafLayout.schema());
String dirtbl = idxname + "dir";
dirLayout = new Layout(dirsch);
rootblk = new BlockId(dirtbl, 0);
if (tx.size(dirtbl) == 0) {

// create new root block
tx.append(dirtbl);
BTPage node = new BTPage(tx, rootblk, dirLayout);
node.format(rootblk, 0);
// insert initial directory entry
int fldtype = dirsch.type("dataval");
Constant minval = (fldtype == INTEGER) ?

new Constant(Integer.MIN_VALUE) :
new Constant("");

node.insertDir(0, minval, 0);
node.close();

}
}

public void beforeFirst(Constant searchkey) {
close();
BTreeDir root = new BTreeDir(tx, rootblk, dirLayout);
int blknum = root.search(searchkey);
root.close();
BlockId leafblk = new BlockId(leaftbl, blknum);
leaf = new BTreeLeaf(tx, leafblk, leafLayout, searchkey);

}

public boolean next() {
return leaf.next();

}

Fig. 12.24 The code for the SimpleDB class BTreeIndex

346 12 Indexing

in the tree. This second task was trivial for the basic planner of Chap. 10 because it
only knows about one implementation for each operator. For example, it always
implements a select node using a SelectPlan regardless of whether an appropri-
ate index is available.

For the planner to construct a plan that uses an index, it needs to have operator
implementations that use indexes. This section develops such implementations for
the select and join operators. Given a query, the planner is then free to incorporate
these implementations in its plan.

The planning process becomes much more complicated when relational operators
can have more than one implementation. The planner must be able to
consider multiple plans for a query, some which use indexes, and some that do
not; it then must decide which plan is the most efficient. This feature is addressed in
Chap. 15.

public RID getDataRid() {
return leaf.getDataRid();

}

public void insert(Constant dataval, RID datarid) {
beforeFirst(dataval);
DirEntry e = leaf.insert(datarid);
leaf.close();
if (e == null)

return;
BTreeDir root = new BTreeDir(tx, rootblk, dirLayout);
DirEntry e2 = root.insert(e);
if (e2 != null)

root.makeNewRoot(e2);
root.close();

}

public void delete(Constant dataval, RID datarid) {
beforeFirst(dataval);
leaf.delete(datarid);
leaf.close();

}

public void close() {
if (leaf != null)

leaf.close();
}

public static int searchCost(int numblocks, int rpb) {
return 1 + (int)(Math.log(numblocks) / Math.log(rpb));

}
}

Fig. 12.24 (continued)

12.6 Index-Aware Operator Implementations 347

https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_15

12.6.1 An Indexed Implementation of Select

The SimpleDB class IndexSelectPlan implements the select operator. Its code
appears in Fig. 12.25. The constructor takes three arguments: the plan for the
underlying table, which is assumed to be a TablePlan; the information about
the applicable index; and the selection constant. The method open opens the index
and passes it (and the constant) to the IndexSelectScan constructor. The
methods blocksAccessed, recordsOutput, and distinctValues imple-
ment cost-estimation formulas, using methods provided by the IndexInfo class.

The code for IndexSelectScan appears in Fig. 12.26. The Index variable
idx holds the current index record, and the TableScan variable ts holds the
current data record. The call to next moves to the next index record having the

public class IndexSelectPlan implements Plan {
private Plan p;
private IndexInfo ii;
private Constant val;

public IndexSelectPlan(Plan p, IndexInfo ii, Constant val) {
this.p = p;
this.ii = ii;
this.val = val;

}

public Scan open() {
// throws an exception if p is not a table plan.
TableScan ts = (TableScan) p.open();
Index idx = ii.open();
return new IndexSelectScan(idx, val, ts);

}

public int blocksAccessed() {
return ii.blocksAccessed() + recordsOutput();

}

public int recordsOutput() {
return ii.recordsOutput();

}

public int distinctValues(String fldname) {
return ii.distinctValues(fldname);

}

public Schema schema() {
return p.schema();

}
}

Fig. 12.25 The code for the SimpleDB class IndexSelectPlan

348 12 Indexing

public class IndexSelectScan implements Scan {
private TableScan ts;
private Index idx;
private Constant val;

public IndexSelectScan(TableScan ts, Index idx,
 Constant val) {

this.ts = ts;
this.idx = idx;
this.val = val;
beforeFirst();

}

public void beforeFirst() {
idx.beforeFirst(val);

}

public boolean next() {
boolean ok = idx.next();
if (ok) {

RID rid = idx.getDataRid();
ts.moveToRid(rid);

}
return ok;

}

public int getInt(String fldname) {
return ts.getInt(fldname);

}

public String getString(String fldname) {
return ts.getString(fldname);

}

public Constant getVal(String fldname) {
return ts.getVal(fldname);

}

public boolean hasField(String fldname) {
return ts.hasField(fldname);

}

public void close() {
idx.close();
ts.close();

}
}

Fig. 12.26 The code for the SimpleDB class IndexSelectScan

12.6 Index-Aware Operator Implementations 349

specified search constant; the table scan is then positioned at the data record having
the datarid value of the current index record.

Note that the table scan is never scanned; its current record is always obtained via
the datarid of an index record. The remaining scan methods (getVal, getInt,
etc.) pertain to the current data record and thus are obtained directly from the
table scan.

12.6.2 An Indexed Implementation of Join

A join operation takes three arguments: two tables T1 and T2 and a predicate p of the
form “A ¼ B”, where A is a field from T1 and B is a field from T2. The predicate
specifies which combination of records from T1 and T2 should be in the output table.
In particular, the join operation is defined as follows:

join(T1, T2, p) � select(product(T1, T2), p).

An index join is an implementation of a join in the special case where T2 is a
stored table having an index on B. Figure 12.27 gives the algorithm.

Note that an index join is implemented similarly to a product; the difference is
that instead of repeatedly scanning the inner table, the code only has to repeatedly
search the index. Consequently, an index join can be considerably more efficient
than taking the product of the two tables.

The classes IndexJoinPlan and IndexJoinScan implement index joins.
The code for IndexJoinPlan appears in Fig. 12.28.

The constructor arguments p1 and p2 denote plans for the tables T1 and T2 in
Fig. 12.27. The variable ii denotes T2’s index on B, and variable joinfield
corresponds to the field A. The open method converts the plans to scans and the
IndexInfo object into an index; it then passes these to the IndexJoinScan
constructor.

The code for IndexJoinScan appears in Fig. 12.29. The beforeFirst
method sets T1’s scan to the first record, obtains its value of A, and positions the
index before that dataval. The next method moves to the next index value, if one
exists. If not, it moves to the next value of T1 and resets the index to point to the new
dataval.

For each record t1 in T1:

1. Let x be the A-value of t1.
2. Use the index on B to find the index records whose B-value = x.
3. For each index record:

a. Obtain the value of its datarid.
b. Move directly to the T2 record t2 having that RID.
c. Process the output record (t1, t2).

Fig. 12.27 Implementing a join using an index

350 12 Indexing

public class IndexJoinPlan implements Plan {
private Plan p1, p2;
private IndexInfo ii;
private String joinfield;
private Schema sch = new Schema();

public IndexJoinPlan(Plan p1, Plan p2, IndexInfo ii,
 String joinfield) {

this.p1 = p1;
this.p2 = p2;
this.ii = ii;
this.joinfield = joinfield;
sch.addAll(p1.schema());
sch.addAll(p2.schema());

}

public Scan open() {
Scan s = p1.open();
// throws an exception if p2 is not a table plan
TableScan ts = (TableScan) p2.open();
Index idx = ii.open();
return new IndexJoinScan(s, idx, joinfield, ts);

}

public int blocksAccessed() {
return p1.blocksAccessed()

+ (p1.recordsOutput() * ii.blocksAccessed())
+ recordsOutput();

}

public int recordsOutput() {
return p1.recordsOutput() * ii.recordsOutput();

}

public int distinctValues(String fldname) {
if (p1.schema().hasField(fldname))

return p1.distinctValues(fldname);
else

return p2.distinctValues(fldname);
}

public Schema schema() {
return sch;

}
}

Fig. 12.28 The code for the SimpleDB class IndexJoinPlan

12.6 Index-Aware Operator Implementations 351

public class IndexJoinScan implements Scan {
private Scan lhs;
private Index idx;
private String joinfield;
private TableScan rhs;

public IndexJoinScan(Scan lhs, Index idx, String joinfld,
 TableScan rhs) {

this.lhs = lhs;
this.idx = idx;
this.joinfield = joinfld;
this.rhs = rhs;
beforeFirst();

}

public void beforeFirst() {
lhs.beforeFirst();
lhs.next();
resetIndex();

}

public boolean next() {
while (true) {

if (idx.next()) {
rhs.moveToRid(idx.getDataRid());
return true;

}
if (!lhs.next())

return false;
resetIndex();

}
}

public int getInt(String fldname) {
if (rhs.hasField(fldname))

return rhs.getInt(fldname);
else

return lhs.getInt(fldname);
}

public Constant getVal(String fldname) {
if (rhs.hasField(fldname))

return rhs.getVal(fldname);

else
return lhs.getVal(fldname);

}

public String getString(String fldname) {
if (rhs.hasField(fldname))

return rhs.getString(fldname);
else

return lhs.getString(fldname);
}

Fig. 12.29 The code for the SimpleDB class IndexJoinScan

352 12 Indexing

12.7 Index Update Planning

If a database engine supports indexing, then its planner must ensure that whenever a
data record is updated, a corresponding change is made to each of its index records.
The code fragment of Fig. 12.4 showed the kind of code that the planner needs to
execute. This section shows how the planner does it.

Package simpledb.index.planner contains the planner class
IndexUpdatePlanner, which modifies the basic update planner; its code
appears in Fig. 12.30.

The method executeInsert retrieves the index information of the mentioned
table. As in the basic planner, the method calls setVal to set the initial value of
each specified field. After each call to setVal, the planner looks to see if there is an
index on that field; if there is, then it inserts a new record into that index.

The method executeDelete constructs a scan of records to be deleted, as in
the basic planner. Before each of these data records is deleted, the method uses the
record’s field values to determine which index records need to be deleted. It then
deletes those index records, and then the data record.

The method executeModify constructs the scan of records to be modified, as
in the basic planner. Before modifying each record, the method first adjusts the index
of the modified field, if it exists. In particular, it deletes the old index record and
inserts a new one.

The methods to create tables, views, and indexes are the same as in the basic
planner.

In order to get SimpleDB to use the index update planner, you must change the
method planner in class SimpleDB so that it creates an instance of
IndexUpdatePlanner instead of BasicUpdatePlanner.

public boolean hasField(String fldname) {
return rhs.hasField(fldname) || lhs.hasField(fldname);

}

public void close() {
lhs.close();
idx.close();
rhs.close();

}

private void resetIndex() {
Constant searchkey = lhs.getVal(joinfield);
idx.beforeFirst(searchkey);

}
}

Fig. 12.29 (continued)

12.7 Index Update Planning 353

public class IndexUpdatePlanner implements UpdatePlanner {
private MetadataMgr mdm;

public IndexUpdatePlanner(MetadataMgr mdm) {
this.mdm = mdm;

}

public int executeInsert(InsertData data, Transaction tx) {
String tblname = data.tableName();
Plan p = new TablePlan(tx, tblname, mdm);

// first, insert the record

UpdateScan s = (UpdateScan) p.open();
s.insert();
RID rid = s.getRid();

// then modify each field, inserting index records
Map<String,IndexInfo> indexes = mdm.getIndexInfo(tblname, tx);
Iterator<Constant> valIter = data.vals().iterator();
for (String fldname : data.fields()) {

Constant val = valIter.next();
System.out.println("Modify field " + fldname +
 " to val " + val);

s.setVal(fldname, val);

IndexInfo ii = indexes.get(fldname);
if (ii != null) {

Index idx = ii.open();
idx.insert(val, rid);
idx.close();

}
}
s.close();
return 1;

}

public int executeDelete(DeleteData data, Transaction tx) {
String tblname = data.tableName();
Plan p = new TablePlan(tx, tblname, mdm);
p = new SelectPlan(p, data.pred());
Map<String,IndexInfo> indexes = mdm.getIndexInfo(tblname, tx);

UpdateScan s = (UpdateScan) p.open();
int count = 0;
while(s.next()) {

// first, delete the record's RID from every index
RID rid = s.getRid();
for (String fldname : indexes.keySet()) {

Constant val = s.getVal(fldname);
Index idx = indexes.get(fldname).open();
idx.delete(val, rid);
idx.close();

}

// then delete the record
s.delete();

Fig. 12.30 The code for the SimpleDB class IndexUpdatePlanner

354 12 Indexing

IndexInfo ii = mdm.getIndexInfo(tblname, tx).get(fldname);
Index idx = (ii == null) ? null : ii.open();

UpdateScan s = (UpdateScan) p.open();
int count = 0;
while(s.next()) {

// first, update the record
Constant newval = data.newValue().evaluate(s);
Constant oldval = s.getVal(fldname);
s.setVal(data.targetField(), newval);

// then update the appropriate index, if it exists
if (idx != null) {

RID rid = s.getRid();
idx.delete(oldval, rid);
idx.insert(newval, rid);

}
count++;

}
if (idx != null) idx.close();
s.close();
return count;

}

public int executeCreateTable(CreateTableData data,
 Transaction tx) {

mdm.createTable(data.tableName(), data.newSchema(), tx);
return 0;

}

public int executeCreateView(CreateViewData data,
 Transaction tx) {

mdm.createView(data.viewName(), data.viewDef(), tx);
return 0;

}

public int executeCreateIndex(CreateIndexData data,
 Transaction tx) {

mdm.createIndex(data.indexName(), data.tableName(),
data.fieldName(), tx);
return 0;

}

}

count++;
}
s.close();
return count;

}

public int executeModify(ModifyData data, Transaction tx) {

String tblname = data.tableName();
String fldname = data.targetField();
Plan p = new TablePlan(tx, tblname, mdm);
p = new SelectPlan(p, data.pred());

Fig. 12.30 (continued)

12.7 Index Update Planning 355

12.8 Chapter Summary

• Given a field A of table T, an index on A is a file of records, one index record for
each record of T. Each index record contains two fields: its dataval, which is the
A-value of the corresponding record of T, and its datarid, which is the rid of the
corresponding record.

• An index is able to improve the efficiency of select and join operations. Instead of
scanning each block of the data table, the system can do the following:

– Search the index to find all index records having the selected dataval.
– For each index record found, use its datarid to access the desired data record.

In this way, the database system is able to access only the data blocks that contain
matching records.

• An index is not necessarily useful. As a rule of thumb, the usefulness of an index
on field A is proportional the number of different A-values in the table.

• A query may be indexable in different ways. The query processor determines
which of these implementations is best.

• The database engine is responsible for updating the indexes when their table
changes. It must insert (or delete) a record in each index whenever a record is
inserted (or deleted) from the table. This maintenance cost means that only the
most useful indexes are worth keeping.

• Indexes are implemented so that searches require very few disk accesses. The
chapter discussed three index implementation strategies: static hashing, extend-
able hashing, and B-trees.

• Static hashing stores index records in a fixed number of buckets, where each
bucket corresponds to a file. A hash function determines the bucket assigned to
each index record. To find an index record using static hashing, the index
manager hashes its search key and examines that bucket. If an index contains B
blocks and N buckets, then each bucket is about B/N blocks long, and so
traversing a bucket requires about B/N block accesses.

• Extendable hashing allows buckets to share blocks. This improves on static
hashing, because it allows for very many buckets without an especially large
index file. Block sharing is achieved by means of a bucket directory. The bucket
directory can be thought of as an array Dir of integers; if an index record hashes
to bucket b, then that record will be stored in block Dir[b] of the bucket file.
When a new index record does not fit in its block, then the block splits, the bucket
directory is updated, and the block’s records are rehashed.

• A B-tree stores its index records in a file sorted on their dataval. A B-tree also has
a file of directory records. Each index block has a corresponding directory record,
which contains the dataval of the first index record in the block and a reference to
that block. These directory records level 0 of the B-tree directory. Similarly, each
directory block has its own directory record, which is stored in the next level of
the directory. The top level consists of a single block, which is called the root of
the B-tree. Given a dataval, we can search the directory by examining one block
at each level of the directory tree; this search leads us to the index block
containing the desired index records.

356 12 Indexing

• B-tree indexes are exceptionally efficient. Any desired data record can be
retrieved in no more than five disk accesses, unless its table is unusually large.
If a commercial database system implements only one indexing strategy, it almost
certainly uses a B-tree.

12.9 Suggested Reading

This chapter treated indexes as auxiliary files. The article Sieg and Sciore (1990)
shows how an index can be treated as a special type of table and how indexselect and
indexjoin can be treated as relational algebra operators. This approach allows the
planner to use indexes in a much more flexible way.

B-trees and hash files are general-purpose index structures, which work best
when the query has a single selective search key. They do not work so well when
queries have multiple search keys, such as in geographic and spatial databases. (For
example, a B-tree cannot help with a query such as “find all restaurants within
2 miles of my home.”) Multidimensional indexes have been developed to deal with
such databases. The article Gaede and Gunther (1998) provides a survey of these
indexes.

The cost of a B-tree search is determined by the height of the B-tree, which is
determined by the size of the index and directory records. The article Bayer and
Unteraurer (1977) gives techniques for reducing the size of these records. For
example, if the datavals in a leaf node are strings and these strings have a common
prefix, then this prefix can be stored once at the beginning of the page, and the suffix
of the dataval is stored with each index record. Moreover, there usually is no need to
store the entire dataval in a directory record; the B-tree only needs to store the prefix
of that dataval sufficient to determine which child to choose.

The article Graefe (2004) describes a novel implementation of B-trees in which
nodes are never overridden; instead, updates to nodes cause new nodes to be created.
The article demonstrates that this implementation results in faster updates at the cost
of slightly slower reads.

This chapter has focused exclusively on how to minimize the number of disk
accesses performed by a B-tree search. Although the CPU cost of a B-tree search is
less important, it is often significant and needs to be considered by commercial
implementations. The article Lomet (2001) discusses how to structure B-tree nodes
to minimize search. The article Chen et al. (2002) shows how to structure B-tree
nodes to maximize CPU cache performance.

This chapter also did not consider the issue of how to lock the nodes of a B-tree.
SimpleDB simply locks a B-tree node the same as any other data block and holds the
lock until the transaction completes. However, it turns out that B-trees do not need to
satisfy the lock protocol of Chap. 5 in order to guarantee serializability; instead,
locks can be released early. The article Bayer and Schkolnick (1977) addresses this
issue.

Web search engines keep databases of web pages, which are primarily text.
Queries on these databases tend to be based on string and pattern matching, for

12.9 Suggested Reading 357

https://doi.org/10.1007/978-3-030-33836-7_5

which traditional indexing structures are basically useless. Text-based indexing
methods are treated in Faloutsos (1985).

An unusual indexing strategy stores a bitmap for each field value; the bitmap
contains one bit for each data record and indicates whether the record contains that
value. One interesting thing about bitmap indexes is that they can be easily
intersected to handle multiple search keys. The article O’Neil and Quass (1997)
explains how bitmap indexes work.

Chapter 6 assumed that tables are stored sequentially and are basically unorga-
nized. However, it is also possible to organize a table according to a B-tree, hash file,
or any other indexing strategy. There are some complications: for example, a B-tree
record may move to another block when its block splits, which means that record ids
must be handled carefully; furthermore, the indexing strategy must also support
sequential scans of the table (and, in fact, the entire Scan and UpdateScan
interfaces). But the basic principles hold. The article Batory (1982) describes how
complex file organizations can be constructed out of the basic indexing strategies.

Batory, D., & Gotlieb, C. (1982). A unifying model of physical databases. ACM
Transactions of Database Systems, 7(4), 509–539.

Bayer, R., & Schkolnick, M. (1977). Concurrency of operations on B-trees. Acta
Informatica, 9(1), 1–21.

Bayer, R., & Unterauer, K. (1977). Prefix B-trees. ACM Transactions of Database
Systems, 2(1), 11–26.

Chen, S., Gibbons, P., Mowry, T., & Valentin, G. (2002). Fractal prefetching B+-
trees: Optimizing both cache and disk performance. Proceedings of the ACM
SIGMOD Conference, pp. 157–168.

Faloutsos, C. (1985). Access methods for text. ACM Computing Surveys, 17(1),
49–74.

Graede, V., & Gunther, O. (1998). Multidimensional access methods. ACM Com-
puting Surveys, 30(2), 170–231.

Graefe, G. (2004) Write-optimized B-trees. Proceedings of the VLDB Conference,
pp. 672–683.

Lomet, D. (2001). The evolution of effective B-tree: Page organization and tech-
niques: A personal account. ACM SIGMOD Record, 30(3), 64–69.

O’Neil, P., & Quass, D. (1997). Improved query performance with variant indexes.
Proceedings of the ACM SIGMOD Conference, pp. 38–49.

Sieg, J., & Sciore, E. (1990). Extended relations. Proceedings of the IEEE Data
Engineering Conference, pp. 488–494.

12.10 Exercises

Conceptual Exercises

12.1. Consider the university database of Fig. 1.1. Which fields would be inappro-
priate to index on? Explain your reasoning.

358 12 Indexing

https://doi.org/10.1007/978-3-030-33836-7_6
https://doi.org/10.1007/978-3-030-33836-7_1

12.2. Explain which indexes could be useful for evaluating each of the following
queries.

(a) select SName
from STUDENT, DEPT
where MajorId¼DId and DName¼'math' and GradYear<>2001

(b) select Prof
from ENROLL, SECTION, COURSE
where SectId¼SectionId and CourseId¼CId
and Grade¼'F' and Title¼'calculus'

12.3. Suppose that you have decided to create an index on the field GradYear in
STUDENT.

(a) Consider the following query:

select � from STUDENT where GradYear=2020

Calculate the cost of using the index to answer this query, using the
statistics of Fig. 7.8 and assuming that students are evenly distributed
among 50 different graduation years.

(b) Do the same as in part (b), but instead of 50 different graduation years,
assume that there are 2, 10, 20, or 100 different graduation years.

12.4. Show that an index on field A is useless if the number of different A-values is
less than the number of table records that fit in a block.

12.5. Does it ever make sense to create an index for another index? Explain.
12.6. Assume that blocks are 120 bytes and that the DEPT table has 60 records. For

each field of DEPT, calculate how many blocks are required to hold the index
records.

12.7. The interface Index contains a method delete, which deletes the index
record having a specified dataval and datarid. Would it be useful to also have
a method deleteAll, which deletes all index records having a specified
dataval? How and when would the planner use such a method?

12.8. Consider a query that joins two tables, such as

select SName, DName
from STUDENT, DEPT
where MajorId = DId

Suppose STUDENT contains an index on MajorId, and DEPT contains an
index on DId. There are two ways to implement this query using an index
join, one way for each index. Using the cost information from Fig. 7.8,
compare the cost of these two plans. What general rule can you conclude
from your calculation?

12.9. The example of extendable hashing in Sect. 12.4 stopped after the insertion
of only seven records. Continue the example, inserting records for employees
having id 28, 9, 16, 24, 36, 48, 64, and 56.

12.10 Exercises 359

https://doi.org/10.1007/978-3-030-33836-7_7
https://doi.org/10.1007/978-3-030-33836-7_7

12.10. In an extendable hashed index, consider an index block having local depth L.
Show that the number of every bucket that points to this block has the same
rightmost L bits.

12.11. In extendable hashing, the bucket file increases when blocks split. Develop
an algorithm for deletion that allows two split blocks to be coalesced. How
practical is it?

12.12. Consider an extendable hash index such that 100 index records fit in a block.
Suppose that the index is currently empty.

(a) How many records can be inserted before the global depth of the index
becomes 1?

(b) How many records can be inserted before the global depth becomes 2?

12.13. Suppose that an insertion into an extendable hash index just caused its global
depth to increase from 3 to 4.

(a) How many entries will the bucket directory have?
(b) How many blocks in the bucket file have exactly one directory entry

pointing to them?

12.14. Explain why any extensible hash index can be accessed in exactly two block
accesses, regardless of its size.

12.15. Suppose you create a B-tree index for SId. Assuming that 3 index records
and 3 directory records fit into a block, draw a picture of the B-tree that results
from inserting records for students 8, 12, 1, 20, 5, 7, 2, 28, 9, 16, 24, 36,
48, 64, and 56.

12.16. Consider the statistics of Fig. 7.8, and suppose that you have a B-tree index
on field StudentId of ENROLL. Assume that 100 index or directory
records fit in a block.

(a) How many blocks are in the index file?
(b) How many blocks are in the directory file?

12.17. Consider again a B-tree index on field StudentId of ENROLL, and
assume that 100 index or directory records fit in a block. Suppose that the
index is currently empty.

(a) How many insertions will cause the root to split (into a level-1 node)?
(b) What is the smallest number of insertions that will cause the root to split

again (into a level-2 node)?

12.18. Consider the SimpleDB implementation of B-trees.

(a) What is the maximum number of buffers that will be pinned simulta-
neously during an index scan?

(b) What is the maximum number of buffers that will be pinned simulta-
neously during an insertion?

12.19. The SimpleDB IndexSelectPlan and IndexSelectScan classes
assume that the selection predicate is an equality comparison, as in

360 12 Indexing

https://doi.org/10.1007/978-3-030-33836-7_7

“GradYear ¼ 2019.” In general, however, an index could be used with a
range predicate, such as “GradYear > 2019.”

(a) Explain conceptually how a B-tree index on GradYear could be used to
implement the following query:

select SName from STUDENT where GradYear > 2019

(b) What revisions need to be made to the SimpleDB B-tree code in order to
support your answer to part (a)?

(c) Suppose that the database contains a B-tree index on GradYear.
Explain why this index might not be useful for implementing the
query. When would it be useful?

(d) Explain why static and extendable hash indexes are never useful for this
query.

Programming Exercises

12.20. The methods executeDelete and executeUpdate of the SimpleDB
update planner use a select scan to find the affected records. Another
possibility is to use an index select scan, if an appropriate index exists.

(a) Explain how the planner algorithms would have to change.
(b) Implement these changes in SimpleDB.

12.21. Implement extendable hashing. Choose a maximum depth that creates a
directory of at most two disk blocks.

12.22. Consider the following modification to index records: Instead of containing
the rid of the corresponding data record, the index record only contains the
block number where the data record lives. Thus, there may be fewer index
records than data records—if a data block contains multiple records for the
same search key, a single index record would correspond to all of them.

(a) Explain why this modification could result in fewer disk accesses during
index-based queries.

(b) How do the index delete and insert methods have to change in order to
accommodate this modification? Do they require more disk accesses than
the existing methods? Write the necessary code, for both B-trees and
static hashing.

(c) Do you think that this modification is a good idea?

12.23. Many commercial database systems allow indexes to be specified from
within the SQL create table statement. For example, the syntax of
MySQL looks like this:

create table T (A int, B varchar(9), index(A), C int, index(B))

12.10 Exercises 361

That is, items of the form index(<field>) can appear anywhere inside
the list of field names.

(a) Revise the SimpleDB parser to handle this additional syntax.
(b) Revise the SimpleDB planner to create the appropriate plan.

12.24. One of the problems with the update planner method
executeCreateIndex is that the newly created index is empty, even if
the indexed table contains records. Revise the method so that it automatically
inserts an index record for every existing record in the indexed table.

12.25. Revise SimpleDB so that it has a drop index statement. Create your own
syntax, and modify the parser and planner appropriately.

12.26. Revise SimpleDB so that a user can specify the type of a newly created index.

(a) Develop a new syntax for the create index statement, and give its
grammar.

(b) Modify the parser (and possibly the lexer) to implement your new syntax.

12.27. Implement static hashing using a single index file. The first N blocks of this
file will contain the first block of each bucket. The remaining blocks in each
bucket will be chained together, using an integer stored in the block. (For
example, if the value stored in block 1 is 173, then the next block in the chain
is block 173. A value of �1 indicates the end of the chain.) For simplicity,
you can devote the first record slot of each block to hold this chain pointer.

12.28. SimpleDB splits a B-tree block as soon as it becomes full. Another algorithm
is to allow blocks to be full and to split them during the insert method. In
particular, as the code moves down the tree looking for the leaf block, it splits
any full block it encounters.

(a) Modify the code to implement this algorithm.
(b) Explain how this code reduces the buffer needs of the insert method.

362 12 Indexing

Chapter 13
Materialization and Sorting

This chapter considers the relational algebra operators materialize, sort, groupby,
and mergejoin. These operators materialize their input records by saving them in
temporary tables. This materialization allows the operators to access their records
multiple times without recomputation, which can result in query implementations
that are much more efficient than could be achieved using only pipelined operators.

13.1 The Value of Materialization

Every operator that you have seen so far has had a pipelined implementation. Such
implementations have the following characteristics:

• Records are computed one at a time, as needed, and are not saved.
• The only way to access previously seen records is to recompute the entire

operation from the beginning.

This chapter considers operators that materialize their input. Scans for these
operators read their input records when they are opened and save their output records
in one or more temporary tables. These implementations are said to preprocess their
input because they perform all computation before any output records have been
requested. The purpose of this materialization is to improve the efficiency of the
ensuing scan.

For example, consider the groupby operator, to be introduced in Sect. 13.5. This
operator groups its input records according to specified grouping fields, calculating
aggregation functions for each group. The easiest way to determine the groups is to
sort the input records on the grouping fields, which causes the records in each group
to be next to each other. A good implementation strategy is therefore to first
materialize the input, saving the records in a temporary table sorted on the grouping
fields. The calculation of the aggregation functions can then be performed by making
a single pass through the temporary table.

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_13

363

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_13

Materialization is a two-edged sword. On one hand, using a temporary table can
significantly improve the efficiency of a scan. On the other hand, creating the
temporary table incurs significant overhead costs as it writes to and reads from the
temporary table. Moreover, creating a temporary table means preprocessing the
entire input, even if the client is interested in only a few output records.

A materialized implementation is useful only when these costs are offset by the
increased efficiency of the scan. The four operators in this chapter all have highly
efficient materialized implementations.

13.2 Temporary Tables

Materialized implementations store their input records in temporary tables. A
temporary table differs from a regular table in three ways:

• A temporary table is not created using the table manager’s createTable
method, and its metadata does not appear in the system catalog. In SimpleDB,
each temporary table manages its own metadata and has its own getLayout
method.

• Temporary tables are automatically deleted by the database system when they are
no longer needed. In SimpleDB, the file manager deletes the tables during system
initialization.

• The recovery manager does not log changes to temporary tables. There is no need
to recover the previous state of a temporary table, because the table will never be
used after its query has completed.

SimpleDB implements temporary tables via the class TempTable, whose code
appears in Fig. 13.1. The constructor creates an empty table and assigns it a unique
name (of the form “tempN” for some integer N). The class contains three public
methods. The method open opens a table scan for the table, and the methods
tableName and getLayout return the temporary table’s metadata.

13.3 Materialization

This section introduces a new relational algebra operator, called materialize. The
materialize operator has no visible functionality. It takes a table as its only argument,
and its output records are exactly the same as its input records. That is:

materialize(T) � T

The purpose of the materialize operator is to save the output of a subquery in a
temporary table, to keep those records from being computed multiple times. This
section examines its use and implementation of this operator.

364 13 Materialization and Sorting

13.3.1 An Example of Materialization

Consider the query tree of Fig. 13.2a. Recall that the product operation examines
every record of its right subtree for each record in the left subtree. Consequently, the
records of the left subtree are accessed once, and the records of the right subtree are
accessed many times.

The problem with accessing the right-side records repeatedly is that they will
need to be recalculated repeatedly. In Fig. 13.2a, the implementation will need to
read the entire ENROLL table multiple times, and each time it will search for records
having a grade of “A.” Using the statistics of Fig. 7.8, you can calculate the cost of
the product as follows: There are 900 students in the class of 2005. The pipelined
implementation will read the entire 50,000-block ENROLL table for each of these
900 students, which is 45,000,000 block accesses of ENROLL. Adding this to the
4500 STUDENT blocks results in a total of 45,004,500 block accesses.

public class TempTable {
private static int nextTableNum = 0;
private Transaction tx;
private String tblname;
private Layout layout;

public TempTable(Transaction tx, Schema sch) {
this.tx = tx;
tblname = nextTableName();
layout = new Layout(sch);

}

public UpdateScan open() {
return new TableScan(tx, tblname, layout);

}

public String tableName() {
return tblname;

}

public Layout getLayout() {
return layout;

}

private static synchronized String nextTableName() {
nextTableNum++;
return "temp" + nextTableNum;

}
}

Fig. 13.1 The code for the SimpleDB class TempTable

13.3 Materialization 365

https://doi.org/10.1007/978-3-030-33836-7_7

The query tree of Fig. 13.2b has two materialize nodes. Consider first the
materialize node above the right-side select node. This node creates a temporary
table containing the ENROLL records having a grade of “A.” Each time that the
product node requests a record from its right side, the materialize node will take the
record directly from this temporary table instead of searching ENROLL.

This materialization significantly reduces the cost of the product. Consider the
following analysis. The temporary table will be 14 times smaller than ENROLL, or
3572 blocks. The right-side materialize node needs 53,572 block accesses to create
the table (50,000 accesses to read ENROLL and 3572 accesses to write the table).
After the temporary table has been created, it will be read 900 times, for a total of
3,214,800 accesses. Adding the 4500 STUDENT block accesses to these costs
results in a combined total of 3,272,872 block accesses. In other words, materiali-
zation reduces the cost of the original query tree by 82% (which, at 1 ms per block
access, results in a time savings of over 11 hours). The cost of creating the temporary
table is miniscule compared to the savings it generates.

Now consider the left-side materialize node in Fig. 13.2b. That node will scan the
STUDENT table and create a temporary table containing all students in the class of
2005. The product node will then examine this temporary table once. However, the
product node in the original query tree also examines the STUDENT table once.
Since the STUDENT records are examined once in each case, the left-side materi-
alize node actually increases the cost of the query. In general, a materialize node is
only useful when the node’s output will be calculated repeatedly.

Fig. 13.2 Where to use the
materialize operator? (a)
The original query, (b)
materializing the left and
right sides of the product

366 13 Materialization and Sorting

13.3.2 The Cost of Materialization

Figure 13.3 depicts the structure of a query tree that contains a materialize node. The
input to the node is the subquery denoted by T2. When a user opens the plan for
query T1, its root plan will open its child plans, and so on down the tree. When the
materialize plan is opened, it will preprocess its input. In particular, the plan will
open a scan for T2, evaluate it, save the output in a temporary table, and close the
scan for T2. During the scan of query T1, the materialize scan will respond to a
request by accessing the corresponding record from its temporary table. Note that the
subquery T2 is accessed once, to populate the temporary table; after that, it is no
longer needed.

The cost associated with the materialize node can be divided into two parts: the
cost of preprocessing the input and the cost of executing the scan. The preprocessing
cost is the cost of T2 plus the cost of writing the records to the temporary table. The
scanning cost is the cost of reading the records from the temporary table. Assuming
that the temporary table is B blocks long, then these costs can be expressed as
follows:

• Preprocessing cost ¼ B + the cost of its input
• Scanning cost ¼ B

13.3.3 Implementing the Materialize Operator

The SimpleDB class MaterializePlan implements the materialize operator; its
code appears in Fig. 13.4. The open method preprocesses the input—it creates a
new temporary table, opens scans for the table and for the input, copies the input
records into the table scan, closes the input scan, and returns the table scan. The
method blocksAccessed returns the estimated size of the materialized table.
This size is computed by calculating the records per block (RPB) of the new records

Fig. 13.3 A query tree containing a materialize node

13.3 Materialization 367

and dividing the number of output records by this RPB. The values for methods
recordsOutput and distinctValues are the same as in the underlying plan.

Note that blocksAccessed does not include the preprocessing cost. The
reason is that the temporary table is built once but may be scanned multiple times.

public class MaterializePlan implements Plan {
private Plan srcplan;
private Transaction tx;

public MaterializePlan(Transaction tx, Plan srcplan) {
this.srcplan = srcplan;
this.tx = tx;

}

public Scan open() {
Schema sch = srcplan.schema();
TempTable temp = new TempTable(tx, sch);
Scan src = srcplan.open();
UpdateScan dest = temp.open();
while (src.next()) {

dest.insert();
for (String fldname : sch.fields())

dest.setVal(fldname, src.getVal(fldname));
}
src.close();
dest.beforeFirst();
return dest;

}

public int blocksAccessed() {
// create a dummy Layout object to calculate slot size
Layout y = new Layout(srcplan.schema());
double rpb = (double) (tx.blockSize() / y.slotSize());
return (int) Math.ceil(srcplan.recordsOutput() / rpb);

}

public int recordsOutput() {
return srcplan.recordsOutput();

}

public int distinctValues(String fldname) {
return srcplan.distinctValues(fldname);

}

public Schema schema() {
return srcplan.schema();

}
}

Fig. 13.4 The code for the SimpleDB class MaterializePlan

368 13 Materialization and Sorting

If you want to include the cost of building the table in your cost formulas, you need
to add a new method (say, preprocessingCost) to the Plan interface and to
rework all of the various plan estimation formulas to include it. This task is left to
Exercise 13.9. Alternatively, you can assume that the preprocessing cost is suffi-
ciently insignificant and ignore it in your estimates.

Also note that there is no MaterializeScan class. Instead, the method open
returns a table scan for the temporary table.

13.4 Sorting

Another useful relational algebra operator is sort. The sort operator takes two
arguments: an input table and a list of field names. The output table has the same
records as the input table but sorted according to the fields. For example, the
following query sorts the STUDENT table by GradYear, with students having
the same graduation year further sorted by name. If two students have the same name
and graduation year, then their records may appear in any order.

sort(STUDENT, [GradYear, SName])

A planner uses sort to implement the order by clause of an SQL query. Sorting
will also be used to implement the operators groupby and mergejoin later in this
chapter. A database engine needs to be able to sort records efficiently. This section
considers this problem and its SimpleDB solution.

13.4.1 Why Sort Needs to Materialize Its Input

It is possible to implement sorting without using materialization. For example,
consider the sort node in the query tree of Fig. 13.5. The input to this node is the
set of students and their majors, and the output is sorted by student name. Assume for
simplicity that no two students have the same name, so that the input records have
distinct sort values.

Fig. 13.5 A query tree containing a sort node

13.4 Sorting 369

In a non-materialized implementation of the sort operator, the next method will
need to position the scan at the input record having the next largest SName-value. To
do so, the method will have to iterate through the input records twice: first to find the
next largest value and then to move to the record having that value. Although such an
implementation is possible, it would be exceptionally inefficient and totally imprac-
tical for large tables.

In a materialized implementation of sort, the open method will preprocess the
input records, saving them in sorted order in a temporary table. Each call to next
will simply retrieve the next record from the temporary table. This implementation
produces a very efficient scan at the cost of some initial preprocessing. Assuming
that creating and sorting a temporary table can be performed relatively efficiently
(which it can), then this materialized implementation will be considerably less
expensive than the non-materialized one.

13.4.2 The Basic Mergesort Algorithm

The standard sorting algorithms taught in beginning programming courses (such as
insertion sort and quicksort) are called internal sorting algorithms, because they
require all of the records to be in memory at the same time. A database engine,
however, cannot assume that a table will fit completely into memory; thus it must use
external sorting algorithms. The simplest and most common external sorting algo-
rithm is called mergesort.

The mergesort algorithm is based on the concept of a run. A run is a sorted
portion of a table. An unsorted table has several runs; a sorted table has exactly one
run. For example, suppose you want to sort students by their id, and the SId-values
of the STUDENT records are currently in the following order:

2 6 20 4 1 16 19 3 18

This table contains four runs. The first run contains [2, 6, 20], the second contains
[4], the third contains [1, 16, 19], and the fourth [3, 18].

Mergesort works in two phases. The first phase, called split, scans the input
records and places each run into its own temporary table. The second phase, called
merge, repeatedly merges these runs until a single run remains; this final run is the
sorted table.

The merge phase works as a sequence of iterations. During each iteration, the
current set of runs is divided into pairs; each pair of runs is then merged into a single
run. These resulting runs then form the new current set of runs. This new set will
contain half as many runs as the previous one. The iterations continue until the
current set contains a single run.

As an example of mergesort, let’s sort the above STUDENT records. The split
phase identifies the four runs and stores each one in a temporary table:

370 13 Materialization and Sorting

Run 1: 2 6 20
Run 2: 4
Run 3: 1 16 19
Run 4: 3 18

The first iteration of the merge phase merges runs 1 and 2 to produce run 5 and
merges runs 3 and 4 to produce run 6:

Run 5: 2 4 6 20
Run 6: 1 3 16 18 19

The second iteration merges runs 5 and 6 to produce run 7:

Run 7: 1 2 3 4 6 16 18 19 20

There is now just one run, so the algorithm stops. It sorted the table using just two
merge iterations.

Suppose that a table has 2N initial runs. Each merge iteration transforms pairs of
runs into single runs, that is, it reduces the number of runs by a factor of 2. Thus it
will take N iterations to sort the file: the first iteration will reduce it to 2N-1 runs, the
second to 2N-2 runs, and the Nth to 20¼1 run. In general, a table with R initial runs
will be sorted in log2R merge iterations.

13.4.3 Improving the Mergesort Algorithm

There are three ways to improve the efficiency of this basic mergesort algorithm:

• Increase the number of runs merged at a time
• Reduce the number of initial runs
• Avoid writing the final, sorted table

This section examines these improvements.

Increasing the Number of Runs in a Merge
Instead of merging pairs of runs, the algorithm could merge three runs at a time, or
even more. Suppose that the algorithm merges k runs at a time. Then it would open a
scan on each of k temporary tables. At each step, it looks at the current record of each
scan, copies the lowest-valued one to the output table, and moves to the next record
of that scan. This step is repeated until the records of all k runs have been copied to
the output table.

Merging multiple runs at a time reduces the number of iterations needed to sort
the table. If the table starts with R initial runs and k runs are merged at a time, then
only logkR iterations will be needed to sort the file. How do you know what value
of k to use? Why not just merge all of the runs in a single iteration? The answer
depends on how many buffers are available. In order to merge k runs, you need k+1
buffers: one buffer for each of the k input scans and one buffer for the output scan.

13.4 Sorting 371

For now, you can assume that the algorithm picks an arbitrary value for k.
Chapter 14 will examine how to pick the best value for k.

Reducing the Number of Initial Runs
If you want to reduce the number of initial runs, then you need to increase the
number of records per run. There are two algorithms you can use.

The first algorithm is shown in Fig. 13.6. That algorithm ignores the runs
generated by the input records and instead creates runs that are always one block
long. It works by repeatedly storing a block’s worth of input records in a temporary
table. Since this block of records will be located in a buffer page in memory, the
algorithm can use an in-memory sorting algorithm (such as quicksort) to sort these
records without incurring any disk accesses. After sorting the block of records into a
single run, it saves that block to disk.

The second algorithm is similar, but it uses an additional block of memory as a
“staging area” for input records. It begins by filling the staging area with records. For
as long as possible, it repeatedly deletes a record from the staging area, writes it to
the current run, and adds another input record to the staging area. This procedure will
stop when all the records in the staging area are smaller than the last record in the
run. In this case, the run is closed, and a new run is begun. The code for this
algorithm appears in Fig. 13.7.

The advantage to using a staging area is that you keep adding records to it, which
means that you always get to choose the next record in the run from a block-sized
applicant pool. Thus each run will most likely contain more than a block’s worth of
records.

The following example compares these two ways of creating initial runs. Con-
sider again the previous example that sorted STUDENT records by their SId values.
Assume that a block can hold three records and that the records are initially in the
following order:

Repeat until there are no more input records:
1.
2. Sort those records using an in-memory sorting algorithm.
3. Save the one-block temporary table to disk.

Read a block’s worth of input records into a new temporary table.

Fig. 13.6 An algorithm to create initial runs that are exactly one block long

1. Fill the one-block staging area with input records.
2. Start a new run.
3. Repeat until the staging area is empty:

a. If none of the records in the staging area fit into the current run, then:
Close the current run, and start a new one.

b. Choose the record from the staging area having the lowest value higher than
the last record in the current run.

c. Copy that record to the current run.
d. Delete that record from the staging area.
e. Add the next input record (if there is one) to the staging area.

4. Close the current run.

Fig. 13.7 An algorithm to create large initial runs

372 13 Materialization and Sorting

https://doi.org/10.1007/978-3-030-33836-7_14

2 6 20 4 1 16 19 3 18

These records happen to form four runs, as illustrated earlier. Suppose that you
use the algorithm in Fig. 13.6 to reduce the number of initial runs. Then you would
read the records in groups of three, sorting each group individually. You therefore
wind up with three initial runs, as follows:

Run 1: 2 6 20
Run 2: 1 4 16
Run 3: 3 18 19

Suppose instead that you use the algorithm in Fig. 13.7 to reduce the number of
runs. You begin by reading the first three records into the staging area.

Staging area: 2 6 20
Run 1:

You next choose the smallest value, 2, add it to the run, remove it from the staging
area, and read the next record into the staging area.

Staging area: 6 20 4
Run 1: 2

The next smallest value is 4, so you add that value to the run, remove it from the
staging area, and read in the next input value.

Staging area: 6 20 1
Run 1: 2 4

Here, the smallest value is 1, but that value is too small to be part of the current
run. Instead, the next viable value is 6, so you add it to the run and read the next input
value into the staging area.

Staging area: 20 1 16
Run 1: 2 4 6

Continuing, you will add 16, 19, and 20 to the run. At this point, the staging area
consists entirely of records that cannot be added to the run.

Staging area: 1 3 18
Run 1: 2 4 6 16 19 20

You therefore begin a new run. Since there are no more input records, this run will
contain the three records in the staging area.

Staging area:
Run 1: 2 4 6 16 19 20
Run 2: 1 3 18

13.4 Sorting 373

This algorithm produced only two initial runs. The first run is two blocks long.

Don’t Write the Final Sorted Table
Recall that every materialized implementation has two stages: a preprocessing stage,
in which the input records are materialized into one or more temporary tables, and a
scanning stage, which uses the temporary tables to determine the next output record.

In the basic mergesort algorithm, the preprocessing stage creates a sorted tempo-
rary table, and the scan reads from that table. This is a simple strategy but is not
optimal.

Instead of creating a sorted temporary table, suppose that the preprocessing stage
stops before the final merge iteration, that is, it stops when the number of temporary
tables is �k. The scanning stage would take these k tables as input and perform the
final merge itself. In particular, the stage would open a scan for each of these k
tables. Each call to the method next would examine the current record of these
scans and choose the record having the smallest sort value.

At each point in time, the scanning stage needs to keep track of which of the k
scans contains the current record. This scan is called the current scan. When the
client requests the next record, the implementation moves to the next record in the
current scan, determines the scan containing the lowest record, and assigns that scan
to be the new current scan.

To summarize, the job of the scanning stage is to return records in sorted order, as
if they were stored in a single, sorted table. However, it does not need to actually
create that table. Instead, it uses the k tables it receives from the preprocessing stage.
Thus the block accesses needed to write (and read) the final, sorted table can be
avoided.

13.4.4 The Cost of Mergesort

Let’s calculate the cost of sorting, using analysis similar to that for the materialize
operator. Figure 13.8 depicts the structure of a query tree that contains a sort node.

Fig. 13.8 A query tree containing a sort node

374 13 Materialization and Sorting

The cost associated with the sort node can be divided into two parts: the
preprocessing cost and the scanning cost.

• The preprocessing cost is the cost of T2, plus the cost of splitting the records into
runs, plus the cost of all but the last merge iteration.

• The scanning cost is the cost of performing the final merge from the records of the
temporary tables.

In order to be more specific, assume the following:

• The algorithm merges k runs at a time.
• There are R initial runs.
• The materialized input records require B blocks.

The split phase writes to each of the blocks once, so splitting requires B block
accesses plus the cost of the input. The records can be sorted in logkR iterations.
One of those iterations will be performed by the scanning stage and the rest by the
preprocessing stage. During each preprocessing iteration, the records of each run
will be read once and written once; thus the iteration requires 2B block accesses.
During the scanning stage, the records in each run will be read once, for a cost of B
block accesses. Putting these values together and simplifying give the following cost
formulas:

Preprocessing cost ¼ 2BlogkR - B + the cost of its input
Scanning cost ¼ B

For a concrete example, suppose that you want to sort a 1000-block stored table
having 1-block long initial runs (that is, B ¼ R ¼ 1000). The table is stored, so the
cost of the input is 1000 blocks. If you merge 2 runs at a time, then you need
10 merge iterations to completely sort the records (because log21000 � 10). The
above formula states that it takes 20,000 block accesses to preprocess the records,
plus another 1000 for the final scan. If you merge 10 runs at a time (that is, k ¼ 10),
then you would need only 3 iterations, and preprocessing would require only 6000
block accesses.

Continuing this example, suppose that you merge 1000 runs at a time (that is,
k¼ 1000). Then logkR¼ 1, so the preprocessing cost is B plus the cost of the input,
or 2000 block accesses. Note that the cost of sorting in this case is identical to the
cost of materialization. In particular, the preprocessing stage does not need to
perform any merging, because the split phase already results in k runs. The cost of
preprocessing is therefore the cost of reading the table and splitting the records,
which is 2B block accesses.

13.4.5 Implementing Mergesort

The SimpleDB classes SortPlan and SortScan implement the sort operator.

13.4 Sorting 375

The Class SortPlan
The code for SortPlan appears in Fig. 13.9.

The open method performs the mergesort algorithm. In particular, it merges two
runs at a time (i.e., k ¼ 2) and does not try to reduce the number of initial runs.
(Instead, Exercises 13.10 to 13.13 ask you to make these improvements.)

The private method splitIntoRuns performs the split phase of the mergesort
algorithm, and method doAMergeIteration performs one iteration of the merge
phase; this method is called repeatedly until it returns no more than two runs. At that
point, open passes the list of runs to the SortScan constructor, which will handle
the final merge iteration.

Method splitIntoRuns starts by creating a temporary table and opening a
scan on it (the “destination scan”). The method then iterates through the input scan.
Each input record is inserted into the destination scan. Each time a new run begins,
the destination scan is closed, and another temporary table is created and opened. At
the end of this method, several temporary tables will have been created, each
containing a single run.

The method doAMergeIteration is given a list of the current temporary
tables. It repeatedly calls the method mergeTwoRuns for each pair of temporary
tables in the list and returns a list containing the resulting (merged) temporary tables.

Method mergeTwoRuns opens a scan for each of its two tables and creates a
temporary table to hold the result. The method repeatedly chooses the smallest-
valued record from the input scans, copying that record to the result. When one of the
scans completes, then the remaining records of the other scan are added to the result.

The cost estimation methods are straightforward. The methods
recordsOutput and distinctValues return the same values as the input
table, because the sorted table contains the same records and value distribution. The
method blocksAccessed estimates the number of block accesses required to
iterate through the sorted scan, which is equal to the number of blocks in the sorted
table. Since sorted and materialized tables are exactly the same size, this computa-
tion will be exactly the same as in MaterializePlan. Thus the method creates a
“dummy” materialized plan for the sole purpose of calling its blocksAccessed
method. The preprocessing cost is not included in the blocksAccessed method,
for the same reasons as with MaterializePlan.

The job of comparing records is performed by the class RecordComparator,
whose code appears in Fig. 13.10. The class compares the current records of two
scans. Its compare method iterates through the sort fields, using compareTo to
compare the values in each scan’s current record. If all values are equal, then
compareTo returns 0.

The Class SortScan
The class SortScan implements the scan; its code appears in Fig. 13.11. The
constructor expects a list containing one or two runs. It initializes the runs by
opening their tables and moving to their first record. (If there is only one run, then
the variable hasmore2 is set to false, and the second run will never get
considered.)

376 13 Materialization and Sorting

public class SortPlan implements Plan {
private Plan p;
private Transaction tx;
private Schema sch;
private RecordComparator comp;

public SortPlan(Plan p, List<String> sortfields, Transaction tx) {
this.p = p;
this.tx = tx;
sch = p.schema();
comp = new RecordComparator(sortfields);

}

public Scan open() {
Scan src = p.open();
List<TempTable> runs = splitIntoRuns(src);
src.close();
while (runs.size() > 2)

runs = doAMergeIteration(runs);
return new SortScan(runs, comp);

}

public int blocksAccessed() {
// does not include the one-time cost of sorting
Plan mp = new MaterializePlan(tx, p);
return mp.blocksAccessed();

}

public int recordsOutput() {
return p.recordsOutput();

}

public int distinctValues(String fldname) {
return p.distinctValues(fldname);

}

public Schema schema() {
return sch;

}

private List<TempTable> splitIntoRuns(Scan src) {
List<TempTable> temps = new ArrayList<>();
src.beforeFirst();
if (!src.next())

return temps;
TempTable currenttemp = new TempTable(tx, sch);
temps.add(currenttemp);
UpdateScan currentscan = currenttemp.open();
while (copy(src, currentscan))

if (comp.compare(src, currentscan) < 0) {
// start a new run
currentscan.close();
currenttemp = new TempTable(tx, sch);
temps.add(currenttemp);
currentscan = (UpdateScan) currenttemp.open();

}

Fig. 13.9 The code for the SimpleDB class SortPlan

13.4 Sorting 377

currentscan.close();
return temps;

}

private List<TempTable> doAMergeIteration(List<TempTable> runs) {
List<TempTable> result = new ArrayList<>();
while (runs.size() > 1) {

TempTable p1 = runs.remove(0);
TempTable p2 = runs.remove(0);
result.add(mergeTwoRuns(p1, p2));

}
if (runs.size() == 1)

result.add(runs.get(0));
return result;

}

private TempTable mergeTwoRuns(TempTable p1, TempTable p2) {
Scan src1 = p1.open();
Scan src2 = p2.open();
TempTable result = new TempTable(tx, sch);
UpdateScan dest = result.open();

boolean hasmore1 = src1.next();
boolean hasmore2 = src2.next();
while (hasmore1 && hasmore2)

if (comp.compare(src1, src2) < 0)
hasmore1 = copy(src1, dest);

else
hasmore2 = copy(src2, dest);

if (hasmore1)
while (hasmore1)
hasmore1 = copy(src1, dest);

else
while (hasmore2)
hasmore2 = copy(src2, dest);

src1.close();
src2.close();
dest.close();
return result;

}

private boolean copy(Scan src, UpdateScan dest) {
dest.insert();
for (String fldname : sch.fields())

dest.setVal(fldname, src.getVal(fldname));
return src.next();

}
}

Fig. 13.9 (continued)

378 13 Materialization and Sorting

The variable currentscan points to the scan containing the most recent record
in the merge. The get methods obtain their values from that scan. The next
method moves to the next record of the current scan and then chooses the lowest-
value record from the two scans. The variable currentscan then points to
that scan.

The class also has the two public methods savePosition and
restorePosition. These methods allow a client (in particular, the mergejoin
scan of Sect. 13.6) to move back to a previously seen record and continue the scan
from there.

13.5 Grouping and Aggregation

The groupby relational algebra operator takes three arguments: an input table, a set
of grouping fields, and a set of aggregation expressions. It organizes its input records
into groups, where records having the same values for the grouping fields are in the
same group. Its output table contains one row for each group; the row has a column
for each grouping field and aggregation expression.

For example, the following query returns, for each student major, the minimum
and maximum graduation year of students having that major. Figure 13.12 displays
the output of this query, given the STUDENT table of Fig. 1.1.

groupby (STUDENT, {MajorID}, {Min(GradYear), Max(GradYear)})

In general, an aggregation expression specifies an aggregation function and a
field. In the above query, the aggregation expression Min(GradYear) returns the

public class RecordComparator implements Comparator<Scan> {
private Collection<String> fields;

public RecordComparator(Collection<String> fields) {
this.fields = fields;

}

public int compare(Scan s1, Scan s2) {
for (String fldname : fields) {

Constant val1 = s1.getVal(fldname);
Constant val2 = s2.getVal(fldname);
int result = val1.compareTo(val2);
if (result != 0)

return result;
}
return 0;

}
}

Fig. 13.10 The code for the SimpleDB class RecordComparator

13.5 Grouping and Aggregation 379

https://doi.org/10.1007/978-3-030-33836-7_1

public class SortScan implements Scan {
private UpdateScan s1, s2=null, currentscan=null;
private RecordComparator comp;
private boolean hasmore1, hasmore2=false;
private List<RID> savedposition;

public SortScan(List<TempTable> runs, RecordComparator comp) {
this.comp = comp;
s1 = (UpdateScan) runs.get(0).open();
hasmore1 = s1.next();
if (runs.size() > 1) {

s2 = (UpdateScan) runs.get(1).open();
hasmore2 = s2.next();

}
}

public void beforeFirst() {
s1.beforeFirst();
hasmore1 = s1.next();
if (s2 != null) {

s2.beforeFirst();
hasmore2 = s2.next();

}
}

public boolean next() {
if (currentscan == s1)

hasmore1 = s1.next();
else if (currentscan == s2)

hasmore2 = s2.next();

if (!hasmore1 && !hasmore2)
return false;

else if (hasmore1 && hasmore2) {
if (comp.compare(s1, s2) < 0)

currentscan = s1;
else

currentscan = s2;
}
else if (hasmore1)

currentscan = s1;
else if (hasmore2)

currentscan = s2;
return true;

}

public void close() {
s1.close();
if (s2 != null)

s2.close();
}

Fig. 13.11 The code for the SimpleDB class SortScan

380 13 Materialization and Sorting

minimum value of GradYear for the records in the group. The available aggrega-
tion functions in SQL include Min, Max, Count, Sum, and Avg.

The main issue in implementing the groupby operator is how to create the groups
of records. The best solution is to create a temporary table in which the records are
sorted on the grouping fields. The records in each group will then be next to each
other, and so the implementation can calculate the information on every group by
making a single pass through the sorted table. Figure 13.13 gives the algorithm.

public Constant getVal(String fldname) {
return currentscan.getVal(fldname);

}

public int getInt(String fldname) {
return currentscan.getInt(fldname);

}

public String getString(String fldname) {
return currentscan.getString(fldname);

}

public boolean hasField(String fldname) {
return currentscan.hasField(fldname);

}

public void savePosition() {
RID rid1 = s1.getRid();
RID rid2 = s2.getRid();
savedposition = Arrays.asList(rid1,rid2);

}

public void restorePosition() {
RID rid1 = savedposition.get(0);
RID rid2 = savedposition.get(1);
s1.moveToRid(rid1);
s2.moveToRid(rid2);

}
}

Fig. 13.11 (continued)

MajorId MinOfGradYear MaxOfGradYear

10 2021 2022

20 2019 2022

30 2020 2021

Fig. 13.12 The output of the example groupby query

13.5 Grouping and Aggregation 381

The cost of the aggregation algorithm can be split into its preprocessing cost and
its scanning cost. These costs are straightforward. The preprocessing cost is the cost
of the sort, and the scanning cost is a single iteration through the sorted records. In
other words, the groupby operator has the same cost as sort.

SimpleDB uses the classes GroupByPlan and GroupByScan to implement
the groupby algorithm; see Figs. 13.14 and 13.15.

The open method in GroupByPlan creates and opens a sort plan for the input
records. The resulting sort scan is passed into the constructor of GroupByScan.
The groupby scan reads the records of the sort scan as needed. In particular, the
method next reads the records in the next group each time it is called. This method
recognizes the end of a group when it reads a record from another group (or when it
detects that there are no more records in the sorted scan); consequently, each time
next is called, the current record in the underlying scan will always be the first
record in the next group.

The class GroupValue holds information about the current group; its
code appears in Fig. 13.16. A scan is passed into its constructor, together with
the grouping fields. The field values of the current record define the group. The
method getVal returns the value of a specified field. The equals method returns
true when the two GroupValue objects have the same values for the grouping
fields, and the hashCode method assigns a hash value to each GroupValue
object.

SimpleDB implements each aggregation function (such as MIN, COUNT, etc.) as a
class. An object of the class is responsible for keeping track of the relevant infor-
mation about the records in a group, for calculating the aggregate value for
this group, and for determining the name of the calculated field. These methods
belong to the interface AggregationFn, whose code is in Fig. 13.17. Method
processFirst starts a new group using the current record as the first record of
that group. Method processNext adds another record to the existing group.

An example of an aggregation function class is MaxFn, which implements MAX;
see Fig. 13.18. The client passes the name of the aggregated field into the construc-
tor. The object uses this field name to examine the field value from each record in the
group, and it saves the maximum one in its variable val.

1. Create a temporary table containing the input records, sorted by the grouping fields.
2. Move to the first record in the table.
3. Repeat until the temporary table is exhausted:

a. Let the “group value” be the values of the grouping fields for the current record.
b. For each record whose grouping field values equals the group value:

Read the record into the group list.
c. Calculate the specified aggregation functions for the records in the group list.

Fig. 13.13 An algorithm to perform aggregation

382 13 Materialization and Sorting

public class GroupByPlan implements Plan {
private Plan p;
private List<String> groupfields;
private List<AggregationFn> aggfns;
private Schema sch = new Schema();

public GroupByPlan(Transaction tx, Plan p,
List<String> groupfields,

List<AggregationFn> aggfns) {
this.p = new SortPlan(tx, p, groupfields);
this.groupfields = groupfields;
this.aggfns = aggfns;
for (String fldname : groupfields)

sch.add(fldname, p.schema());
for (AggregationFn fn : aggfns)

sch.addIntField(fn.fieldName());
}

public Scan open() {
Scan s = p.open();
return new GroupByScan(s, groupfields, aggfns);

}

public int blocksAccessed() {
return p.blocksAccessed();

}

public int recordsOutput() {
int numgroups = 1;
for (String fldname : groupfields)

numgroups *= p.distinctValues(fldname);
return numgroups;

}

public int distinctValues(String fldname) {
if (p.schema().hasField(fldname))

return p.distinctValues(fldname);
else

return recordsOutput();
}

public Schema schema() {
return sch;

}
}

Fig. 13.14 The code for the SimpleDB class GroupByPlan

13.5 Grouping and Aggregation 383

public class GroupByScan implements Scan {
private Scan s;
private List<String> groupfields;
private List<AggregationFn> aggfns;
private GroupValue groupval;
private boolean moregroups;

public GroupByScan(Scan s, List<String> groupfields,
List<AggregationFn> aggfns) {

this.s = s;
this.groupfields = groupfields;
this.aggfns = aggfns;
beforeFirst();

}

public void beforeFirst() {
s.beforeFirst();
moregroups = s.next();

}

public boolean next() {
if (!moregroups)

return false;
for (AggregationFn fn : aggfns)

fn.processFirst(s);
groupval = new GroupValue(s, groupfields);
while(moregroups = s.next()) {

GroupValue gv = new GroupValue(s, groupfields);
if (!groupval.equals(gv))

break;
for (AggregationFn fn : aggfns)

fn.processNext(s);
}
return true;

}

public void close() {
s.close();

}

public Constant getVal(String fldname) {
if (groupfields.contains(fldname))

return groupval.getVal(fldname);
for (AggregationFn fn : aggfns)

if (fn.fieldName().equals(fldname))
return fn.value();

throw new RuntimeException("no field " + fldname)
}

public int getInt(String fldname) {
return getVal(fldname).asInt();

Fig. 13.15 The code for the SimpleDB class GroupByScan

384 13 Materialization and Sorting

public String getString(String fldname) {
return getVal(fldname).asString();

}

public boolean hasField(String fldname) {
if (groupfields.contains(fldname))

return true;
for (AggregationFn fn : aggfns)

if (fn.fieldName().equals(fldname))
return true;

return false;
}

}

Fig. 13.15 (continued)

public class GroupValue {
private Map<String,Constant> vals = new HashMap<>();

public GroupValue(Scan s, List<String> fields) {
for (String fldname : fields)

vals.put(fldname, s.getVal(fldname));
}

public Constant getVal(String fldname) {
return vals.get(fldname);

}

public boolean equals(Object obj) {
GroupValue gv = (GroupValue) obj;
for (String fldname : vals.keySet()) {

Constant v1 = vals.get(fldname);
Constant v2 = gv.getVal(fldname);
if (!v1.equals(v2))

return false;
}
return true;

}
public int hashCode() {

int hashval = 0;
for (Constant c : vals.values())

hashval += c.hashCode();
return hashval;

}
}

Fig. 13.16 The code for the SimpleDB class GroupValue

13.5 Grouping and Aggregation 385

public interface AggregationFn {
void processFirst(Scan s);
void processNext(Scan s);
String fieldName();
Constant value();

}

Fig. 13.17 The code for the SimpleDB AggregationFn interface

public class MaxFn implements AggregationFn {
private String fldname;
private Constant val;

public MaxFn(String fldname) {
this.fldname = fldname;

}

public void processFirst(Scan s) {
val = s.getVal(fldname);

}

public void processNext(Scan s) {
Constant newval = s.getVal(fldname);
if (newval.compareTo(val) > 0)

val = newval;
}

public String fieldName() {
return "maxof" + fldname;

}

}
}

public Constant value() {
return val;

Fig. 13.18 The code for the SimpleDB class MaxFn

1. For each input table:
Sort the table, using its join field as the sort field.

2. Scan the sorted tables in parallel, looking for matches between the join fields.

Fig. 13.19 The mergejoin algorithm

386 13 Materialization and Sorting

13.6 Merge Joins

Chapter 12 developed an efficient indexjoin operator for joining two tables when the
join predicate is of the form “A ¼ B” where A is in the left-side table and B is in the
right-side table. These fields are called the join fields. The indexjoin operator is
applicable when the right-side table is stored and has an index on its join field. This
section examines an efficient join operator, called mergejoin, which is always
applicable. Its algorithm appears in Fig. 13.19.

Consider step 2 of the algorithm. If you assume for the moment that the table on
the left side of the join has no duplicate values in its join field, then the algorithm is
similar to a product scan. That is, it scans the left-side table once. For each left-side
record, it searches the right-side table looking for matching records. However,
the fact that the records are sorted simplifies the search considerably. In particular,
note that:

• The matching right-side records must begin after the records for the previous left-
side record.

• The matching records are next to each other in the table.

Consequently, each time a new left-side record is considered, it suffices to
continue scanning the right-side table from where it left off and to stop when it
reaches a join value greater than the left-side join value. That is, the right-side table
need only be scanned once.

13.6.1 An Example of Mergejoin

The following query uses mergejoin to join the DEPT and STUDENT tables.

mergejoin(DEPT, STUDENT, DId=MajorId)

The first step of the merge join algorithm creates temporary tables to hold the
contents of DEPT and STUDENT, sorted on fields DId and MajorId, respectively.
Figure 13.20 shows these sorted tables, using the sample records from Fig. 1.1 but
extended with a new department (the Basketry department, DId ¼ 18).

The second step of the algorithm scans through the sorted tables. The current
DEPT record is department 10. It scans STUDENT, finding a match at the first three
records. When it moves to the fourth record (for Amy), it discovers a different
MajorId-value, and so it knows it is done with department 10. It moves to the next
DEPT record (for the Basketry department) and compares the record’s DId-value
with the MajorId-value of the current STUDENT record (i.e., Amy). Since Amy’s
MajorId-value is larger, the algorithm knows that there are no matches for that
department and therefore moves to the next DEPT record (for the Math department).
This record matches Amy’s record, as well as the next three STUDENT records. As
the algorithm moves through STUDENT, it eventually gets to Bob’s record, which
does not match with the current department. So it moves to the next DEPT record

13.6 Merge Joins 387

https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_1

(for the Drama department) and continues its search through STUDENT, where the
records for Bob and Art match. The join can finish as soon as one of the tables has
run out of records.

What happens if the left side of a merge join has duplicate join values? Recall that
the algorithm moves to the next left-side record when it reads a right-side record that
no longer matches. If the next left-side record has the same join value, then the
algorithm needs to move back to the first matching right-side record. That is, all of
the right-side blocks containing matching records will have to be re-read, potentially
increasing the cost of the join.

Fortunately, duplicate left-side values rarely occur. Most joins in a query tend to
be based on a key-foreign key relationship. For example, in the above join, DId is a
key of DEPT, and MajorId is its foreign key. Since keys and foreign keys are
declared when the table is created, the query planner can use this information to
ensure that the table having the key is on the left side of the merge join.

To calculate the cost of the mergejoin algorithm, note that the preprocessing
phase sorts each input table and the scanning phase iterates through the sorted tables.
If there are no duplicate left-side values, then each sorted table gets scanned once,
and the cost of the join is the sum of the cost of the two sort operations. If there are
duplicate left-side values, then the corresponding records in the right-side scan will
be read multiple times.

For example, you can use the statistics of Fig. 7.8 to calculate the cost of a merge
join of STUDENT and DEPT. Assume that the algorithm merges pairs of runs and
that each initial run is 1-block long. The preprocessing cost includes sorting the
4500-block STUDENT table (for 9000 � log2(4500) � 4500 ¼ 112,500 block
accesses, plus 4500 for the cost of the input), and sorting the 2-block DEPT table (for
4 � log2(2) � 2 ¼ 2 block accesses, plus 2 for the cost of the input). The total
preprocessing cost is thus 117,004 block accesses. The scanning cost is the sum of
the sizes of the sorted tables, which is 4502 block accesses. The total cost of the join
is thus 121,506 block accesses.

DEPT DId DName

10 compsci

18 basketry

20 math

30 drama

STUDENT SId SName MajorId GradYear

1 joe 10 2021

3 max 10 2022

9 lee 10 2021

2 amy 20 2020

4 sue 20 2022

6 kim 20 2020

8 pat 20 2019

5 bob 30 2020

7 art 30 2021

Fig. 13.20 The sorted DEPT and STUDENT tables

388 13 Materialization and Sorting

https://doi.org/10.1007/978-3-030-33836-7_7

Compare this cost with the cost of performing the join as a product followed by a
selection, as in Chap. 8. That cost formula is B1 + R1�B2, which comes to 184,500
block accesses.

13.6.2 Implementing Mergejoin

The SimpleDB classes MergeJoinPlan and MergeJoinScan implement the
merge join algorithm.

The Class MergeJoinPlan
The code for MergeJoinPlan appears in Fig. 13.21. The method open opens a
sort scan for each of the two input tables, using the specified join fields. It then passes
these scans to the MergeJoinScan constructor.

The method blocksAccessed assumes that each scan will be traversed once.
The idea is that even if there are duplicate left-side values, the matching right-side
records will either be in the same block or a recently accessed one. Thus it is likely
that very few (or possibly zero) additional block accesses will be needed.

The method recordsOutput calculates the number of records of the join. This
value will be the number of records in the product, divided by the number of records
filtered out by the join predicate. The code for the method distinctValues is
straightforward. Since the join does not increase or decrease field values, the
estimate is the same as in the appropriate underlying query.

The Class MergeJoinScan
The code for MergeJoinScan appears in Fig. 13.22. Method next performs the
difficult work of looking for matches. The scan uses variable joinval to keep track
of the most recent join value. When next is called, it reads the next right-side
record. If this record has a join value equal to joinval, a match is found, and the
method returns. If not, then the method moves to the next left-side record. If this
record’s join value equals joinval, then we have a duplicate left-side value. The
method repositions the right-side scan to the first record having that join value and
returns. Otherwise, the method repeatedly reads from the scan having the lowest join
value, until either a match is found or a scan runs out. If a match is found, the
variable joinval is set, and the current right-side position is saved. If a scan runs
out, the method returns false.

13.7 Chapter Summary

• A materialized implementation of an operator preprocesses its underlying
records, storing them in one or more temporary tables. Its scan methods are
thus more efficient, because they only need to examine the temporary tables.

13.7 Chapter Summary 389

https://doi.org/10.1007/978-3-030-33836-7_8

public class MergeJoinPlan implements Plan {
private Plan p1, p2;
private String fldname1, fldname2;
private Schema sch = new Schema();

public MergeJoinPlan(Transaction tx, Plan p1, Plan p2,
String fldname1, String fldname2) {

this.fldname1 = fldname1;
List<String> sortlist1 = Arrays.asList(fldname1);
this.p1 = new SortPlan(tx, p1, sortlist1);

this.fldname2 = fldname2;
List<String> sortlist2 = Arrays.asList(fldname2);
this.p2 = new SortPlan(tx, p2, sortlist2);

sch.addAll(p1.schema());
sch.addAll(p2.schema());

}

public Scan open() {
Scan s1 = p1.open();
SortScan s2 = (SortScan) p2.open();
return new MergeJoinScan(s1, s2, fldname1, fldname2);

}

public int blocksAccessed() {
return p1.blocksAccessed() + p2.blocksAccessed();

}

public int recordsOutput() {
int maxvals = Math.max(p1.distinctValues(fldname1),

p2.distinctValues(fldname2));
return (p1.recordsOutput()*p2.recordsOutput()) / maxvals;

}

public int distinctValues(String fldname) {
if (p1.schema().hasField(fldname))

return p1.distinctValues(fldname);
else

return p2.distinctValues(fldname);
}

public Schema schema() {
return sch;

}
}

Fig. 13.21 The code for the SimpleDB class MergeJoinPlan

390 13 Materialization and Sorting

public class MergeJoinScan implements Scan {
private Scan s1;
private SortScan s2;
private String fldname1, fldname2;
private Constant joinval = null;

public MergeJoinScan(Scan s1, SortScan s2,
String fldname1, String fldname2) {

this.s1 = s1;
this.s2 = s2;
this.fldname1 = fldname1;
this.fldname2 = fldname2;
beforeFirst();

}

public void close() {
s1.close();
s2.close();

}

public void beforeFirst() {
s1.beforeFirst();
s2.beforeFirst();

}

public boolean next() {
boolean hasmore2 = s2.next();
if (hasmore2 && s2.getVal(fldname2).equals(joinval))

return true;

boolean hasmore1 = s1.next();
if (hasmore1 && s1.getVal(fldname1).equals(joinval)) {

s2.restorePosition();
return true;

}

while (hasmore1 && hasmore2) {
Constant v1 = s1.getVal(fldname1);
Constant v2 = s2.getVal(fldname2);
if (v1.compareTo(v2) < 0)

hasmore1 = s1.next();
else if (v1.compareTo(v2) > 0)

hasmore2 = s2.next();
else {

s2.savePosition();
joinval = s2.getVal(fldname2);
return true;

}
}
return false;

}

Fig. 13.22 The code for the SimpleDB class MergeJoinScan

13.7 Chapter Summary 391

• Materialized implementations compute their input once and can take advantage of
sorting. However, they must compute their entire input table even if the user is
interested in only a few of those records. Although it is possible to write
materialized implementations for any relational operator, a materialized imple-
mentation will be useful only if its preprocessing cost is offset by the savings of
the resulting scan.

• The materialize operator creates a temporary table containing all of its input
records. It is useful whenever its input is executed repeatedly, such as when it is
on the right side of a product node.

• A database system uses an external sorting algorithm to sort its records into a
temporary table. The simplest and most common external sorting algorithm is
called mergesort. The mergesort algorithm splits the input records into runs and
then repeatedly merges the runs until the records are sorted.

• Mergesort is more efficient when the number of initial runs is smaller. A
straightforward approach is to create initial runs that are one block long, by
reading the input records into a block and then using an internal sorting algorithm
to sort them. Another approach is to read input records into a one-block-long
staging area and to construct runs by repeatedly selecting the lowest-valued
record in the area.

public int getInt(String fldname) {
if (s1.hasField(fldname))

return s1.getInt(fldname);
else

return s2.getInt(fldname);
}

public String getString(String fldname) {
if (s1.hasField(fldname))

return s1.getString(fldname);
else

return s2.getString(fldname);
}

public Constant getVal(String fldname) {
if (s1.hasField(fldname))

return s1.getVal(fldname);
else

return s2.getVal(fldname);
}

public boolean hasField(String fldname) {
return s1.hasField(fldname) || s2.hasField(fldname);

}
}

Fig. 13.22 (continued)

392 13 Materialization and Sorting

• Mergesort is also more efficient when it merges more runs at a time. The more
runs that are merged, the fewer iterations that are needed. A buffer is needed to
manage each merged run, so the maximum number of runs is limited by the
number of available buffers.

• Mergesort requires 2Blogk(R)-B block accesses (plus the cost of the input) to
preprocess its input, where B is the number of blocks required to hold the sorted
table, R is the number of initial runs, and k is the number of runs that are merged
at one time.

• The implementation of the groupby operator sorts the records on the grouping
fields, so that the records in each group are next to each other. It then calculates
the information on each group by making a single pass through the sorted records.

• The mergejoin algorithm implements the join to two tables. It begins by sorting
each table on its join field. It then scans the two sorted tables in parallel. Each call
to the next method increments the scan having the lowest value.

13.8 Suggested Reading

File sorting has been an important (even crucial) operation throughout the history of
computing, predating database systems by many years. There is an enormous
literature on the subject and numerous variations on mergesort that were not
considered here. A comprehensive overview of the various algorithms appears in
Knuth (1998).

The SimpleDB SortPlan code is a straightforward implementation of the
mergesort algorithm. The article Graefe (2006) describes several interesting and
useful techniques for improving upon this implementation.

The article Graefe (2003) explores the duality between sort algorithms and B-tree
algorithms. It shows how to use a B-tree to usefully store the intermediate runs of a
mergesort and how merge iterations can be used to create a B-tree index for an
existing table.

Materialized algorithms are discussed in Graefe (1993) and are compared with
non-materialized algorithms.

Graefe, G. (1993) Query evaluation techniques for large databases. ACM Computing
Surveys, 25(2), 73–170.

Graefe, G. (2003) Sorting and indexing with partitioned B-trees. Proceedings of the
CIDR Conference.

Graefe, G. (2006) Implementing sorting in database systems. ACM Computing
Surveys, 38(3), 1–37.

Knuth, D. (1998) The art of computer programming, Vol 3: Sorting and searching.
Addison-Wesley.

13.8 Suggested Reading 393

13.9 Exercises

Conceptual Exercises

13.1. Consider the query tree of Fig. 13.2b.

(a) Suppose that there was only one student in the class of 2005. Is the right-
hand materialize node worthwhile?

(b) Suppose that there were only two students in the class of 2005. Is the right-
hand materialize node worthwhile?

(c) Suppose that the right and left subtrees of the product node were swapped.
Calculate the savings of materializing the new right-hand select node.

13.2. The basic mergesort algorithm of Sect. 13.4 merges the runs iteratively. Using
the example of that section, it merged runs 1 and 2 to produce run 5 and runs
3 and 4 to produce run 6; then it merged runs 5 and 6 to produce the final run.
Suppose instead that the algorithm merged the runs sequentially. That is, it
merges runs 1 and 2 to produce run 5, then merges runs 3 and 5 to produce run
6, and then merges runs 4 and 6 to produce the final run.

(a) Explain why the final run produced by this “sequential merging” will
always require the same number of merges as with iterative merging.

(b) Explain why sequential merging requires more (and usually many more)
block accesses than iterative merging.

13.3. Consider the run-generation algorithms of Figs. 13.6 and 13.7.

(a) Suppose that the input records are already sorted. Which algorithm will
produce the fewest initial runs? Explain.

(b) Suppose that the input records are sorted in reverse order. Explain why the
algorithms will produce the same number of initial runs.

13.4. Consider the university database and the statistics of Fig. 7.8.

(a) For each table, estimate the cost of sorting it using 2, 10, or 100 auxiliary
tables. Assume that each initial run is one block long.

(b) For each pair of tables that can be meaningfully joined, estimate the cost of
performing a mergejoin (again, using 2, 10, or 100 auxiliary tables).

13.5. The method splitIntoRuns in the class SortPlan returns a list of
TempTable objects. If the database is very large, then this list might be
very long.

(a) Explain how this list might be a source of unexpected inefficiency.
(b) Propose a solution that would be better.

Programming Exercises

13.6. Section 13.4 described a non-materialized implementation of sorting.

394 13 Materialization and Sorting

https://doi.org/10.1007/978-3-030-33836-7_7

(a) Design and implement the classes NMSortPlan and NMSortScan,
which provide sorted access to records without the creation of temporary
tables.

(b) How many block accesses are required to fully traverse such a scan?
(c) Suppose that a JDBC client wants to find the record having the minimum

value for a field; the client does so by executing a query that sorts the
table on that field and then choosing the first record. Compare the number
of block accesses required to do this, using the materialized and
non-materialized implementations.

13.7. When the server restarts, temporary table names begin again from 0. The
SimpleDB file manager constructor deletes all temporary files.

(a) Explain what problem will occur in SimpleDB if temporary table files
were allowed to remain after the system restarts.

(b) Instead of deleting all temporary files when the system restarts, the
system could delete the file for a temporary table as soon as the transac-
tion that created it has completed. Revise the SimpleDB code do this.

13.8. What problem occurs when SortPlan and SortScan are asked to sort an
empty table? Revise the code to fix the problem.

13.9. Revise the SimpleDB Plan interface (and all of its implementing classes) to
have a method preprocessingCost, which estimates the one-time cost
of materializing a table. Modify the other estimation formulas appropriately.

13.10. Revise the code for SortPlan so that it constructs initial runs of one block
long, using the algorithm of Fig. 13.5.

13.11. Revise the code for SortPlan so that it constructs initial runs using a
staging area, using the algorithm of Fig. 13.6.

13.12. Revise the code for SortPlan so that it merges three runs at a time.
13.13. Revise the code for SortPlan so that it merges k runs at a time, where the

integer k is supplied in the constructor.
13.14. Revise the SimpleDB Plan classes so that they keep track of whether their

records are sorted, and if so on what fields. Then revise the code for
SortPlan so that it sorts the records only if necessary.

13.15. An order by clause in an SQL query is optional. If it exists, it consists of
the two keywords “order” and “by,” followed by a comma-separated list of
field names.

(a) Revise the SQL grammar of Fig. 9.7 to include order by clauses.
(b) Revise the SimpleDB lexical analyzer and query parser to implement

your syntax changes.
(c) Revise the SimpleDB query planner to generate an appropriate sort

operation for queries containing an order by clause. The SortPlan
object should be the topmost node in the query tree.

13.16. SimpleDB only implements the aggregation functions COUNT and MAX. Add
classes that implement MIN, AVG, and SUM.

13.9 Exercises 395

13.17. Look up the syntax of SQL aggregation statements.

(a) Revise the SQL grammar of Fig. 9.7 to include this syntax.
(b) Revise the SimpleDB lexical analyzer and query parser to implement

your syntax changes.
(c) Revise the SimpleDB query planner to generate an appropriate groupby

operation for queries containing a group by clause. The GroupBy
object should be above the select and semijoin nodes but below the
extend and project nodes in the query plan.

13.18. Define a relational operator nodups, whose output table consists of those
records from its input table but with duplicates removed.

(a) Write code for NoDupsPlan and NoDupsScan, similar to how
GroupByPlan and GroupByScan are written.

(b) Duplicate removal can also be performed by a groupby operator with no
aggregation functions. Write code for GBNoDupsPlan, which imple-
ments nodups operator by creating the appropriate GroupByPlan
object.

13.19. The keyword “distinct” can optionally appear in the select clause of an SQL
query. If it exists, the query processor should remove duplicates from the
output table.

(a) Revise the SQL grammar of Fig. 9.7 to include the distinct keyword.
(b) Revise the SimpleDB lexical analyzer and query parser to implement

your syntax changes.
(c) Revise the basic query planner to generate an appropriate nodups oper-

ation for select distinct queries.

13.20. Another way to sort a table on a single field is to use a B-tree index. The
SortPlan constructor would first create an index for the materialized table
on the sort field. It then would add an index record into the B-tree for each
data record. The records can then be read in sorted order by traversing the leaf
nodes of the B-tree from the beginning.

(a) Implement this version of SortPlan. (You will need to modify the
B-tree code so that all index blocks are chained.)

(b) How many block accesses does it require? Is it more or less efficient than
using mergesort?

396 13 Materialization and Sorting

Chapter 14
Effective Buffer Utilization

Different operator implementations have different buffer needs. For example, the
pipelined implementation of the select operator uses a single buffer very efficiently
and has no need for additional buffers. On the other hand, the materialized implemen-
tation of the sort operator merges several runs at a time and needs a buffer for each.

This chapter considers the various ways in which operator implementations can
use additional buffers, and gives efficient multibuffer algorithms for the sort, prod-
uct, and join operators.

14.1 Buffer Usage in Query Plans

The relational algebra implementations discussed so far have been very frugal when
it comes to buffer usage. For example, each table scan pins one block at a time; when
it finishes with the records in a block, it unpins that block before pinning the next
one. The scans for the operators select, project, and product do not pin any additional
blocks. Consequently, given an N-table query, the scan produced by the SimpleDB
basic query planner uses N simultaneous pinned buffers.

Consider the index implementations of Chap. 12. A static hash index implements
each bucket as a file and scans it sequentially, pinning one block at a time. And a
B-tree index works by pinning one directory block at a time, starting at the root. It
scans the block to determine the appropriate child, unpins the block, and pins the
child block, continuing until the leaf block is found.1

Now consider the materialized implementations of Chap. 13. The implementation
of the materialize operator requires one buffer for the temporary table, in addition to

1This analysis is certainly true for queries. Inserting a record into a B-tree may require several
buffers to be pinned simultaneously, to handle block splitting and the recursive insertion of entries
up the tree. Exercise 12.16 asked you to analyze the buffer requirements for insertions.

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_14

397

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_14

the buffers needed by the input query. The split phase of the sort implementation
requires one or two buffers (depending on whether it uses a staging area), and the
merge phase requires k + 1 buffers: one buffer for each of the k runs being merged
and one buffer for the result table. And the implementations of groupby and
mergejoin require no additional buffers beyond those used for sorting.

This analysis shows that, with the exception of sorting, the number of simulta-
neous buffers used by a query plan is roughly equal to the number of tables
mentioned in the query; this number is usually less than 10 and almost certainly
less than 100. The total number of available buffers is typically much larger. Server
machines these days typically have at least 16 GB of physical memory. If only a
paltry 400 MB of that is used for buffers, then the server would have 100,000
4K-byte buffers. So even if the database system supports hundreds (or thousands) of
simultaneous connections, there are still plenty of buffers available for executing any
given query, if only the query plan were able to use them effectively. This chapter
considers how the sort, join, and product operators can take advantage of this
abundance of buffers.

14.2 Multibuffer Sorting

Recall that the mergesort algorithm has two phases: The first phase splits the records
into runs, and the second phase merges the runs until the table is sorted. Chapter 13
discussed the benefits of using multiple buffers during the merge phase. It turns out
that the split phase can also take advantage of additional buffers.

Suppose that k buffers are available. The split phase can read k blocks of the table
at a time into the k buffers, use an internal sorting algorithm to sort them into a single
k-block run, and then write those blocks to a temporary table. That is, instead of
splitting the records into one-block-long runs, it splits the records into k-block-long
runs. If k is large enough (in particular, if k�√B), then the split phase will produce
no more than k initial runs, which means that the preprocessing stage will not need to
do anything. The multibuffer mergesort algorithm incorporates these ideas; see
Fig. 14.1.

Step 1 of this algorithm produces B/k initial runs. Using the cost analysis of Sect.
13.4.4, it follows that multibuffer mergesort requires logk(B/k) merge iterations.
This is one fewer merge iteration than basic mergesort (where the initial runs are of
size 1). Put another way, multibuffer mergesort saves 2B block accesses during the
preprocessing stage, which means that multibuffer sorting a B-block table, using k
buffers, has the following costs:

• Preprocessing cost ¼ 2BlogkB - 3B + the cost of its input
• Scanning cost ¼ B

How to choose the best value of k? The value of k determines the number of
merge iterations. In particular, the number of iterations performed during
preprocessing is equal to (logkB)-2. It follows that:

398 14 Effective Buffer Utilization

https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_13

• There will be 0 iterations when k¼√B.
• There will be 1 iteration when k¼3√B.
• There will be 2 iterations when k¼4√B.

And so on.
This calculation should make intuitive sense to you. If k¼√B, then the split phase

will produce k runs of size k. These runs can be merged during the scanning phase,
which means that no merge iterations are needed during preprocessing. And if
k¼3√B, then the split phase will produce k2 runs of size k. One merge iteration
will produce k runs (of size k2), which can then be merged during the scanning
phase.

For a concrete example, suppose that you need to sort a 4 GB table. If blocks are
4 KB, then the table contains about one million blocks. Figure 14.2 lists the number
of buffers required to obtain a specific number of merge iterations during
preprocessing.

At the lower end of this figure, note how adding just a few more buffers results in
dramatic improvements: 2 buffers require 18 iterations, but 10 buffers bring it down
to only 4 iterations. This tremendous difference in cost implies that it would be a
very bad idea for the database system to sort this table using less than ten buffers.

// The split phase, which uses k buffers
1. Repeat until there are no more input records:

a. Pin k buffers, and read k blocks of input records into them.
b. Use an internal sorting algorithm to sort these records.
c. Write the contents of the buffers to a temporary table.
d. Unpin the buffers.
e. Add the temporary table to the run-list.

// The merge phase, which uses k+1 buffers
2. Repeat until the run-list contains one temporary table:

// Do an iteration
a. Repeat until the run-list is empty:

i. Open scans for k of the temporary tables.
ii. Open a scan for a new temporary table.
iii. Merge the k scans into the new one.
iv. Add the new temporary table to list L.

b. Add the contents of L to the run-list.

Fig. 14.1 The Multibuffer Mergesort Algorithm

Fig. 14.2 The number of preprocessing iterations required to sort a 4 GB table

14.2 Multibuffer Sorting 399

The upper end of this figure illustrates how efficient sorting can be. It is quite
possible that 1000 buffers are available, or at least 100. The figure shows that with
1000 buffers (or equivalently, 4 MB of memory), it is possible to sort a 4 GB table by
performing 1000 internal sorts during the preprocessing stage, followed by a single
1000-way merge during the scanning phase. The total cost is three million block
accesses: one million to read the unsorted blocks, one million to write to the
temporary tables, and one million to read the temporary tables. This efficiency is
both unexpected and remarkable.

This example also shows that for a given table size B, multibuffer mergesort can
effectively use only certain numbers of buffers, namely, √B, 3√B, 4√B, and so
on. Figure 14.2 listed those values for B ¼ 1,000,000. What about other buffer
values? What happens if you have, say, 500 buffers available? We know that
100 buffers result in 1 preprocessing merge iteration. Let’s see if those extra
400 buffers can be put to good use. With 500 buffers, the split phase will result in
2000 runs of 500 blocks each. The first merge iteration will merge 500 runs at a time,
resulting in 4 runs (of 250,000 blocks each). These runs can then be merged during
the scanning phase. So in fact the extra 400 buffers don’t help, because you still need
the same number of iterations as 100 buffers.

This analysis can be expressed as the following rule: If you use k buffers to sort a
table that is B blocks long, then k should be a root of B.

14.3 Multibuffer Product

The basic implementation of the product operator involves numerous block accesses.
For example, consider the SimpleDB implementation of the query:

product(T1, T2)

That implementation will examine all of T2 for each record of T1, using a single
buffer to hold the records from T2. That is, after the code examines the last record of
a T2 block, it unpins the block and pins the next block of T2. This unpinning allows
the buffer manager to replace each T2 block, which means that they all may need to
be re-read from disk when the next record of T1 is examined. In the worst case, each
block of T2 will be read as many times as there are records in T1. If we assume that
T1 and T2 are both 1000-block tables containing 20 records per block, then the
query will require 20,001,000 block accesses.

Suppose instead that the implementation did not unpin any blocks from T2. The
buffer manager would then be compelled to place each block of T2 in its own buffer.
The blocks of T2 will thus get read once from disk and remain in memory during the
entire query. This scan would be exceptionally efficient, because it would read each
block of T1 once and each block of T2 once.

Of course, this strategy will work only if there are enough buffers to hold all of
T2. What should you do if T2 is too large? For example, suppose that T2 has 1000

400 14 Effective Buffer Utilization

blocks, but only 500 buffers are available. The best thing to do is to process T2 in
two stages. First, read the first 500 blocks into the available buffers and compute the
product of T1 with those blocks; then read the remaining 500 blocks of T2 into those
buffers and compute their product with T1.

This strategy is very efficient. The first stage requires reading T1 once and the first
half of T2 once, and the second stage requires reading T1 again and the second half
of T2 once. In total, T1 gets read twice and T2 gets read once, for a total of only 3000
block accesses.

The multibuffer product algorithm generalizes these ideas; see Fig. 14.3. In this
algorithm, the blocks of T1 will be read once for each chunk. Since there are B2/k
chunks, the product operation will require B2 + (B1�B2/k) block accesses.

Note how the multibuffer product implementation treats T1 and T2 opposite from
how they are treated by the basic product implementation of Chap. 8. In that chapter,
T2 is scanned multiple times, whereas here, T1 is scanned multiple times.

Assume again that T1 and T2 are both 1000-block tables. Figure 14.4 lists the
block accesses required by the multibuffer product algorithm for various numbers of
buffers. If 1000 buffers are available, then T2 can be processed in a single chunk,
resulting in only 2000 block accesses. On the other hand, if 250 buffers are available,
then the multibuffer product algorithm would use 4 chunks of 250 blocks each; thus
table T1 would be scanned 4 times and T2 would be scanned once, for a total of 5000
block accesses. If only 100 buffers are available, then the algorithm would use
10 chunks and thus 11,000 total block accesses. All of these values are much less
than what the basic product implementation requires.

As with sorting, Fig. 14.4 also demonstrates that not all values of k are useful. In
this example, if 300 buffers are available, then the multibuffer product algorithm can
only make use of 250 of them.

Let T1 and T2 be the two input tables. Assume that T2 is stored (as either a user-
defined table or a materialized temporary table) and contains B2 blocks.
1. Let k = B2/i for some integer i. That is, k is a fraction of B2.
2. Treat T2 as consisting of i chunks of k blocks each. For each chunk C:

a) k buffers.
b) Take the product of T1 and C.

Unpin C’s blocks.

Read all of C’s blocks into

c)

Fig. 14.3 The multibuffer product algorithm

Fig. 14.4 The block accesses required to take the product of two 1000-block tables

14.3 Multibuffer Product 401

https://doi.org/10.1007/978-3-030-33836-7_8

14.4 Determining Buffer Allocation

Each of the multibuffer algorithms chooses k buffers but does not specify the exact
value of k. The proper value of k is determined by the number of available buffers,
the size of the input tables, and the operator involved. For sorting, k is a root of the
input table size; for the product, k is a factor of the table size.

The goal is to choose k to be the largest root (or factor) that is less than the
number of available buffers. The SimpleDB class BufferNeeds contains methods
to calculate these values; its code appears in Fig. 14.5.

The class contains the public static methods bestRoot and bestFactor.
These two methods are almost identical. The inputs to each method are the number
of available buffers the size of the table. The methods calculate the optimum number
of buffers, either as the largest root or the largest factor that is less than avail. The
method bestRoot initializes the variable k to MAX_VALUE in order to force the
loop to be executed at least once (so that k cannot be more than √B).

Note that the methods in BufferNeeds do not actually reserve the buffers from
the buffer manager. Instead, they simply ask the buffer manager how many buffers

public class BufferNeeds {
public static int bestRoot(int available, int size) {

int avail = available - 2; //reserve a couple of buffers
if (avail <= 1)

return 1;
int k = Integer.MAX_VALUE;
double i = 1.0;
while (k > avail) {

i++;
k = (int)Math.ceil(Math.pow(size, 1/i));

}
return k;

}

public static int bestFactor(int available, int size) {
int avail = available - 2; //reserve a couple of buffers
if (avail <= 1)

return 1;
int k = size;
double i = 1.0;
while (k > avail) {

i++;
k = (int)Math.ceil(size / i);

}
return k;

}
}

Fig. 14.5 The code for the SimpleDB class BufferNeeds

402 14 Effective Buffer Utilization

are currently available and choose a value for k less than that. When the multibuffer
algorithms attempt to pin those k blocks, some of the buffers may no longer be
available. In that case, the algorithms will wait until the buffers become available
again.

14.5 Implementing Multibuffer Sorting

In the SimpleDB class SortPlan, the methods splitIntoRuns and
doAMergeIteration determine how many buffers to use. Currently,
splitIntoRuns creates its runs incrementally, using one buffer attached to a
temporary table, and doAMergeIteration uses three buffers (two buffers for the
input runs and one buffer for the output run). This section considers how these
methods need to change to implement multibuffer sorting.

Consider splitIntoRuns. This method does not actually know how large the
sorted table will be, because the table has not yet been created. However, the method
can use the method blocksAccessed to make this estimate. In particular,
splitIntoRuns can execute the following code fragment:

int size = blocksAccessed();
int available = tx.availableBuffs();
int numbuffs = BufferNeeds.bestRoot(available, size);

It can then pin numbuffs buffers, fill them with input records, sort them
internally, and write them to a temporary table, as shown in Fig. 14.1.

Now consider the method doAMergeIteration. The best strategy is for the
method to remove k temporary tables from the run list, where k is a root of the
number of initial runs:

int available = tx.availableBuffs();
int numbuffs = BufferNeeds.bestRoot(available, runs.size());
List<TempTable> runsToMerge = new ArrayList<>();
for (int i=0; i<numbuffs; i++)

runsToMerge.add(runs.remove(0));

The method can then pass the runsToMerge list to the method
mergeTwoRuns (which could be renamed mergeSeveralRuns) to be merged
into a single run.

The SimpleDB distribution code does not contain a version of SortPlan that
performs multibuffer sorting. That task is left to Exercises 14.15–14.17.

Finally, note that code that uses SortPlan, such as GroupByPlan and
MergeJoinPlan, cannot tell whether it is using the regular sorting algorithm or

14.5 Implementing Multibuffer Sorting 403

the multibuffer algorithm. Thus those classes do not need to be changed. (However,
there are some minor issues related to the number of buffers used by
MergeJoinPlan; see Exercise 14.5.)

14.6 Implementing Multibuffer Product

To implement the multibuffer product algorithm, you need to implement the notion
of a chunk. Recall that a chunk is a k-block portion of a materialized table having the
property that all blocks of the chunk fit into the available buffers. The class
ChunkScan implements a chunk as a scan of records; see Fig. 14.6.

The ChunkScan constructor is given the stored table’s metadata together with
the block number of the first and last blocks of the chunk. The constructor opens
record pages for each block in the chunk and stores them in a list. The scan also
keeps track of a current record page; initially, the current page is the first page in the
list. The next method moves to the next record in the current page. If the current
page has no more records, then the next page in the list becomes current. Unlike table
scans, moving between blocks in a chunk scan does not close the previous record
page (which would unpin its buffer). Instead, the record pages in a chunk are
unpinned only when the chunk itself is closed.

The class MultibufferProductPlan implements the multibuffer product
algorithm; its code appears in Fig. 14.7. The method openmaterializes both the left-
side and right-side records—the left side as a MaterializeScan and the right
side as a temporary table. The method blocksAccessed needs to know the size
of the materialized right-side table, so that it can calculate the number of chunks.
Since this table does not exist until the plan is opened, the method estimates the size
by using the estimate provided by MaterializePlan. The code for the methods
recordsOutput and distinctValues is the same as in ProductPlan and
is straightforward.

The code for MultibufferProductScan appears in Fig. 14.8. Its construc-
tor determines the chunk size by calling BufferNeeds.bestFactor on the size
of the right-side file. It then positions its left-side scan at the first record, opens a
ChunkScan for the first chunk of the right side, and creates a ProductScan from
these two scans. That is, the variable prodscan contains a basic product scan
between the left-side scan and the current chunk. Most of the scan methods use this
product scan. The exception is the method next.

The next method moves to the next record in the current product scan. If that
scan has no more records, then the method closes that scan, creates a new product
scan for the next chunk, and moves to its first record. The method returns false
when there are no more chunks to process.

404 14 Effective Buffer Utilization

public class ChunkScan implements Scan {
private List<RecordPage> buffs = new ArrayList<>();
private Transaction tx;
private String filename;
private Layout layout;
private int startbnum, endbnum, currentbnum;
private RecordPage rp;
private int currentslot;

public ChunkScan(Transaction tx, String filename,
 Layout layout, int startbnum, int endbnum) {

this.tx = tx;
this.filename = filename;
this.layout = layout;
this.startbnum = startbnum;
this.endbnum = endbnum;
for (int i=startbnum; i<=endbnum; i++) {

BlockId blk = new BlockId(filename, i);
buffs.add(new RecordPage(tx, blk, layout));

}
moveToBlock(startbnum);

}

public void close() {
for (int i=0; i<buffs.size(); i++) {

BlockId blk = new BlockId(filename, startbnum+i);
tx.unpin(blk);

}
}

public void beforeFirst() {
moveToBlock(startbnum);

}

public boolean next() {
currentslot = rp.nextAfter(currentslot);
while (currentslot < 0) {

if (currentbnum == endbnum)
return false;

moveToBlock(rp.block().number()+1);
currentslot = rp.nextAfter(currentslot);

}
return true;

}

public int getInt(String fldname) {
return rp.getInt(currentslot, fldname);

}

public String getString(String fldname) {
return rp.getString(currentslot, fldname);

Fig. 14.6 The code for the SimpleDB class ChunkScan

14.6 Implementing Multibuffer Product 405

14.7 Hash Joins

Section 13.6 examined the mergejoin algorithm. Because that algorithm sorts both
its input tables, its cost is determined by the size of the larger input table. This section
considers a different join algorithm, called hashjoin. This algorithm has the property
that its cost is determined by the size of the smaller input table. Thus this algorithm
will be preferable to mergejoin when the input tables are of very different sizes.

14.7.1 The Hashjoin Algorithm

The idea behind the multibuffer product algorithm can be extended to computing the
join two tables. This algorithm is called hashjoin, and appears in Fig. 14.9.

The hashjoin algorithm is recursive, based on the size of T2. If T2 is small enough
to fit in the available buffers, then the algorithm joins T1 and T2 using a multibuffer
product. If T2 is too large to fit into memory, then the algorithm uses hashing to
reduce T2’s size. It creates two sets of temporary tables: a set {V0,...,Vk-1} for T1
and a set {W0,...,Wk-1} for T2. These temporary tables act as buckets for the hash
function. Each T1 record is hashed on its join field and placed in the bucket
associated with the hash value. Each T2 record is hashed similarly. The
corresponding tables (Vi, Wi) are then joined recursively.

It should be clear that all records having the same join value will hash to the same
bucket. Thus you can perform the join of T1 and T2 by independently joining Vi
with Wi, for each i. Since each Wi will be smaller than T2, the recursion will
eventually stop.

public Constant getVal(String fldname) {
if (layout.schema().type(fldname) == INTEGER)

return new Constant(getInt(fldname));
else

return new Constant(getString(fldname));
}

public boolean hasField(String fldname) {
return layout.schema().hasField(fldname);

}

private void moveToBlock(int blknum) {
currentbnum = blknum;
rp = buffs.get(currentbnum - startbnum);
currentslot = -1;

}
}

Fig. 14.6 (continued)

406 14 Effective Buffer Utilization

https://doi.org/10.1007/978-3-030-33836-7_13

public class MultibufferProductPlan implements Plan {
private Transaction tx;
private Plan lhs, rhs;
private Schema schema = new Schema();

public MultibufferProductPlan(Transaction tx, Plan lhs, Plan rhs) {
this.tx = tx;
this.lhs = new MaterializePlan(tx, lhs);
this.rhs = rhs;
schema.addAll(lhs.schema());
schema.addAll(rhs.schema());

}

public Scan open() {
Scan leftscan = lhs.open();
TempTable t = copyRecordsFrom(rhs);
return new MultibufferProductScan(tx, leftscan, t.tableName(),

t.getLayout());
}

public int blocksAccessed() {
// this guesses at the # of chunks
int avail = tx.availableBuffs();
int size = new MaterializePlan(tx, rhs).blocksAccessed();
int numchunks = size / avail;
return rhs.blocksAccessed() +

(lhs.blocksAccessed() * numchunks);
}

public int recordsOutput() {
return lhs.recordsOutput() * rhs.recordsOutput();

}

public int distinctValues(String fldname) {
if (lhs.schema().hasField(fldname))

return lhs.distinctValues(fldname);
else

return rhs.distinctValues(fldname);
}

public Schema schema() {
return schema;

}

private TempTable copyRecordsFrom(Plan p) {
Scan src = p.open();
Schema sch = p.schema();
TempTable tt = new TempTable(tx, sch);
UpdateScan dest = (UpdateScan) tt.open();
while (src.next()) {

dest.insert();
for (String fldname : sch.fields())

Fig. 14.7 The code for the SimpleDB class MultibufferProductPlan

14.7 Hash Joins 407

Note that each recursive call to the hashjoin algorithm must use a different hash
function. The reason is that all of the records in a temporary table are there because
they all hashed to the same value. A different hash function ensures that those
records will be evenly distributed among the new temporary tables.

The code of Fig. 14.9 also says to re-choose the value for k for each recursive call.
You could instead choose k once and use it throughout all of the calls. Exercise
14.11 asks you to consider the trade-offs involved in these two options.

You can improve the efficiency of the multibuffer product somewhat, by being
careful how you search the blocks for matching records. Given a record of T1, the
algorithm needs to find the matching records from T2. The strategy taken by
multibuffer product is to simply search all of T2. Although this search does not
incur any additional disk accesses, it could certainly be made more efficient by
means of appropriate internal data structures. For example, you could store refer-
ences to the T2 records in a hash table or binary search tree. (In fact, any imple-
mentation of the Java Map interface would work.) Given a T1 record, the algorithm
would look up its join value in the data structure and find the references to the
records of T2 having this join value, thereby avoiding the need to search T2.

14.7.2 An Example of Hashjoin

As a concrete example, let’s use hashjoin to implement the join of the ENROLL and
STUDENT tables, using the records from Fig. 1.1. Make the following assumptions:

• The STUDENT table is on the right side of the join.
• Two STUDENT records fit in a block, and two ENROLL records fit in a block.
• Three buckets are used; that is, k ¼ 3.
• The hash function is h(n) ¼ n%3.

The nine STUDENT records fit into five blocks. Since k ¼ 3, the STUDENT
records cannot all fit into memory at once, and so you hash. The resulting buckets
appear in Fig. 14.10.

The student ID values 3, 6, and 9 have a hash value of 0. Thus the ENROLL
records for those students are placed in V0, and the STUDENT records for those
students are placed in W0. Similarly, the records for students 1, 4, and 7 are placed in

dest.setVal(fldname, src.getVal(fldname));
}
src.close();
dest.close();
return tt;

}
}

Fig. 14.7 (continued)

408 14 Effective Buffer Utilization

https://doi.org/10.1007/978-3-030-33836-7_1

public class MultibufferProductScan implements Scan {
private Transaction tx;
private Scan lhsscan, rhsscan=null, prodscan;
private String filename;
private Layout layout;
private int chunksize, nextblknum, filesize;

public MultibufferProductScan(Transaction tx, Scan lhsscan,
String filename, Layout layout) {

this.tx = tx;
this.lhsscan = lhsscan;
this.filename = filename;
this.layout = layout;
filesize = tx.size(filename);
int available = tx.availableBuffs();
chunksize = BufferNeeds.bestFactor(available, filesize);
beforeFirst();

}

public void beforeFirst() {
nextblknum = 0;
useNextChunk();

}

public boolean next() {
while (!prodscan.next())

if (!useNextChunk())
return false;

return true;
}

public void close() {
prodscan.close();

}

public Constant getVal(String fldname) {
return prodscan.getVal(fldname);

}

public int getInt(String fldname) {
return prodscan.getInt(fldname);

}

public String getString(String fldname) {
return prodscan.getString(fldname);

}

public boolean hasField(String fldname) {
return prodscan.hasField(fldname);

}

Fig. 14.8 The code for the SimpleDB class MultibufferProductScan

14.7 Hash Joins 409

V1 and W1, and the records for students 2, 5, and 8 are placed in V2 and W2. You
now are able to recursively join each Vi table with its corresponding Wi table.

Since each Wi table has two blocks, they will each fit into memory; thus each of
the three recursive joins can be performed as a multibuffer product. In particular, join
Vi with Wi by reading all of Wi into memory. Then scan Vi; for each record, search
Wi for any matching records.

rhsscan.close();
if (nextblknum >= filesize)

return false;
int end = nextblknum + chunksize - 1;
if (end >= filesize)

end = filesize - 1;
rhsscan = new ChunkScan(tx, filename, layout, nextblknum, end);
lhsscan.beforeFirst();
prodscan = new ProductScan(lhsscan, rhsscan);
nextblknum = end + 1;
return true;

}
}

private boolean useNextChunk() {
if (rhsscan != null)

Fig. 14.8 (continued)

Let T1 and T2 be the tables to be joined.
1. Choose a value k that is less than the number of available buffers.
2. If the size of T2 is no more than k blocks, then:

a) Join T1 and T2, using a multibuffer product followed by a selection
on the join predicate.

b) Return.
// Otherwise:
3. Choose a hash function that returns a value between 0 and k-1.
4. For the table T1:

a) Open a scan for k temporary tables.
b) For each record of T1:

i. Hash the record’s join field, to get the hash value h.
ii. Copy the record to the hth temporary table.

b) Close the temporary table scans.
5. Repeat Step 4 for the table T2.
6. For each i between 0 and k-1:

a) Let Vi be the ith temporary table of T1.
b) Let Wi be the ith temporary table of T2.
c) Recursively perform the hashjoin of Vi and Wi.

Fig. 14.9 The hashjoin algorithm

410 14 Effective Buffer Utilization

14.7.3 Cost Analysis

To analyze the cost of using hashjoin to join T1 with T2, suppose that the materi-
alized records in T1 require B1 blocks and that the records in T2 require B2 blocks.
Choose k to be an nth root of B2; that is, B2 ¼ kn. Then assuming that the records
hash evenly, you can calculate the costs as follows:

The first round of hashing will produce k temporary tables; each of T2’s tables
will have kn-1 blocks. When you recursively hash these temporary tables, you will
be left with k2 temporary tables, each of which will have kn-2 blocks. Continuing,
T2 will eventually wind up with kn-1 temporary tables, having k block each. These
tables can then be joined (together with their corresponding tables from T1) using
multibuffer product.

Consequently, there will be n-1 rounds of hashing. The first round has cost
B1 + B2, plus the cost of reading the input. During subsequent rounds, each block of
each temporary table will be read once and written once; thus the cost for those
rounds is 2(B1 + B2). The multibuffer products occur during the scanning phase.
Each block of the temporary tables will be read once, for a cost of B1 + B2.

Combining these values implies that using hashjoin to join tables of size B1 and
B2 using k buffers has the following costs:

• Preprocessing cost¼ (2B1logkB2 - 3B1) + (2B2logkB2 - 3B2) + the cost of
the input

• Scanning cost ¼ B1 + B2

Amazingly enough, this cost is almost identical to the cost of a multibuffer
mergejoin! There is one difference: in this formula, the argument to both of the

Fig. 14.10 Using hashjoin to join ENROLL with STUDENT

14.7 Hash Joins 411

logarithms is B2; whereas in the formula for mergejoin, the argument to the first
logarithm would be B1. The reason for this difference is that in hashjoin, the number
of rounds of hashing is determined only by T2, whereas in mergejoin, the number of
merge iterations during the sort phase is determined by both T1 and T2.

This difference explains the different performances of the two join algorithms.
The mergejoin algorithm must sort both input tables before it can merge them. On
the other hand, the hashjoin algorithm does not care how large T1 is; it only needs to
hash until T2’s buckets are small enough. The cost of a mergejoin is not affected by
which table is on the left or right side. However, a hashjoin is more efficient when the
smaller table is on the right.

If T1 and T2 are close in size, then it is probably better to use mergejoin, even
though hashjoin has the same cost formula. The reason is that the hashjoin formula
depends on the assumption that the records will hash evenly. But if hashing does not
come out evenly, the algorithm may require more buffers and more iterations than
the formula says. Mergejoin, on the other hand, has a much more predictable
behavior.

14.8 Comparing the Join Algorithms

This chapter has examined two ways to implement a join of two tables, mergejoin
and hashjoin, and Chap. 12 examined indexjoin. This section uses the following join
query to investigate the relative benefits of these three implementations:

select SName, Grade from STUDENT, ENROLL where SId=StudentId

Assume that the tables have the sizes given in Fig. 7.8, 200 buffers are available
and that ENROLL has an index on StudentId.

Consider the mergejoin algorithm. This algorithm needs to sort both ENROLL
and STUDENT before merging them. The ENROLL table has 50,000 blocks. The
square root of 50,000 is 244, which is more than the number of available buffers.
Thus you must allocate the cube root, which is 37 buffers. The split phase will create
1352 runs, each of which is 37 blocks. A single merge iteration will result in 37 runs
of size 1352 blocks. Thus preprocessing the ENROLL table requires two reads and
two writes of the records, or 200,000 total block accesses. The STUDENT table has
4500 blocks. The square root of 4500 is 68, and 68 buffers are available. So you can
use 68 buffers to split the 4500 STUDENT blocks into 68 runs of size 68. This
splitting takes 9000 block accesses and is all the preprocessing that is needed.
Merging the two sorted tables requires another 54,500 block accesses, for a total
cost of 263,500 block accesses.

Consider now the hashjoin algorithm. This algorithm is most efficient when the
smallest table is on the right; thus ENROLL will be the left-side table and STU-
DENT will be the right-side table. You can use 68 buffers to hash STUDENT into
68 buckets, each of which will contain about 68 blocks. Similarly, you can use the

412 14 Effective Buffer Utilization

https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_7

same 68 buffers to hash ENROLL into 68 buckets, each of which will contain about
736 blocks. Then recursively join the corresponding buckets. Each of these sub-joins
can be performed using multibuffer product. That is, allocate 68 buffers to hold the
entire STUDENT bucket, and allocate another buffer for a sequential scan through
the ENROLL bucket. Each bucket gets scanned once. Summing the costs, the
ENROLL and STUDENT records have been read once, and the buckets have been
written once and read once, for a total of 163,500 block accesses.

The indexjoin implementation scans through the STUDENT table; for each
STUDENT record, it uses the record’s SId value to search the index and look up
the matching ENROLL records. Thus the STUDENT table will be accessed once
(for 4500 block accesses), and the ENROLL table will be accessed once for each
matching record. However, since every ENROLL record matches some STUDENT
record, the ENROLL table will potentially require 1,500,000 block accesses. The
query therefore requires 1,504,500 block accesses.

This analysis shows that under these assumptions, hashjoin is the fastest,
followed by mergejoin and then indexjoin. The reason why hashjoin is so efficient
is that one of the tables (i.e., STUDENT) is reasonably small compared to the
number of available buffers, and the other (i.e., ENROLL) is much larger. Suppose
instead that 1000 buffers were available. Then mergejoin would be able to sort
ENROLL without any merge iterations, and the total cost would be 163,500 block
accesses, the same as hashjoin. The indexjoin algorithm is by far the least efficient
implementation for this query. The reason is that indexes are not useful when there
are many matching data records, and in this query, every ENROLL record matches.

Now consider a variation of this query that has an additional selection on
GradYear:

select SName, Grade from STUDENT, ENROLL
where SId=StudentId and GradYear=2020

Consider first the mergejoin implementation. There are only 900 relevant STU-
DENT records, which fit into 90 blocks. Thus it is possible to sort the STUDENT
records by reading them into 90 buffers and using an internal sort algorithm to sort
them. Thus only 4500 block accesses are needed. But the cost of processing
ENROLL is unchanged, so the query would require a total of 204,500 block
accesses, only a slight improvement over mergejoin on the original query.

The hashjoin implementation would recognize that the 90 blocks of STUDENT
records will fit directly into 90 buffers, with no hashing required. Thus the join can
be performed by a single scan of both tables, which is 54,500 block accesses.

The indexjoin implementation would read all 4500 STUDENT records to find the
900 students from 2020. These records will match with 1/50th (or 50,000) of the
ENROLL records, resulting in about 50,000 block accesses of ENROLL, or 54,500
total block accesses.

Thus, hashjoin and indexjoin are comparable, but mergejoin is significantly
worse. The reason is that mergejoin is forced to preprocess both tables, even though
one is considerably smaller.

14.8 Comparing the Join Algorithms 413

For a final example, modify the above query so that there is an even more
restrictive selection on STUDENT:

select SName, Grade from STUDENT, ENROLL
where SId=StudentId and SId=3

Now the output table consists of the 34 records corresponding to the enrollments
for this single student. In this case, indexjoin will be the most efficient. It scans the
entire 4500 blocks of STUDENT, traverses the index, and looks up the 34 ENROLL
records, for a total of about 4534 block accesses (not counting index traversal costs).
The hashjoin implementation has the same cost as before. It will need to scan
STUDENT once (to materialize the single record) and ENROLL once (to find all
of the matching records), for a total of 54,500 block accesses. And mergejoin will
have to preprocess ENROLL and STUDENT the same as before, for a total of
204,500 block accesses.

This analysis demonstrates that mergejoin is most efficient when both of its input
tables are relatively the same size. Hashjoin is often better when at the input tables
are of disparate sizes. And indexjoin is better when the number of output records is
small.

14.9 Chapter Summary

• Non-materialized scans are very frugal when it comes to buffer usage. In
particular:

– A table scan uses exactly one buffer.
– Scans for select, project, and product use no additional buffers.
– A static hash or B-tree index requires one additional buffer (for queries).

• The mergesort algorithm can take advantage of multiple buffers when it creates
the initial runs and when it merges them. It chooses k ¼ n√B, where B is the size
of the input table and n is the smallest integer such that k is less than the number
of available buffers. The resulting algorithm is called multibuffer mergesort, and
is as follows:

– Allocate k buffers from the buffer manager.
– Read k blocks of the table at a time into the k buffers, and use an internal

sorting algorithm to sort them into a k-block run.
– Perform merge iterations on the resulting runs using k temporary tables, until

there are no more than k runs remaining. Since the splitting phase results in
B/k runs, there will be n-2 merge iterations.

– Merge the final k runs during the scanning phase.

• The multibuffer product algorithm is an efficient implementation of the product
operator and works as follows:

414 14 Effective Buffer Utilization

1. Materialize the RHS table as temporary table T2. Let B2 be the number of
blocks in T2.

2. Let i be the smallest number such that B2/i is less than the number of
available buffers.

3. Treat T2 as i chunks of k blocks each. For each chunk C:

(a) Read all of C’s blocks into k buffers.
(b) Take the product of T1 and C.
(c) Unpin C’s blocks.

That is, T1’s blocks will be read once for each chunk. Consequently, the number
of blocks in the product is

B2 + B1�B2/k

• Not all buffer allocations are useful. Multibuffer mergesort can only use a buffer
allocation that is a root of the size of its table. Multibuffer product can only use an
allocation that is a factor of the size of its right-side table.

• The hashjoin algorithm is an extension of multibuffer product that works as
follows:

1. Choose a value k that is less than the number of available buffers.
2. If T2 fits into k buffers, use a multibuffer product to join T1 and T2.
3. Otherwise, hash T1 and T2, using k temporary tables each.
4. Recursively perform hashjoin on the corresponding hashed buckets.

14.10 Suggested Reading

The article Shapiro (1986) describes and analyzes several join algorithms and their
buffer requirements. The article Yu and Cornell (1993) considers the cost-
effectiveness of buffer usage. It argues that buffers are a valuable global resource
and that instead of allocating as many buffers as it can (which is what SimpleDB
does), a query should allocate the number of buffers that will be most cost-effective
for the entire system. The article gives an algorithm that can be used to determine the
optimal buffer allocation.

Shapiro, L. (1986) Join processing in database systems with large main memories.
ACM Transactions on Database Systems, 11(3), 239–264.

Yu, P., & Cornell, D. (1993) Buffer management based on return on consumption in
a multi-query environment. VLDB Journal, 2(1), 1–37.

14.10 Suggested Reading 415

14.11 Exercises

Conceptual Exercises

14.1. Suppose that a database system contains so many buffers that they never all
are pinned at the same time. Is this just a waste of physical memory, or is
there an advantage to having an excess number of buffers?

14.2. Large amounts of RAM are becoming increasingly cheap. Suppose that a
database system has more buffers than there are blocks in the database. Can
all the buffers be used effectively?

14.3. Suppose that the database system contains enough buffers to hold every
block of the database. Such a system is called a main-memory database
system, because it can read the entire database into buffers once and then
execute queries without any additional block accesses.

(a) Does any component of the database system become unnecessary in this
case?

(b) Should the functioning of any component be significantly different?
(c) The query plan estimation functions certainly need changing, because it

no longer makes sense to evaluate queries based on the number of block
accesses. Suggest a better function, which would more accurately model
the cost of evaluating a query.

14.4. Consider the description of multibuffer sorting in Sect. 14.5, which suggests
that the methods splitIntoRuns and doAMergeIteration should
each determine how many buffers to allocate.

(a) Another option would be for the open method to determine a value for
numbuffs and pass it into both methods. Explain why this is a less
desirable option.

(b) Yet another option would be to allocate the buffers in the SortPlan
constructor. Explain why this is an even worse option.

14.5. Suppose that the class SortPlan has been revised to implement the
multibuffer sorting algorithm of Fig. 14.2, and consider the first mergejoin
example in Sect. 14.6.

(a) How many buffers are used in the scanning phase of that mergejoin scan?
(b) Suppose that only 100 buffers were available (instead of 200). Suppose

that buffers were allocated for ENROLL before STUDENT. How would
they be allocated?

(c) Suppose that only 100 buffers were available (instead of 200). Suppose
that buffers were allocated for STUDENT before ENROLL. How would
they be allocated?

(d) Another option would be to fully materialize either of the sorted tables,
before joining them. Calculate the cost of this option.

14.6. Consider the following algorithm for implementing the groupby operator:

416 14 Effective Buffer Utilization

1. Create and open k temporary tables.
2. For each input record:

(a) Hash the record on its grouping fields.
(b) Copy the record to the corresponding temporary table.

3. Close the temporary tables.
4. For each temporary table:

Perform the sort-based groupby algorithm on that table.

(a) Explain why this algorithm works.
(b) Calculate the preprocessing and scanning costs of this algorithm.
(c) Explain why this algorithm is in general not as good as the sort-based

groupby algorithm of Fig. 13.14.
(d) Explain why this algorithm might be useful in a parallel-processing

environment.

14.7. Consider the example of multibuffer product in Sect. 14.3 that took the
product of two 1000-block tables. Suppose that only one buffer were avail-
able for table T2, that is, suppose that k ¼ 1.

(a) Calculate the number of block accesses required to take the product.
(b) This number is significantly less than the block accesses required by the

basic product algorithm of Chap. 8, even though it uses the same number
of buffers. Explain why.

14.8. The multibuffer product algorithm requires that the RHS table be material-
ized (so that it can be chunked). However, the
MultibufferProductPlan code also materializes the LHS scan. Not
materializing the left side can cause problems with buffer use and with
efficiency. Explain why, and give an example of each.

14.9. Rewrite the hashjoin algorithm of Fig. 14.9 so that it is nonrecursive. Make
sure that all of the hashing is performed during the preprocessing stage and
that the merging is performed during the scanning stage.

14.10. The hashjoin algorithm of Fig. 14.9 uses the same value of k to hash the
records of both T1 and T2. Explain why using different values of k will
not work.

14.11. The hashjoin algorithm of Fig. 14.9 re-chooses the value of k each time it is
called.

(a) Explain why it would also be correct to choose the value of k once, and
pass it into each recursive call.

(b) Analyze the trade-offs of these two possibilities. Which do you prefer?

14.12. Suppose that you revise the hashjoin algorithm of Fig. 14.9 so that step 6 uses
mergejoin to join the individual buckets, instead of calling hashjoin recur-
sively. Give a cost analysis of this algorithm, and compare the block accesses
to the original hashjoin algorithm.

14.11 Exercises 417

https://doi.org/10.1007/978-3-030-33836-7_13
https://doi.org/10.1007/978-3-030-33836-7_8

14.13. Suppose that the STUDENT table has indexes on SId and MajorId. For
each of the following SQL queries, use the statistics of Fig. 7.8 to calculate
the cost of implementations that use mergejoin, hashjoin, or indexjoin.

(a) select SName, DName from STUDENT, DEPT
where MajorId=DId

(b) select SName, DName from STUDENT, DEPT
where MajorId=DId and GradYear=2020

(c) select DName from STUDENT, DEPT
where MajorId=DId and SId=1

(d) select SName from STUDENT, ENROLL
where SId=StudentId and Grade='F'

Programming Exercises

14.14. The SimpleDB class BufferNeeds does not reserve buffers from the
buffer manager.

(a) List some possible problems that could occur in SimpleDB that would be
alleviated if the buffers were actually reserved. Are there any advantages
to not reserving buffers?

(b) Redesign the SimpleDB buffer manager so that it allows transactions to
reserve buffers. (Be sure to consider the case where transaction T1 pins
block b to a reserved buffer and then transaction T2 wants to pin b. What
should you do?)

(c) Implement your design, and modify BufferNeeds appropriately.

14.15. In Exercise 13.10, you modified the class SortPlan so that it constructs
initial runs that are one block long. Modify the code so that it constructs
initial runs that are k blocks long, as discussed in Sect. 14.5.

14.16. In Exercise 13.11, you modified the class SortPlan to use a one-block
long staging area for computing the initial runs. Modify the code so that it
uses a k-block long staging area.

14.17. In Exercise 13.13, you modified the class SortPlan to merge k runs at a
time, where the value of k was passed into the constructor. Modify the code
so that the value of k is determined by the number of initial runs, as discussed
in Sect. 14.5.

14.18. The multibuffer product algorithm is usually most efficient when its smallest
input table is on the right side.

(a) Explain why.
(b) Revise the code for MultiBufferProductPlan so that it always

chooses the smaller input table to be on the right side of the scan.

14.19. Revise the code for MultiBufferProductPlan so that it materializes
its left-side and right-side tables only when necessary.

14.20. Write SimpleDB code to implement the hashjoin algorithm.

418 14 Effective Buffer Utilization

https://doi.org/10.1007/978-3-030-33836-7_7

Chapter 15
Query Optimization

The basic planner of Chap. 10 uses a simple algorithm to create its query plans.
Unfortunately, those plans often entail significantly more block accesses than they
need, for two basic reasons: the operations are performed in a suboptimal order,
and they do not take advantage of the indexed, materialized, or multibuffer
implementations of Chaps. 12–14.

This chapter examines how the planner can address these problems and generate
efficient plans. This task is called query optimization. The most efficient plan for a
query can be several orders of magnitude faster than a naïve plan, which is the
difference between a database engine that can respond to queries in a reasonable
amount of time and a database engine that is completely unusable. A good query
optimization strategy is therefore a vital part of every commercial database system.

15.1 Equivalent Query Trees

Two tables are equivalent if an SQL query cannot tell them apart. That is, two
equivalent tables contain exactly the same records, although not necessarily in the
same order. Two queries are equivalent if their output tables are always equivalent,
regardless of the contents of the database. This section considers equivalences
between relational algebra queries. Since these queries can be expressed as trees,
an equivalence between two queries can often be thought of as a transformation
between their trees. The following subsections consider these transformations.

15.1.1 Rearranging Products

Let T1 and T2 be two tables. Recall that the product of T1 and T2 is the table
containing all combinations of records from T1 and T2. That is, whenever there are

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7_15

419

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33836-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_12
https://doi.org/10.1007/978-3-030-33836-7_14
https://doi.org/10.1007/978-3-030-33836-7_15

records r1 in T1 and r2 in T2, then the combined record (r1, r2) is in the output table.
Note that this combined record is essentially the same as (r2, r1), since the order in
which fields appear in a record is irrelevant. But since (r2, r1) is the record produced
by the product of T2 and T1, the product operator must be commutative. That is:

product(T1, T2) � product(T2, T1)

A similar argument (see Exercise 15.1) can show that the product operator is
associative. That is:

product(product(T1, T2), T3) � product(T1, product(T2, T3))

In terms of query trees, the first equivalence swaps the left and right children of a
product node. The second equivalence applies when two product nodes are next to
each other. In that case, the inner product node moves from being the left child of the
outer product node to being its right child; the ordering of the other child nodes stays
the same. Figure 15.1 illustrates these equivalences.

These two equivalences can be used repeatedly to transform trees of product
nodes. For example, consider Fig. 15.2, which consists of two trees corresponding to
the query:

select SName
from STUDENT, ENROLL, SECTION, COURSE, DEPT

The tree in Fig. 15.2a is created by the basic planner. Two steps are required to
transform this tree into the tree of Fig. 15.2b. The first step applies the commutative

Fig. 15.1 Equivalences involving the product operator. (a) The product operator is commutative,
(b) the product operator is associative

420 15 Query Optimization

rule to the product node above SECTION; the second step applies the associative
rule to the product node above DEPT.

In fact, it can be shown (see Exercise 15.2) that you can use these two rules to
transform any tree of product nodes into any other tree having the same nodes. That
is, product operations can be performed in any order.

15.1.2 Splitting Selections

Suppose that a selection predicate p is the conjunction of two predicates p1 and p2. It
is possible to find the records satisfying p in two steps: First, find the records

Fig. 15.2 Rearranging product nodes to produce an equivalent query tree. (a) A tree produced by
the basic planner, (b) the result of applying associative and commutative transformations

15.1 Equivalent Query Trees 421

satisfying p1, and then from that set, find the records satisfying p2. In other words,
the following equivalence holds:

select(T, p1 and p2) � select(select(T, p1), p2)

In terms of query trees, this equivalence replaces a single select node by a pair of
select nodes; see Fig. 15.3.

By applying this equivalence repeatedly, it is possible to replace the single select
node in a query tree by several select nodes, one for each conjunct in the predicate.
Moreover, since the conjuncts of a predicate can be arbitrarily rearranged, these
select nodes can appear in any order.

The ability to split a select node is enormously useful for query optimization,
because each of the “smaller” select nodes can be placed independently at its
optimum location in the query tree. Consequently, the query optimizer strives to
split predicates into as many conjuncts as possible. It does so by transforming each
predicate into conjunctive normal form (or CNF). A predicate is in CNF if it is a
conjunction of sub-predicates, none of which contain an AND operator.

The AND operators in a CNF predicate will always be outermost. For example,
consider the following SQL query:

select SName from STUDENT
where (MajorId=10 and SId=3) or (GradYear=2018)

As written, the where-clause predicate is not in CNF, because the AND operator
is inside the OR operator. However, it is always possible to use DeMorgan’s laws to
make the AND operator be outermost. The result in this case is the following
equivalent query:

select SName from STUDENT
where (MajorId=10 or GradYear=2018) and (SId=3 or GradYear=2018)

The predicate of this query has two conjuncts, which can now be split.

Fig. 15.3 Splitting a select node

422 15 Query Optimization

15.1.3 Moving Selections Within a Tree

The following query retrieves the name of every student majoring in math:

select SName from STUDENT, DEPT
where DName = 'math' and MajorId = DId

Its where-clause predicate is in CNF and contains two conjuncts. Figure 15.4a
depicts the query tree created by the basic planner, modified so that there are two select
nodes. Consider first the selection on DName. The product node below it outputs all
combinations of STUDENT and DEPT records; the select node then retains only those
combinations in which DName has the value “math.” This is exactly the same set of
records you would get if you first selected the math-department record fromDEPT and
then returned all combinations of STUDENT records with that record. In other words,
since the selection applies only to the DEPT table, it is possible to “push” the selection
inside the product, giving the equivalent tree depicted in Fig. 15.4b.

Now consider the join predicate MajorId¼DId. It is not possible push this
selection inside the product, because the predicate mentions fields from both STU-
DENT and DEPT. For example, pushing the selection above STUDENT would
produce a meaningless query because the selection would reference a field that is not
in STUDENT.

The following equivalence generalizes this discussion. It holds when predicate p
refers only to fields of T1:

select(product(T1, T2), p) � product(select(T1, p), T2)

This equivalence is depicted in Fig. 15.5.
This equivalence can be applied repeatedly to a select node, pushing it down the

query tree as far as possible. For example, consider Fig. 15.6. The query of part

Fig. 15.4 Pushing a select node down the query tree

15.1 Equivalent Query Trees 423

(a) returns the name of those students who failed a math course in 2018. Parts (b) and
(c) depict two equivalent trees for this query. Figure 15.6b depicts the query tree
created by the basic planner. Figure 15.6c depicts the query tree resulting from
splitting the select node and pushing the smaller select nodes down the tree.

The equivalence of Fig. 15.5 can also be applied in reverse, moving a select node
up the tree past one or more product nodes. Moreover, it is easily shown that a select
node can always be moved past another select node in either direction and that a
select node can be moved past a project or groupby node whenever it is meaningful
to do so (see Exercise 15.4). It therefore follows that a select node can be placed
anywhere in the query tree, provided that its predicate only mentions fields of the
underlying subtree.

15.1.4 Identifying Join Operators

Recall that the join operator is defined in terms of the select and product operators:

join(T1, T2, p) � select(product(T1, T2), p)

This equivalence asserts that it is possible to transform a pair of select-product
nodes into a single join node. For example, Fig. 15.7 depicts the result of this
transformation on the tree of Fig. 15.6c.

15.1.5 Adding Projections

A project node can be added on top of any node in a query tree, provided that its
projection list contains all fields mentioned in the ancestors of the node. This
transformation is typically used to reduce the size of the inputs to the nodes of a
query tree when doing materialization.

For example, Fig. 15.8 depicts the query tree of Fig. 15.7, with additional project
nodes to eliminate fields as early as possible.

Fig. 15.5 Pushing a select
node inside a product

424 15 Query Optimization

select SName
from STUDENT, ENROLL, SECTION, COURSE, DEPT
where SId=StudentId and SectionId=SectId and CourseId=CId
and DeptId=DId and DName='math' and Grade='F'
and YearOffered=2018

(a)

(c)

()

(b)

Fig. 15.6 Pushing several selections down a query tree. (a) The SQL query, (b) the query tree
created by the basic planner, (c) the query tree resulting from pushing select nodes

15.1 Equivalent Query Trees 425

15.2 The Need for Query Optimization

Given an SQL query, the planner must choose an appropriate plan for it. This plan-
generation activity entails two steps:

• The planner chooses a relational algebra query tree corresponding to the query.
• The planner chooses an implementation for each node in the query tree.

In general, an SQL query can have many equivalent query trees, and each node in
the tree can be implemented in several ways. Consequently, a planner can have many
potential plans to choose from. It would certainly be nice if the planner chose the
most efficient plan, but is it necessary? After all, finding the best plan might entail a
lot of work. Before you agree to do all this work, you ought to be sure it is really
worth the effort. What is so bad about using the basic planning algorithm of
Chap. 10?

It turns out that different plans for the same query can have extremely different
numbers of block accesses. Consider, for example, the two query trees of Fig. 15.9.
Part (a) of this figure is an SQL query that retrieves the grades that Joe received
during 2020. Part (b) depicts the query tree created by the basic planner, and part
(c) depicts an equivalent tree.

Consider the plan from part (b). Using the statistics from Fig. 7.8, the cost of
this plan is calculated as follows: the product between STUDENT and SECTION
has 45,000 � 25,000 ¼ 1,125,000,000 records and requires 4500 + (45,000 �
2500) ¼ 112,504,500 block accesses. The product with ENROLL then requires
112,504,500 + (1,125,000,000 � 50,000) ¼ 56,250,112,504,500 block accesses.
The select and project nodes require no additional block accesses. Thus, this plan
requires over 56 trillion block accesses! If you assume just 1 ms per block access, a
database engine would take about 1780 years to answer this query.

Now consider the query tree from part (c). Assume that there is one student
named “joe.” In this case, the selection on STUDENT requires 4500 block accesses

Fig. 15.7 Replacing the select-product nodes in Fig. 15.6c with join nodes

426 15 Query Optimization

https://doi.org/10.1007/978-3-030-33836-7_10
https://doi.org/10.1007/978-3-030-33836-7_7

and outputs 1 record. The join with ENROLL requires 4500 + (1 �
50,000) ¼ 54,500 block accesses and outputs 34 records. And the join with SEC-
TION requires 54,500 + (34 � 2500) ¼ 139,500 block accesses. At 1 ms per block
access, executing this plan would take about 2.3 minutes.

The cost reduction from 1780 years to 2.3 minutes is nothing short of amazing
and demonstrates how utterly worthless the basic planning algorithm is. No client
can afford to wait a thousand years to get the answer to a query. If a database engine
is to be useful, its planner must be sophisticated enough to construct reasonable
query trees.

Although 2.3 minutes is not an intolerable execution time, the planner can do
even better by using other implementations for the nodes in the query tree. Consider
again the query tree from part (c), and assume that ENROLL has an index on
StudentId. The plan of Fig. 15.10 is then possible.

Most of the plans in this figure use the basic plan classes of Chap. 10. The two
exceptions are p4 and p7. Plan p4 performs an index join. For each selected

Fig. 15.8 Adding projections to the query tree of Fig. 15.7

15.2 The Need for Query Optimization 427

https://doi.org/10.1007/978-3-030-33836-7_10

STUDENT record, the index on StudentId is searched to find the matching
ENROLL records. Plan p7 performs the join using a multibuffer product. It mate-
rializes its right side table (i.e., the sections from 2020), divides them into chunks,
and performs the product of p4 with these chunks.

Let’s calculate the block accesses required by this plan. Plan p2 requires 4500
block accesses and outputs 1 record. The index join accesses ENROLL once for each
of the 34 records matching Joe’s STUDENT record; that is, the join requires
34 additional block accesses and outputs 34 records. Plan p6 (which finds the
sections from 2020) requires 2500 block accesses and outputs 500 records. The
multibuffer product materializes these records, which requires 50 additional blocks
to create a 50-block temporary table. Assuming that there are at least 50 buffers
available, this temporary table fits into a single chunk, and so the product requires
50 more block accesses to scan the temporary table, in addition to the cost of
computing the left-side records. The remaining plans require no additional block

select Grade from STUDENT, SECTION, ENROLL
where SId=StudentId and SectId=SectionId
and SName='joe' and YearOffered=2020
(a)

(b)

(c)

Fig. 15.9 Which query tree results in the better plan? (a) The SQL query, (b) the query tree
produced by the basic planner, (c) an equivalent query tree

428 15 Query Optimization

accesses. Thus the plan requires 7134 total block accesses, which takes a little more
than 7 seconds.

In other words, a careful choice of node implementations reduced the execution
time of the query by a factor of almost 20, using the same query tree. This reduction
may not be as dramatic as the difference from using different query trees, but it is
nevertheless substantial and important. A commercial database system that is
20 times slower than its competition will not last long in the marketplace.

SimpleDB db = new SimpleDB("studentdb");
MetadataMgr mdm = db.mdMgr();
Transaction tx = db.newTx();

// the plan for the STUDENT node
Plan p1 = new TablePlan(tx, "student", mdm);

// the plan for the select node above STUDENT
Predicate joepred = new Predicate(...); //sname='joe'
Plan p2 = new SelectPlan(p1, joepred);

// the plan for the ENROLL node
Plan p3 = new TablePlan(tx, "enroll", mdm);

// an indexjoin plan between STUDENT and ENROLL
Map<String,IndexInfo> indexes = mdm.getIndexInfo("enroll", tx);
IndexInfo ii = indexes.get("studentid");
Plan p4 = new IndexJoinPlan(p2, p3, ii, "sid");

// the plan for the SECTION node
Plan p5 = new TablePlan(tx, "section", mdm);

// the plan for the select node above SECTION
Predicate sectpred = new Predicate(...); //yearoffered=2020
Plan p6 = new SelectPlan(p5, sectpred);

// a multibuffer product plan between the indexjoin and SECTION
Plan p7 = new MultiBufferProductPlan(tx, p4, p6);

// the plan for the select node above the multibuffer product
Predicate sectpred = new Predicate(...); //sectid=sectionid
Plan p8 = new SelectPlan(p7, sectpred);

// the plan for the project node
List<String> fields = Arrays.asList("grade");
Plan p9 = new ProjectPlan(p8, fields);

Fig. 15.10 An efficient plan for the tree of Fig. 15.9c

15.2 The Need for Query Optimization 429

15.3 The Structure of a Query Optimizer

Given an SQL query, the planner must try to find the plan for that query that requires
the fewest block accesses. This process is called query optimization.

But how can the planner determine that plan? An exhaustive enumeration of
all possible plans is daunting: If a query has n product operations, then there are
(2n)!/n! ways to arrange them, which means that the number of equivalent plans
grows super-exponentially with the size of the query. And that’s not even consider-
ing the different ways to place the nodes for the other operators and the different
ways to assign implementations to each node.

One way that a query planner can deal with this complexity is to perform the
optimization in two independent stages:

• Stage 1: Find the most promising tree for the query, that is, the query tree that
seems most likely to produce the most efficient plan.

• Stage 2: Choose the best implementation for each node in that tree.

By performing these stages independently, the planner reduces the choices it
needs to make at each stage, which allows each stage to be simpler and more
focused.

During each of these two optimization stages, the planner can reduce complexity
even further by using heuristics to restrict the set of trees and plans that it considers.
For example, query planners typically use the heuristic “perform selections as early
as possible.” Experience has shown that in the optimal plan for a query, the select
nodes are always (or nearly always) placed as early as possible. Thus by following
this heuristic, a query planner does not need to consider any other placement of select
nodes in the query trees it considers.

The following two sections examine the two stages of query optimization and
their relevant heuristics.

15.4 Finding the Most Promising Query Tree

15.4.1 The Cost of a Tree

The first stage of query optimization is to find the “most promising” query tree, that
is, the tree that the planner thinks will have the lowest-cost plan. The reason that the
planner cannot actually determine the best tree is that cost information is not
available during the first stage. Block accesses are associated with plans, and plans
are not considered until the second stage. Consequently, the planner needs a way to
compare query trees without actually computing block accesses. The insight is to
note that:

430 15 Query Optimization

• Nearly all of the block accesses in a query are due to product and join operations.
• The number of block accesses required by these operations is related to the size of

their inputs.1

The planner therefore defines the cost of a query tree to be the sum of the sizes of
the inputs to each product/join node in the tree.

For example, let’s calculate the cost of the two query trees in Fig. 15.9. These
trees have two product nodes, so you should sum the sizes of the inputs to each one.
The results appear in Fig. 15.11 and indicate that the second query tree is much better
than the first one.

You can think of the cost of a query tree as a “quick and dirty” approximation of
its execution time. The cost does not help you estimate block accesses, but it does
help determine the relative value of two trees. In particular, given two query trees,
you can expect that the most efficient plan will come from the lower-cost tree. This
expectation is not always correct (see Exercise 15.8). However, experience shows
that it is correct most of the time, and even when it is not, the cheapest plan for the
lower-cost tree tends to be good enough.

15.4.2 Pushing Select Nodes Down the Tree

The planner uses heuristics to search for the most promising query tree. The first
heuristic concerns the placement of select nodes in the tree. The selection predicate
comes from the where clause of an SQL query. Recall that the equivalences of Sect.
15.1.2 allow the planner to place a select node anywhere in the tree that it wants,
provided that the predicate is meaningful at that point.

Which placement of select nodes leads to the lowest-cost tree? The output of a
select node cannot have more records than its input. So if you place a select node
inside of a product or join, the inputs to those nodes will likely be smaller, and the
cost of the tree will be reduced. This leads to the following heuristic.

• Heuristic 1: The planner only needs to consider query trees whose selections are
pushed down as far as possible.

Suppose that after pushing selections completely, two selections are next to each
other in the query tree. Heuristic 1 does not specify the order these selections should

Query Tree
Size of the inputs to

the bottom product node

Size of the inputs to

the top product node

Total cost

of the tree

Figure 15.9(b) 45,000 + 25,000 1,125,000,000 + 1,500,000 1,126,570,000

Figure 15.9(c) 1 + 1,500,000 34 + 25,000 1,525,035

Fig. 15.11 Calculating the cost of two query trees

1An exception is the index join, whose cost is basically unrelated to the size of the indexed table.
The planner ignores that exception at this point.

15.4 Finding the Most Promising Query Tree 431

appear in. However, the order makes no difference in the cost of the tree, and so the
planner is free to choose any order or to combine them into a single select node.

Heuristic 1 reduces the planner’s task so that it doesn’t have to worry about where
to place select nodes. Given a query plan for the other operators, the placement of
these nodes is well specified.

15.4.3 Replacing Select-Product Nodes by Join

Consider a join predicate involving fields from tables T1 and T2. When a select node
containing this predicate is pushed down the tree, it will come to rest at a particular
spot in the tree, namely ,the product node for which T1 appears in one subtree and T2
appears in the other subtree. This pair of select-product nodes can be replaced by a
single join node.

• Heuristic 2: The planner should replace each select-product node pair in the query
tree with a single join node.

Although this heuristic does not change the cost of the query tree, it is an
important step towards finding the best plan. This book has examined several
efficient implementations of the join operator. By identifying the joins in the query
tree, the planner allows these implementations to be considered during the second
stage of optimization.

15.4.4 Using Left-Deep Query Trees

The planner must choose the order in which the product/join operations should be
performed. For an example, consider Fig. 15.12. The SQL query of part (a) retrieves
the name of the students graduating in 2018 and the titles of the math courses they
took. Parts (b)–(f) depict five equivalent trees for this query.

These trees have different skeletons. The trees of parts (b)–(d) are called left-deep,
because the right-side of each product/join node contains no other product/join
nodes. Similarly, the tree of part (e) is called right-deep. The tree of part (f) is called
bushy, because it is neither left-deep nor right-deep. Many query planners adopt the
following heuristic:

• Heuristic 3: The planner only needs to consider left-deep query trees.

The reasoning behind this heuristic is not obvious. For example, consider
Fig. 15.13, which computes the cost of each tree using the statistics of Fig. 7.8.
The lowest-cost tree of Fig. 15.12 is the bushy one. Moreover, that tree turns out to
be the most promising one (see Exercise 15.9). So why would the planner deliber-
ately choose to ignore a large set of trees that might contain the most promising one?
There are two reasons.

432 15 Query Optimization

https://doi.org/10.1007/978-3-030-33836-7_7

select SName, Title
from STUDENT, ENROLL, SECTION, COURSE
where SId=StudentId and SectId=SectionId
and CId=CourseId and GradYear=2018 and DeptId=10

(a)

(b)

(c)

(d)

Fig. 15.12 Equivalent query trees having different skeletons. (a) The SQL query, (b) a left-deep
query tree, (c) another left-deep query tree, (d) yet another left-deep query tree, (e) a right-deep
query tree, (f) a bushy query tree

15.4 Finding the Most Promising Query Tree 433

The first reason is that left-deep trees tend to have the most efficient plans, even if
they don’t have the lowest cost. Think back to the join algorithms you have seen;
they all work best when the right-side of the join is a stored table. For example,
multibuffer product needs its right-side table to be materialized, so additional
materialization will not be necessary when the table is already stored. And an
index join is possible only when its right side is a stored table. Therefore by using
a left-deep tree, the planner increases the likelihood that it will be able to use more

(e)

(f)

Fig. 15.12 (continued)

Tree Cost of lower join Cost of middle join Cost of upper join Total cost

(b) 1,500,900 55,000 30,013 1,585,913

(c) 913 36,700 3,750,000 3,787,613

(d) 25,013 1,500,625 38,400 1,564,038

(e) 25,013 1,500,625 38,400 1,564,038

(f)
1,500,900

(the left-hand join)

25,013

(the right-hand join)
30,625 1,556,538

Fig. 15.13 The cost of the trees in Fig. 15.12

434 15 Query Optimization

efficient implementations when it generates the final plan. Experience has shown
that the best left-deep plan for a query tends to be either optimal or close enough to it.

The second reason is convenience. If a query has n product/join nodes, then there
are only n! left-deep trees, which is far fewer than the(2n)!/n! possible trees.
Heuristic 3 thus allows the planner to work much more quickly (which is important),
with little risk of getting stuck with a bad plan.

A left-deep tree can be specified by listing its tables in order. The first table is the
table that appears on the left-side of the bottommost product/join node, and the
subsequent tables come from the right sides of each product/join node moving up the
tree. This order is called the join order of the left-deep tree.

For example, the left-deep tree of Fig. 15.12b has the join order (STUDENT,
ENROLL, SECTION, COURSE), and the tree of Fig. 15.12c has the join order
(STUDENT, COURSE, SECTION, ENROLL). Heuristic 3 therefore simplifies the
job of the query planner—all the planner has to do is determine the best join order.
Heuristics 1 to 3 then completely determine the corresponding query tree.

15.4.5 Choosing a Join Order Heuristically

The task of finding the best join order for a given query is the most critical part of the
query optimization process. By “critical”, I mean two things:

• The choice of join order dramatically effects the cost of the resulting query tree.
An example is in Fig. 15.12, where tree (b) is so much better than tree (c).

• There are so many possible join orders that it is usually not feasible to examine
them all. In particular, a query that mentions n tables can have n! join orders.

Thus the planner must be very clever about which join orders it considers, so as
not to get stuck with a bad one. Two general approaches have been developed for
determining good join orders: an approach that uses heuristics and an approach that
considers all possible orders. This section examines the heuristic approach; the next
section considers exhaustive search.

The heuristic approach constructs the join order incrementally. That is, the
planner begins by choosing one of the tables to be first in the join order. It then
chooses another table to be next in the join order and repeats until the join order is
complete.

The following heuristic helps the planner to weed out the “obviously bad” join
orders:

• Heuristic 4: Each table in the join order should join with previously chosen tables,
whenever possible.

In other words, this heuristic states that the only product nodes in a query tree
should correspond to joins. The query tree of Fig. 15.12c violates this heuristic
because it begins by taking the product of the STUDENT and COURSE tables.

Why are join orders that violate Heuristic 4 so bad? Recall that the role of a join
predicate is to filter out the meaningless output records generated by a product

15.4 Finding the Most Promising Query Tree 435

operation. So when a query tree contains a non-join product node, its intermediate
tables will continue to propagate these meaningless records until the join predicate is
encountered. For example, consider again the query tree of Fig. 15.12c. The product
between STUDENT and COURSE results in 11,700 output records, because each of
the 13 COURSE records from the math department is repeated 900 times (once for
each student graduating in 2018). When this output table is joined with SECTION,
each COURSE record is matched with its SECTION record; however, these
matchings are repeated 900 times. Consequently, the output of that join is
900 times larger than it should be. It is only when ENROLL is added to the join
order that the join predicate with STUDENT finally kicks in and the repetition is
eliminated.

This example demonstrates that the output of a query tree involving a product
node can start out small, but eventually the repetition caused by the product leads to a
very high-cost tree. Thus Heuristic 4 asserts that product operations should be
avoided if at all possible. Of course, if the user specifies a query that does not
completely join all of the tables, then a product node will be inevitable. In this case,
the heuristic ensures that this node will be as high in the tree as possible, so the
repetition will have the smallest possible effect.

Heuristic 4 is a commonly used heuristic. It is possible to find queries whose most
promising query tree violates this heuristic (see Exercise 15.11), but such queries
rarely occur in practice.

It is now time to address the questions of which table to choose first and which of
the joinable tables to choose next. These are tough questions. The database com-
munity has proposed many heuristics, with very little consensus on which is most
appropriate. I shall consider two logical possibilities, which I will call Heuristics 5a
and 5b:

• Heuristic 5a: Choose the table that produces the smallest output.

This heuristic is the most direct, straightforward approach. Its intention is this:
since the cost of a query tree is related to the sum of the sizes of its intermediate
output tables, a good way to minimize this sum is to minimize each of those tables.

Let’s use this heuristic on the query of Fig. 15.12a. The first table in the join order
would be COURSE, because its selection predicate reduces it to 13 records. The
remaining tables are determined by Heuristic 4. That is, SECTION is the only table
that joins with COURSE, and then ENROLL is the only table that joins with
SECTION, which leaves STUDENT to be last in the join order. The resulting
query tree appeared in Fig. 15.12d.

An alternative heuristic is the following:

• Heuristic 5b: Choose the table having the most restrictive selection predicate.

Heuristic 5b arises from the insight that a selection predicate will have the greatest
impact when it appears lowest in the query tree. For example, consider the query tree
of Fig. 15.12b and its selection predicate on STUDENT. That selection predicate has
the obvious benefit of reducing the number of STUDENT records, which lowers the
cost of the join node immediately above it. But it has an even more important

436 15 Query Optimization

benefit—the predicate also reduces the output of that join from 1,500,000 records to
just 30,000 records, which lowers the cost of each subsequent join node in the tree.
In other words, the cost savings produced by a select node is compounded all the
way up the tree. In contrast, the selection predicate on COURSE at the top of the tree
has much less of an impact.

Since the selection predicates that are lower in a query tree have the greatest effect
on its cost, it makes sense for the optimizer to choose the table whose predicate has
the largest reduction factor. This is exactly what Heuristic 5b does. For example, the
query tree of Fig. 15.12b satisfies this heuristic. The first table in its join order is
STUDENT, because its selection predicate reduces the table by a factor of
50 whereas the selection predicate for COURSE reduces it by only a factor of 40.
The remaining tables in the join order, as before, are determined by Heuristic 4.

In this example, it turns out that using Heuristic 5b results in a lower-cost query
tree than Heuristic 5a. This is typical. Studies (such as Swami [1989]) have shown
that although Heuristic 5a makes intuitive sense and produces reasonable query
trees, these trees tend to have higher cost than those from Heuristic 5b.

15.4.6 Choosing a Join Order by Exhaustive Enumeration

Heuristics 4 and 5 tend to produce good join orders but are not guaranteed to produce
the best one. If a vendor wants to be sure that its planner finds the optimum join
order, its only alternative is to enumerate all of them. This section considers such a
strategy.

A query that mentions n tables can have as many as n! join orders. A well-known
algorithmic technique, known as dynamic programming, can reduce the time needed
to find the most promising join order to O(2n). If n is reasonably small (say, not
more than 15 or 20 tables), then this algorithm is efficient enough to be practical.

For an illustration of how this technique can save time, consider a query that joins
all five tables in the university database. Four of its 120 possible join orders are:

(STUDENT, ENROLL, SECTION, COURSE, DEPT)
(STUDENT, SECTION, ENROLL, COURSE, DEPT)
(STUDENT, ENROLL, SECTION, DEPT, COURSE)
(STUDENT, SECTION, ENROLL, DEPT, COURSE)

The first two join orders differ only on their second and third tables. Suppose we
determine that the partial join order (STUDENT, ENROLL, SECTION) has a lower
cost than (STUDENT, SECTION, ENROLL). Then it follows, without any further
calculation, that the first join order must have lower cost than the second one.
Moreover, we also know that the third join order requires fewer block accesses
than the fourth one. And in general, we know that any join order that begins
(STUDENT, SECTION, ENROLL) is not worth considering.

15.4 Finding the Most Promising Query Tree 437

The dynamic programming algorithm uses an array variable named lowest,
which has an entry for each possible set of tables. If S is a set of tables, then lowest
[S] contains three values:

• The lowest-cost join order involving the tables in S
• The cost of the query tree corresponding to that join order
• The number of records output by that query tree

The algorithm begins by computing lowest[S] for each set of two tables, then
each set of three tables, and continues until it reaches the set of all tables in the query.
The optimum join order is the value of lowest[S] when S is the set of all tables.

Computing Sets of Two Tables
Consider a set of two tables, say {T1, T2}. The value of lowest[{T1, T2}] is
determined by computing the cost of the query tree that takes the join (or product, if
there is no join predicate) of the two tables and their selection predicates. The cost of
the query tree is the sum of the sizes of the two inputs to the product/join node. Note
that the cost is the same regardless of which table is first. Thus, the planner must use
some other criterion to determine the first table. A reasonable choice is to use
Heuristic 5a or 5b.

Computing Sets of Three Tables
Consider a set of three tables, say {T1, T2, T3}. Their lowest-cost join order can be
computed by considering the following join orders:

lowest[{T2, T3}] joined with T1
lowest[{T1, T3}] joined with T2
lowest[{T1, T2}] joined with T3

The join order having the lowest cost will be saved as the value of lowest[{T1, T2,
T3}].

Computing Sets of n Tables
Now suppose that the variable lowest has been calculated for each set of n-1
tables. Given the set {T1, T2, . . ., Tn}, the algorithm considers the following join
orders:

lowest[{T2, T3 ,. . ., Tn}] joined with T1
lowest[{T1, T3 ,. . ., Tn}] joined with T2
. . .
lowest[{T1, T2 ,. . ., Tn-1}] joined with Tn

The join order having the lowest cost is the best join order for the query.
As an example, let’s use the dynamic programming algorithm on the query of

Fig. 15.12. The algorithm begins by considering all six sets of two tables, as shown
in Fig. 15.14a.

Each set of two tables has two partial join orders, which are listed in the row
corresponding to that set. The join orders for each set are listed in terms of

438 15 Query Optimization

S Partial Join Order Cost #Records

{ENROLL,STUDENT}
(STUDENT,ENROLL)

(ENROLL,STUDENT)

1,500,900

1,500,900
30,000

{ENROLL,SECTION}
(SECTION,ENROLL)

(ENROLL,SECTION)

1,525,000

1,525,000
1,500,000

{COURSE,SECTION}
(COURSE,SECTION)

(SECTION,COURSE)

25,500

25,500
25,000

{SECTION,STUDENT}
(STUDENT,SECTION)

(SECTION,STUDENT)

25,900

25,900
22,500,000

{COURSE,STUDENT}
(COURSE,STUDENT)

(STUDENT,COURSE)

1,400

1,400
450,000

{COURSE,ENROLL}
(COURSE,ENROLL)

(ENROLL,COURSE)

1,500,500

1,500,500
450,000,000

(a)

S Partial Join Order Cost #Records

{ENROLL,SECTION,STUDENT}

(STUDENT,ENROLL,SECTION)

(SECTION,ENROLL,STUDENT)

(STUDENT,SECTION,ENROLL)

1,555,900

3,025,900

24,025,900

30,000

{COURSE,ENROLL,STUDENT}

(STUDENT,ENROLL,COURSE)

(COURSE,STUDENT,ENROLL)

(COURSE,ENROLL,STUDENT)

1,531,400

1,951,400

451,501,400

15,000,000

{COURSE,ENROLL,SECTION}

(SECTION,ENROLL,COURSE)

(COURSE,SECTION,ENROLL)

(COURSE,ENROLL,SECTION)

1,500,500

1,550,500

450,025,000

1,500,000

{COURSE,SECTION,STUDENT}

(COURSE,SECTION,STUDENT)

(COURSE,STUDENT,SECTION)

(STUDENT,SECTION,COURSE)

25,900

475,000

22,500,500

22,500,000

(b)

Join Order Cost

(STUDENT,ENROLL,SECTION,COURSE) 1,586,400

(COURSE,SECTION,ENROLL,STUDENT) 3,051,400

(STUDENT,ENROLL,COURSE,SECTION) 16,556,400

(COURSE,SECTION,STUDENT,ENROLL) 24,051,400

(c)

Fig. 15.14 Calculating the best join order for Fig. 15.12. (a) All sets of two tables, (b) all sets of
three tables, (c) all sets of four tables

15.4 Finding the Most Promising Query Tree 439

desirability. In this case, they have the same cost, so they are listed according to
Heuristic 5a. The first partial join order for each set is chosen as the representative of
that set in subsequent calculations.

The algorithm then considers all four sets of three tables. Figure 15.14b lists the
partial join orders for these sets and their costs. Each set has three possible join
orders. The first two tables in the join order are the lowest-cost representative of their
set from Fig. 15.14a. The costs are listed from lowest to highest cost, so the first
partial join order for each set is chosen as the representative of that set.

Figure 15.14c considers sets of four tables. There are four join orders to consider.
The first three tables in each join order represent the lowest-cost join order from
Fig. 15.14b; the fourth table in the join order is the missing table. This table shows
that the join order (STUDENT, ENROLL, SECTION, COURSE) is optimum.

Note that at each stage, the algorithm must compute the value of lowest for
every possible set of prefix tables, because there is no way of knowing how the costs
will change during subsequent stages. It may be that the prefix that has highest cost at
one stage will produce the lowest-cost join order overall, because of how the
remaining tables join with it.

15.5 Finding the Most Efficient Plan

The first stage of query optimization was to find the most promising query tree. The
second stage is to turn that query tree into an efficient plan. The planner constructs
the plan by choosing an implementation for each node in the query tree. It chooses
these implementations bottom-up, starting from the leaves. The advantage of pro-
ceeding bottom-up is that when a given node is considered, the planner will have
already chosen the lowest-cost plan for each of its subtrees. The planner can thus
consider each possible implementation of the node, use the implementation’s
blocksAccessed method to calculate the cost of that implementation, and
choose the implementation having the lowest cost.

Note that the planner chooses the implementation of each node independently of
the implementations of the other nodes. In particular, it does not care how the
subtrees of a node are implemented; it only needs to know the cost of that imple-
mentation. This lack of interaction between nodes significantly reduces the compu-
tational complexity of plan generation. If the query tree has n nodes, and each node
has at most k implementations, then the planner needs to examine at most k�n plans,
which is certainly reasonable.

Nevertheless, the planner can also take advantage of heuristics to speed up plan
generation. These heuristics tend to be operation specific. For example:

• Heuristic 6: If possible, use indexselect to implement a select node.
• Heuristic 7: Implement a join node according to the following priority:

– Use indexjoin if possible.
– Use hashjoin if one of the input tables is small.
– Use mergejoin otherwise.

440 15 Query Optimization

There is one more issue to consider. Whenever the planner chooses to implement
a node using a materialized plan, then it should also insert project nodes into the
query tree, as follows:

• Heuristic 8: The planner should add a project node as the child of each materi-
alized node, to remove fields that are no longer needed.

Heuristic 8 ensures that the temporary tables created by a materialized imple-
mentation are as small as possible. There are two reasons why this is important: a
larger table takes more block accesses to create, and a larger table also takes more
block accesses to scan. The planner therefore should determine which fields will be
needed by the materialized node and its ancestors and insert a project node to remove
the other fields from its input.

For example, consider the query tree of Fig. 15.15. This tree returns the grades
that Joe received in 2020 and is equivalent to the trees of Fig. 15.9.

The plan of Fig. 15.10 chose to implement the upper join node with multibuffer
product, which is materialized. Heuristic 8 asserts that project nodes need to be
added to the query tree as children of that join node; these nodes are shown in
Fig. 15.15. The right-hand project node is especially important, because it reduces
the size of the temporary table by about 75%, thereby allowing the algorithm to run
using fewer chunks.

15.6 Combining the Two Stages of Optimization

The easiest way to understand query optimization is as two separate stages: a first
stage that constructs the query tree from the SQL query and a second stage that
constructs the plan from the query tree. In practice, however, these stages are often
combined. There are two good reasons in favor of combining optimization stages:

• Convenience: The plan can be created directly, without having to create an
explicit query tree.

• Accuracy: Since the plans are created concurrently with the query tree, it may be
possible to calculate the cost of the tree in terms of actual block accesses.

Fig. 15.15 A query tree for
the query of Fig. 15.9, with
added project nodes

15.6 Combining the Two Stages of Optimization 441

This section examines two examples of combined optimization: the heuristic-
based SimpleDB optimizer and the enumeration-based “Selinger-style” optimizer.

15.6.1 The Heuristic-Based SimpleDB Optimizer

The SimpleDB query optimizer is implemented in package simpledb.opt via
the two classes HeuristicQueryPlanner and TablePlanner. To use this
optimizer in SimpleDB, you must modify the method SimpleDB.planner in
package simpledb.server so that it creates an instance of
HeuristicQueryPlanner instead of BasicQueryPlanner.

The Class HeuristicQueryPlanner
The class HeuristicQueryPlanner uses Heuristic 5a to determine the join
order. Every table has a TablePlanner object. When a table is added to the join
order, its TablePlanner object creates the corresponding plan, adding appropri-
ate selection and join predicates, and using indexes when possible. In this way, the
plan is built simultaneously with the join order.

The code for HeuristicQueryPlanner appears in Fig. 15.16. The collec-
tion tableinfo contains a TablePlanner object for each table in the query.
The planner begins by choosing (and removing) the object from this collection
corresponding to the smallest table and uses its select plan as the current plan. It
then repeatedly chooses (and removes) from the collection the table having the
lowest-cost join. The planner sends the current plan to that table’s TablePlanner
object, which creates and returns the join plan. This join plan then becomes the
current plan. This process is continued until the collection is empty, at which point
the current plan is the final one.

The Class TablePlanner
An object of class TablePlanner is responsible for creating plans for a single
table; its code appears in Fig. 15.17. The TablePlanner constructor creates a
table for the specified table, obtains the information about the indexes for the table,
and saves the query predicate. The class has public methods makeSelectPlan,
makeProductPlan, and makeJoinPlan.

The method makeSelectPlan creates a select plan for its table. The method
first calls makeIndexSelect to determine if an index can be used; if so, an
IndexSelect plan is created. The method then calls addSelectPred to
determine the portion of the predicate that applies to the table and create a select
plan for it.

Method makeProductPlan adds a select plan to the table plan and then
creates a MultiBufferProductPlan to implement the product of the specified
plan with this plan.2

2Ideally, the method should create a hashjoin plan, but SimpleDB does not support hash joins. See
Exercise 15.17.

442 15 Query Optimization

public class HeuristicQueryPlanner implements QueryPlanner {
private Collection<TablePlanner> tableplanners = new ArrayList<>();
private MetadataMgr mdm;

public HeuristicQueryPlanner(MetadataMgr mdm) {
this.mdm = mdm;

}

public Plan createPlan(QueryData data, Transaction tx) {

// Step 1, Create a TablePlanner object for each mentioned table
for (String tblname : data.tables()) {

TablePlanner tp = new TablePlanner(tblname, data.pred(),
tx, mdm);
tableplanners.add(tp);

}

// Step 2, Choose the lowest-size plan to begin the join order
Plan currentplan = getLowestSelectPlan();

// Step 3, Repeatedly add a plan to the join order
while (!tableplanners.isEmpty()) {

Plan p = getLowestJoinPlan(currentplan);
if (p != null)

currentplan = p;
else // no applicable join

currentplan = getLowestProductPlan(currentplan);
}

// Step 4. Project on the field names and return
return new ProjectPlan(currentplan, data.fields());

}

private Plan getLowestSelectPlan() {
TablePlanner besttp = null;
Plan bestplan = null;
for (TablePlanner tp : tableplanners) {

Plan plan = tp.makeSelectPlan();
if (bestplan == null ||

plan.recordsOutput() < bestplan.recordsOutput()) {
besttp = tp;
bestplan = plan;

}
}
tableplanners.remove(besttp);
return bestplan;

}

Fig. 15.16 The code for the SimpleDB class HeuristicQueryPlanner

15.6 Combining the Two Stages of Optimization 443

Method makeJoinPlan first calls the predicate’s joinPred method to deter-
mine if a join exists between the specified plan and this plan. If no join predicate
exists, the method returns null. If a join predicate does exist, the method looks to
see if an IndexJoinScan can be created. If not, then the join is implemented by
creating a multibuffer product followed by a select.

Records Output Versus Blocks Accessed
The HeuristicQueryPlanner code calculates the lowest-cost plan using the
method recordsOutput. That is, it attempts to find the plan needing the smallest
number of block accesses without ever examining the block requirements of its
subplans. This situation deserves explanation.

private Plan getLowestJoinPlan(Plan current) {
TablePlanner besttp = null;
Plan bestplan = null;
for (TablePlanner tp : tableplanners) {

Plan plan = tp.makeJoinPlan(current);
if (plan != null && (bestplan == null ||

plan.recordsOutput() < bestplan.recordsOutput())) {
besttp = tp;
bestplan = plan;

}
}
if (bestplan != null)

tableplanners.remove(besttp);
return bestplan;

}

private Plan getLowestProductPlan(Plan current) {
TablePlanner besttp = null;
Plan bestplan = null;
for (TablePlanner tp : tableplanners) {

Plan plan = tp.makeProductPlan(current);
if (bestplan == null ||

plan.recordsOutput() < bestplan.recordsOutput()) {

besttp = tp;
bestplan = plan;

}
}
tableplanners.remove(besttp);
return bestplan;

}

public void setPlanner(Planner p) {
// for use in planning views, which
// for simplicity this code doesn't do.

}
}

Fig. 15.16 (continued)

444 15 Query Optimization

class TablePlanner {
private TablePlan myplan;
private Predicate mypred;
private Schema myschema;
private Map<String,IndexInfo> indexes;
private Transaction tx;

public TablePlanner(String tblname, Predicate mypred,
Transaction tx, MetadataMgr mdm) {

this.mypred = mypred;
this.tx = tx;
myplan = new TablePlan(tx, tblname, mdm);
myschema = myplan.schema();
indexes = mdm.getIndexInfo(tblname, tx);

}

public Plan makeSelectPlan() {
Plan p = makeIndexSelect();
if (p == null)

p = myplan;
return addSelectPred(p);

}

public Plan makeJoinPlan(Plan current) {
Schema currsch = current.schema();
Predicate joinpred = mypred.joinSubPred(myschema, currsch);

if (joinpred == null)
return null;

Plan p = makeIndexJoin(current, currsch);
if (p == null)

p = makeProductJoin(current, currsch);
return p;

}

public Plan makeProductPlan(Plan current) {
Plan p = addSelectPred(myplan);
return new MultiBufferProductPlan(current, p, tx);

}

private Plan makeIndexSelect() {
for (String fldname : indexes.keySet()) {

Constant val = mypred.equatesWithConstant(fldname);
if (val != null) {

IndexInfo ii = indexes.get(fldname);
return new IndexSelectPlan(myplan, ii, val, tx);

}
}
return null;

}

Fig. 15.17 The code for the SimpleDB class TablePlanner

15.6 Combining the Two Stages of Optimization 445

As you have seen, the problem with using heuristic optimization is that partial
join orders that start out cheap can wind up very expensive, and the best join order
may have a very expensive beginning. It is therefore important for the optimizer to
not get sidetracked by a join that seems better than it is. Figure 15.18 illustrates this
problem.

The query of Fig. 15.18a returns the grades given and the title for each course
taught by Professor Einstein. Assume the statistics of Fig. 7.8, and suppose that
ENROLL has an index on SectionId. The SimpleDB optimizer will choose
SECTION to be first in the join order because it is smallest (as well as most
selective). The question is which table it should choose next. If your criterion is to
minimize records output, then you should choose COURSE. But if your criterion is
to minimize blocks accessed, then you should choose ENROLL because the index
join will be more efficient. However, ENROLL turns out to be the wrong choice

private Plan makeIndexJoin(Plan current, Schema currsch) {
for (String fldname : indexes.keySet()) {

String outerfield = mypred.equatesWithField(fldname);
if (outerfield != null && currsch.hasField(outerfield)) {

IndexInfo ii = indexes.get(fldname);
Plan p = new IndexJoinPlan(current, myplan, ii,
 outerfield, tx);
p = addSelectPred(p);
return addJoinPred(p, currsch);

}
}
return null;

}

private Plan makeProductJoin(Plan current, Schema currsch) {
Plan p = makeProductPlan(current);
return addJoinPred(p, currsch);

}

private Plan addSelectPred(Plan p) {
Predicate selectpred = mypred.selectSubPred(myschema);
if (selectpred != null)

return new SelectPlan(p, selectpred);
else

return p;
}

private Plan addJoinPred(Plan p, Schema currsch) {
Predicate joinpred = mypred.joinSubPred(currsch, myschema);
if (joinpred != null)

return new SelectPlan(p, joinpred);
else

return p;
}

}

Fig. 15.17 (continued)

446 15 Query Optimization

https://doi.org/10.1007/978-3-030-33836-7_7

because the high number of output records causes the subsequent join with
COURSE to be much more expensive.

This example demonstrates that the large number of matching ENROLL records
has a significant effect on the cost of subsequent joins; thus ENROLL should appear
as late as possible in the join order. By minimizing records output, the optimizer
ensures that ENROLL winds up at the end. The fact that the join with ENROLL has a
fast implementation is misleading and irrelevant.

15.6.2 Selinger-Style Optimization

The SimpleDB optimizer uses heuristics for choosing the join order. In the early
1970s, researchers at IBM wrote an influential optimizer for the System-R prototype
database system; this optimizer chose its join orders using dynamic programming.

select Title, Grade
from ENROLL, SECTION, COURSE
where SectId=SectionId and CId=CourseId and Prof='einstein'

(a)

(b)

(c)

Fig. 15.18 Which table should be second in the join order? (a) The SQL query, (b) choosing
ENROLL second in the join order, (c) choosing COURSE second in the join order

15.6 Combining the Two Stages of Optimization 447

That optimization strategy is often called “Selinger style,” in reference to Pat
Selinger, who headed the optimizer team.

Selinger-style optimization combines dynamic programming with plan genera-
tion. In particular, the algorithm calculates lowest[S] for each set of tables S. But
instead of saving a join order in lowest[S], the algorithm saves the lowest-
cost plan.

The algorithm begins by calculating the lowest-cost plan for each pair of tables. It
then uses these plans to calculate the lowest-cost plan for each set of three tables, and
so on, until it has calculated the overall lowest-cost plan.

In this algorithm, the lowest-cost plan is the plan having the fewest block accesses
and not the plan having the fewest output records. That means that this algorithm is
the only algorithm in this book that actually considers block accesses when choosing
its join order; therefore, its estimates are likely to be more accurate than the other
algorithms.

Why is Selinger-style optimization able to use block accesses? The reason is that
unlike heuristic optimization, it considers all left-deep trees and does not throw out a
partial join order until it is sure that the order is not useful. Look back at the example
of Fig. 15.18. The Selinger-style algorithm will calculate and store the lowest plans
for both {SECTION, ENROLL} and {SECTION, COURSE}, even though the plan
for {SECTION, ENROLL} is cheaper. It considers both of those plans when it
calculates the lowest plan for {ENROLL, SECTION, COURSE}. When it discovers
that joining COURSE to (ENROLL,SECTION) is excessively costly, it is able to use
an alternative plan.

Another advantage to using block accesses to compare plans is that a more
detailed cost analysis is possible. For example, the optimizer can take the cost of
sorting into account. Consider the query tree of Fig. 15.19.

Suppose that the planner joins ENROLLwith STUDENTusing a hashjoin.When it
goes to do the grouping, the planner will need to materialize the output and sort it on
StudentId. Alternatively, suppose instead that the planner uses a mergejoin to join
the tables. In this case, it would not need to preprocess the output because it would
already be sorted on StudentId. In other words, it is possible that using a mergejoin
could result in the best final plan, even if it was less efficient than the hashjoin!

The point of this example is that the planner also needs to keep track of sort order
if it wants to generate the best plan. A Selinger-style optimizer can do so by saving

Fig. 15.19 What is the best
way to join ENROLL with
STUDENT?

448 15 Query Optimization

the lowest-cost plan for each sort order in lowest[S]. In the above example, the
value of lowest[{ENROLL,STUDENT}] will contain both the mergejoin and the
hashjoin plans, because each has a different sort order.

15.7 Merging Query Blocks

This section examines the optimization of queries that mention views. Consider, for
example, the query of Fig. 15.20a, which uses a view to retrieve the names of the
students who received an “A” in a course taught by Professor Einstein. The basic
query planner of Chap. 10 creates the plan for such a query by planning the view
definition and the query separately and then hooking the plan for the view into the
plan for the query. That plan appears in Fig. 15.20b.

The plan associated with each query and view definition is called a query block.
The plan for Fig. 15.20b illustrates the simplest way that an optimizer can deal with
view queries—it can optimize each query block separately before combining them

create view EINSTEIN as
select SectId from SECTION
where Prof = 'einstein'

select SName from STUDENT, ENROLL, EINSTEIN
where SId = StudentId and SectionId = SectId
and Grade = 'A'

(a)

(b)

Fig. 15.20 Planning a view query. (a) A view definition and a query that uses it, (b) planning each
query block separately

15.7 Merging Query Blocks 449

https://doi.org/10.1007/978-3-030-33836-7_10

into the final plan. Although separate optimization is simple to implement, the plans
that get created are not necessarily very good. The plan of Fig. 15.20 is a case in
point. The best join order is (SECTION, ENROLL, STUDENT), but this join order
is not possible given these query blocks.

A solution to this problem is to merge the query blocks and plan their contents as
a single query. For example, in Fig. 15.20, the planner can ignore the project node of
the view definition block and add its select and table nodes to the main query. Such a
strategy is possible if the view definition is sufficiently simple. The situation
becomes much more complex when the view definition contains grouping or
duplicate removal, and merging may not be possible.

15.8 Chapter Summary

• Two queries are equivalent if their output tables contain exactly the same records
(although not necessarily in the same order), regardless of the contents of the
database.

• An SQL query may have many equivalent query trees. These equivalences are
inferred from properties of the relational algebra operators.

– The product operator is commutative and associative. These properties imply
that the product nodes in a query tree can be computed in any order.

– A select node for predicate p can be split into several select nodes, one for each
conjunct of p. Writing p in conjunctive normal form (CNF) allows it to be split
into the smallest pieces. The nodes for each conjunct can be placed anywhere
within the query tree, as long as their selection predicate is meaningful.

– A pair of select-product nodes can be replaced by a single join node.
– A project node can be inserted over any node in a query tree, provided that its

projection list contains all fields mentioned in the ancestors of the node.

• Plans for two equivalent trees can have radically different execution times.
Therefore, a planner tries to find the plan that requires the fewest block accesses.
This process is called query optimization.

• Query optimization is difficult because there can be far more plans for an SQL
query than the planner can feasibly enumerate. The planner can deal with this
complexity by performing the optimization in two independent stages:

– Stage 1: Find the most promising tree for the query, that is, the query tree that
seems most likely to produce the most efficient plan.

– Stage 2: Choose the best plan for that query tree.

• During stage 1, the planner cannot estimate block accesses because it does not
know what plans are being used. Instead, it defines the cost of a query tree to be
the sum of the sizes of the inputs to each product/join node in the tree. Intuitively,
a low-cost query tree minimizes the size of intermediate joins. The idea is that the
output of each join will be the input to the subsequent join, and so the larger the
intermediate outputs, the more expensive it will be to execute the query.

450 15 Query Optimization

• The planner also adopts heuristics to limit the set of trees and plans that it
considers. Common heuristics are:

– Place select nodes as deep as possible in the query tree.
– Replace each select-product node pair by a join node.
– Place a project node above the inputs to each materialized plan.
– Consider only left-deep trees.
– Whenever possible, avoid product operations that are not joins.

• Each left-deep tree has an associated join order. Finding a good join order is the
most difficult part of query optimization.

• One way to choose a join order is to use heuristics. Two reasonable (but
conflicting) heuristics are:

– Choose the table that produces the smallest output.
– Choose the table that has the most restrictive predicate.

This second heuristic strives to create a query tree in which the most restrictive select
nodes are maximally deep, the intuition being that such trees tend to have the
lowest cost.

• Another way to choose a join order is to exhaustively examine all possible join
orders, using dynamic programming. The dynamic programming algorithm cal-
culates the lowest join order for each set of tables, starting with sets of two tables,
then sets of three tables, and continues until it reaches the set of all tables.

• During the second optimization stage, the planner constructs the plan by choosing
an implementation for each node in the query tree. It chooses each implementa-
tion independently of the implementations of the other nodes and calculates its
cost in terms of blocks accessed. The planner can determine the lowest-cost plan
either by examining all possible implementations of each node or by following
heuristics such as:

– Use indexing whenever possible.
– If indexing is not possible for a join, then use a hashjoin if one of the input

tables is small; otherwise use a mergejoin.

• An implementation of a query optimizer can combine its two stages, constructing
the plan in conjunction with the query tree. The SimpleDB optimizer uses
heuristics to determine the join order and incrementally constructs the plan as
each table is chosen. A Selinger-style optimizer uses dynamic programming—
instead of saving the lowest cost join order for each set of tables, it saves the
lowest-cost plan. The advantage of a Selinger-style optimizer is that, unlike any
of the other techniques, it can use estimated block accesses to calculate the best
join order.

• A query that uses a view will have a plan consisting of multiple query blocks. The
most straightforward way to handle multiple query blocks is to optimize each one
separately and then combine them. However, more efficient plans are possible if
the query blocks can be optimized together. Such as strategy is possible if the
view definition is sufficiently simple.

15.8 Chapter Summary 451

15.9 Suggested Reading

This chapter gives a basic introduction to query optimization; the articles Graefe
(1993) and Chaudhuri (1998) go into considerably more detail. The paper Swami
(1989) contains an experimental comparison of various join-order heuristics. The
System-R optimizer is described in Selinger et al. (1979).

One difficulty with traditional query planners is that their heuristics and optimi-
zation strategy are hard-coded into their methods. Consequently, the only way to
change the heuristics or to add new relational operators is to rewrite the code. An
alternative approach is to express operators and their transformations as rewrite rules
and to have the planner repeatedly use the rules to transform the initial query into an
optimum one. To change the planner, one then only needs to change the rule set. A
description of this strategy appears in Pirahesh (1992).

The optimization strategies in this chapter have a sharp distinction between query
planning and query execution—once a plan is opened and executed, there is no
turning back. If the planner has mistakenly chosen an inefficient plan, there is
nothing to be done. The article Kabra and DeWitt (1998) describes how a database
system can monitor the execution of a plan, collecting statistics about its behavior. If
it thinks that the execution is less efficient than it should be, it can use the statistics to
create a better plan and “hot-swap” the old plan with the new one.

Chaudhuri, S. (1998). An overview of query optimization in relational systems.
Proceedings of the ACM Principles of Database Systems Conference, pp. 34–43.

Graefe, G. (1993). Query evaluation techniques for large databases. ACM Comput-
ing Surveys, 25(2), pp. 73–170.

Kabra, N., & DeWitt, D. (1998). Efficient mid-query re-optimization of sub-optimal
query execution plans. Proceedings of the ACM SIGMOD Conference,
pp. 106–117.

Pirahesh, H., Hellerstein, J., & Hasan, W. (1992). Extendable/rule based query
rewrite in starburst. Proceedings of the ACM SIGMOD Conference, pp. 39–48.

Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., & Price, T. (1979). Access-
path selection in a relational database management system. Proceedings of the
ACM SIGMOD Conference, pp. 23–34.

Swami, A. (1989) Optimization of large join queries: Combining heuristics and
combinatorial techniques. ACM SIGMOD Record, 18(2), 367–376.

15.10 Exercises

Conceptual Exercises

15.1. Show that the product operator is associative.
15.2. Consider a query that takes the product of several tables and any two query

trees equivalent to this query. Show that it is possible to use the equivalences
of Sect. 15.1.1 to transform one tree into the other.

452 15 Query Optimization

15.3. Consider the query tree of Fig. 15.2a.

(a) Give a sequence of transformations that will create the following tree:

(b) Give a sequence of transformations that will create a left-deep tree having
the join order (COURSE, SECTION, ENROLL, STUDENT, DEPT).

15.4. Consider a query tree containing a select node.

(a) Show that moving the select node past another select node results in an
equivalent query tree.

(b) When can the select node be moved above a project node?
(c) Show that a select node can be moved above or below a groupby node if

meaningful to do so.

15.5. Consider the union relational algebra operator from Exercise 8.16.

(a) Show that the operator is associative and commutative, and give trans-
formations for these equivalences.

(b) Give a transformation that allows a selection to be pushed inside of a
union.

15.6. Consider the antijoin and semijoin relational algebra operators of Exercise
8.17.

(a) Are these operators associative? Are they commutative? Give any appro-
priate transformations.

(b) Give transformations that allow selections to be pushed inside of an
antijoin or semijoin.

15.7. Consider adding the selection predicate of Fig. 15.6b to the query tree of
Fig. 15.2b. Give the query tree that results from pushing the selections as far
as possible.

15.8. Give two equivalent query trees such that the lowest-cost plan comes from
the higher-cost tree.

15.10 Exercises 453

15.9. Show that the bushy tree of Fig. 15.12e is the most promising tree for its SQL
query.

15.10. The query tree of Fig. 15.6c has the join order (STUDENT, ENROLL,
SECTION, COURSE, DEPT). There are 15 other join orders that do not
require product operations. Enumerate them.

15.11. Give a query such that Heuristic 4 does not produce the lowest-cost
query tree.

15.12. Consider Fig. 15.6.

(a) Calculate the cost of each of the two trees.
(b) Calculate the most promising query tree, using the heuristic algorithm,

first with Heuristic 5a and then Heuristic 5b.
(c) Calculate the most promising query tree, using the dynamic program-

ming algorithm.
(d) Calculate the lowest-cost plan for the most promising query tree.

15.13. Consider the following query:

select Grade
from ENROLL, STUDENT, SECTION
where SId=StudentId and SectId=SectionId and SId=1 and SectId=53

(a) Show that the join order (ENROLL, STUDENT, SECTION) has a lower
cost tree than (ENROLL, SECTION, STUDENT).

(b) Calculate the most promising query tree, using the heuristic algorithm,
first with Heuristic 5a and then Heuristic 5b.

(c) Calculate the most promising query tree, using the dynamic program-
ming algorithm.

(d) Calculate the lowest-cost plan for the most promising query tree.

15.14. The dynamic programming algorithm given in Sect. 15.4 only considers left-
deep trees. Extend it to consider all possible join trees.

Programming Exercises

15.15. Revise the SimpleDB heuristic planner so that it uses Heuristic 5b to choose
the tables in the join order.

15.16. Implement a Selinger-style query planner for SimpleDB.
15.17. Exercise 14.15 asked you to implement the hashjoin algorithm in SimpleDB.

Now modify the class TablePlanner so that it creates a hashjoin plan
instead of a multibuffer product, when possible.

454 15 Query Optimization

Index

A
ACID (atomicity, consistency, isolation and

durability) properties, 107
Actions, 250
Actuator, 50
Aggregation expression, 379
Aggregation function, 379
Airline reservation database, 105
Alignments, 164
Atomicity, 107

B
Basic JDBC, 15–27
Block, 60
Block splits, 324
B(T), 196
B-tree, 330
Bucket directory, 323
Bucket file, 323
Buckets, 319
Buffer, 89
Buffer manager, 88
BufferNeeds, 402
Buffer pool, 81, 88
Buffer replacement strategy, 90
ByteBuffer, 68

C
Caching, 80
Cascading rollback, 132
Catalog, 191

Catalog tables, 192
Character encoding, 69
Choosing join order by exhaustive

enumeration, 437–440
Chunk, 404
ChunkScan, 404
Clock strategy, 92
Clustering, 161
Commit records, 111
Concurrency data item, 140
Concurrency manager, 123
Conjunctive normal form (CNF), 422
Connection, 15
Connection string, 17
Consistency, 107
Constant, 228
Contiguous allocation, 63
Controller, 57
Cost of a product scan, 271
Cost of a project scan, 270
Cost of a query tree, 268, 431
Cost of a select scan, 269–270
Cost of a table scan, 269
Cost of materialization, 367
Current record, 178
Cylinder, 54

D
Database, 1
Database action, 125
Database engine, 8
Data item granularity, 119, 140–141

© Springer Nature Switzerland AG 2020
E. Sciore, Database Design and Implementation, Data-Centric Systems and
Applications, https://doi.org/10.1007/978-3-030-33836-7

455

https://doi.org/10.1007/978-3-030-33836-7

Datarid, 314
DataSource, 28–29
Dataval, 314
Deadlock, 95, 133–135
Derby database system, 6–8
“Derby ij”, 7
Directory, 329
Disk access, 51
Disk blocks, 60
Disk cache, 53
Disk drive, 49
Disk map, 60
Disk striping, 54
Driver, 15, 17
DriverManager, 27–28
Durability, 107

E
Eclipse project, creation, 7
Embedded connection, 8
Empty/inuse flag, 166
Equivalent query trees, 419–424
Example of materialization, 365–366
Example of mergejoin, 387–389
Exclusive lock, 127
Expression, 228
Extendable hashing, 323
Extent-based allocation, 63–64
External fragmentation, 63
External sorting algorithms, 370

F
FIFO replacement strategy, 92
File is homogeneous, 160
File manager, 66
File pointer, 62
File system, 61
File system directory, 62
Five requirements, 2
Fixed-length representations, 161
Flash drives, 59–60
fldcat, 191
fldstats, 198
flush, 83
Fragmentation, 168
Free list, 60

G
Global depth, 326
Grammar, 245, 247
Grammar rule, 245

Groupby relational algebra operator, 379
GroupValue, 382

H
Hashjoin, 406
HeuristicQueryPlanner, 442
Heuristics, 431
History of a transaction, 123
Holdability of the result set, 30

I
Idempotent, 114
ID table, 168
idxcat, 202
Index-aware operator implementations,

345–350
Indexed allocation, 64
Index join, 350
Index metadata, 199–202
Index records, 314
Internal fragmentation, 63
Internal sorting algorithms, 370
I/O buffers, 62
Isolation, 107

J
Java DataBase Connectivity, 15
JDBC class Types, 172
JDBC library, 15
Join fields, 387
Join operation, 350
Join operator, 387
Join order, 435

L
Layout, 171
Left-deep query trees, 432–435
Lexical analyzer, 240
Local depth, 324
Localhost, 17
Lock protocol, 131
Lock table, 127
Log file, 81
Logical block reference, 62
Log management algorithm, 82
Log manager, 81
Log page, 82
Log records, 111
Log sequence number (LSN), 83
LRU strategy, 92

456 Index

M
Materialized input, 363
Materialize operator, 363, 364
MaterializePlan, 367
Maximum depth, 324
Memory page, 60
Merge join, 387
MergeJoinPlan, 389
MergeJoinScan, 389
Mergesort algorithm, 370
Metadata, 189
Metadata manager, 189, 205
Mirrored disks, 55
Most efficient plan, 440–441
The “most promising” query tree, 430–440
Multibuffer mergesort, 398
Multibuffer product, 401
MultiBufferProductPlan, 404
MultiBufferProductScan, 404
Multiversion locking, 135–138

N
Naïve replacement strategy, 91
NetworkServerControl, 9
Non homogeneous files, 160, 161
Nonhomogeneous records, 170
Nonquiescent checkpoint record, 118
notifyAll method, 143

O
Operator, 213
Overflow block, 167, 335

P
Padding, 164
Page is said to be pinned, 88
Page swap, 80
Parity, 57
Parse tree, 247
Parsing algorithms, 249
Phantom records, 34
Phantoms, 135
Physical block reference, 62
Pipelined query processing, 226–227
Planner, 431
Planning, 267, 274
Platter, 49
Predicate, 228
Pre-fetch, 53
PreparedStatement, 35, 37
Preprocessing cost, 367, 375
Preprocessing stage, 374

Principles of database memory management,
79–81

Product operator, 215
Project operator, 215
Protocol for accessing disk block, 88

Q
Query block, 449
Query optimization, 419, 430
Query planning algorithm, 279
Query tree, 214
Quiescent checkpoint, 116

R
RAID (Redundant Array of Inexpensive

Disks), 58
RandomAccessFile, 71
Raw disk, 65
Read-Committed, 35
Read-Uncommitted, 35
Read-write conflict, 130
Read/write head, 49
Record identifier (RID), 166, 179
Record manager, 159
Record page, 165
A record’s schema, 171
Recovery, 112–114
Recovery data item, 119
Recovery manager, 110
Recursive-descent parser, 249
Redo-only recovery, 115
Redundant Array of Inexpensive Disks, 58
Relational algebra, 213
Remote implementation classes, 302
Remote interfaces, 302
Remote method invocation (RMI), 300
Repeatable read, 34, 35
ResultSet, 15, 21
ResultSetMetadata, 15, 23
RMI registry, 304
Rollback, 111
Rollback record, 111
Root, 332
Rotational delay, 51
Rotation speed, 51
R(T), 196
Run, 370

S
Scan, 217
Scanning cost, 367, 375
Scanning stage, 374

Index 457

Schedule, 125
Scheduler, 9
Schema, 23
Search key, 316
Sector, 52
Seek, 62
Seek time, 51
Select operator, 214
Selinger-style optimization, 447–449
Semantics, 239
Serializable, 35
Serializable schedules, 126
Serial schedule, 125
Server-based connection, 8
Server-based connection string, 18
Shared lock, 127
SimpleDB API, 295
SimpleDB constructors, 207
SimpleDB database system, 10–11
SimpleDB log manager, 83
SimpleDB optimizer, 442–447
SimpleDB recovery manager, 120–123
SimpleDB server, 11
SimpleDB version of SQL, 11–12
SimpleIJ, 10
Slots, 165
Sorted index file as dictionary, 327
Sort operator, 369
SortPlan, 376
SortScan, 376
Spanned records, 159, 169
Split the block, 333
SQL, 247
SQL exceptions, 19–20
Staging area, 372
Start record, 111
Statement, 20
Static hashed index, 319
Statistical metadata, 195–199
Statistics about university database, 197
Structure of a query optimizer, 430
Stub classes, 302
Synchronized, 71
Syntactic category, 246
Syntax, 239

T
Table metadata, 190–191
TablePlanner, 442

Table scans, 175
Tag value, 170
tblcat, 191
tblstats, 198
Telephone book, 313
Temporary tables, 364
Term, 228
Tokenizers, 240
Tokens, 240
Token types, 240
Tracks, 49
Transaction, 29
Transaction isolation levels, 31–35, 139
Transactions, 105
Transfer rate, 51
Transfer time, 51
Tree-structured directory, 329
Try-with-resources, 20
Two-phase locking, 132

U
Undo-only recovery, 114
Undo-redo algorithm, 113
University database, 2
Unspanned record, 160
Updatable scans, 220
Update planning, 281
Update record, 111

V
Variable-length fields, 167
Variable-length representation, 161
Verification, 267
View, 193
viewcat, 193
View metadata, 193, 195
Virtual memory, 80
V(T,F), 196

W
Wait-die deadlock detection, 134
Wait list, 98
wait method, 98
Waits-for graph, 133
Wrappers, 307
Write-ahead logging, 115–116
Write-write conflicts, 130

458 Index

	Preface
	Organization of the Text
	Text Prerequisites
	The SimpleDB Software
	End-of-Chapter Readings
	End-of-Chapter Exercises

	Contents
	About the Author
	Chapter 1: Database Systems
	1.1 Why a Database System?
	1.1.1 Record Storage
	1.1.2 Multi-user Access
	1.1.3 Dealing with Catastrophe
	1.1.4 Memory Management
	1.1.5 Usability

	1.2 The Derby Database System
	1.3 Database Engines
	1.4 The SimpleDB Database System
	1.5 The SimpleDB Version of SQL
	1.6 Chapter Summary
	1.7 Suggested Reading
	1.8 Exercises

	Chapter 2: JDBC
	2.1 Basic JDBC
	2.1.1 Connecting to a Database Engine
	2.1.2 Disconnecting from a Database Engine
	2.1.3 SQL Exceptions
	2.1.4 Executing SQL Statements
	2.1.5 Result Sets
	2.1.6 Using Query Metadata

	2.2 Advanced JDBC
	2.2.1 Hiding the Driver
	2.2.2 Explicit Transaction Handling
	2.2.3 Transaction Isolation Levels
	2.2.4 Prepared Statements
	2.2.5 Scrollable and Updatable Result Sets
	2.2.6 Additional Data Types

	2.3 Computing in Java vs. SQL
	2.4 Chapter Summary
	2.5 Suggested Reading
	2.6 Exercises

	Chapter 3: Disk and File Management
	3.1 Persistent Data Storage
	3.1.1 Disk Drives
	3.1.2 Accessing a Disk Drive
	3.1.3 Improving Disk Access Time
	3.1.4 Improving Disk Reliability by Mirroring
	3.1.5 Improving Disk Reliability by Storing Parity
	3.1.6 RAID
	3.1.7 Flash Drives

	3.2 The Block-Level Interface to the Disk
	3.3 The File-Level Interface to the Disk
	3.4 The Database System and the OS
	3.5 The SimpleDB File Manager
	3.5.1 Using the File Manager
	3.5.2 Implementing the File Manager

	3.6 Chapter Summary
	3.7 Suggested Reading
	3.8 Exercises

	Chapter 4: Memory Management
	4.1 Two Principles of Database Memory Management
	4.2 Managing Log Information
	4.3 The SimpleDB Log Manager
	4.3.1 The API for the Log Manager
	4.3.2 Implementing the Log Manager

	4.4 Managing User Data
	4.4.1 The Buffer Manager
	4.4.2 Buffers
	4.4.3 Buffer Replacement Strategies

	4.5 The SimpleDB Buffer Manager
	4.5.1 An API for the Buffer Manager
	4.5.2 Implementing the Buffer Manager

	4.6 Chapter Summary
	4.7 Suggested Reading
	4.8 Exercises

	Chapter 5: Transaction Management
	5.1 Transactions
	5.2 Using Transactions in SimpleDB
	5.3 Recovery Management
	5.3.1 Log Records
	5.3.2 Rollback
	5.3.3 Recovery
	5.3.4 Undo-Only and Redo-Only Recovery
	5.3.4.1 Undo-Only Recovery
	5.3.4.2 Redo-Only Recovery

	5.3.5 Write-Ahead Logging
	5.3.6 Quiescent Checkpointing
	5.3.7 Nonquiescent Checkpointing
	5.3.8 Data Item Granularity
	5.3.9 The SimpleDB Recovery Manager
	5.3.9.1 Log Records
	5.3.9.2 Rollback and Recover

	5.4 Concurrency Management
	5.4.1 Serializable Schedules
	5.4.2 The Lock Table
	5.4.3 The Lock Protocol
	5.4.3.1 Serializability Problems
	5.4.3.2 Reading Uncommitted Data

	5.4.4 Deadlock
	5.4.5 File-Level Conflicts and Phantoms
	5.4.6 Multiversion Locking
	5.4.6.1 The Principle of Multiversion Locking
	5.4.6.2 Implementing Multiversion Locking

	5.4.7 Transaction Isolation Levels
	5.4.8 Data Item Granularity
	5.4.9 The SimpleDB Concurrency Manager
	5.4.9.1 The Class LockTable
	5.4.9.2 The Class ConcurrencyMgr

	5.5 Implementing SimpleDB Transactions
	5.6 Chapter Summary
	5.7 Suggested Reading
	5.8 Exercises

	Chapter 6: Record Management
	6.1 Designing a Record Manager
	6.1.1 Spanned Versus Unspanned Records
	6.1.2 Homogeneous Versus Nonhomogeneous Files
	6.1.3 Fixed-Length Versus Variable-Length Fields
	6.1.4 Placing Fields in Records

	6.2 Implementing a File of Records
	6.2.1 A Straightforward Implementation
	6.2.2 Implementing Variable-Length Fields
	6.2.3 Implementing Spanned Records
	6.2.4 Implementing Nonhomogeneous Records

	6.3 SimpleDB Record Pages
	6.3.1 Managing Record Information
	6.3.2 Implementing the Schema and Layout
	6.3.3 Managing the Records in a Page
	6.3.4 Implementing Record Pages

	6.4 SimpleDB Table Scans
	6.4.1 Table Scans
	6.4.2 Implementing Table Scans

	6.5 Chapter Summary
	6.6 Suggested Reading
	6.7 Exercises

	Chapter 7: Metadata Management
	7.1 The Metadata Manager
	7.2 Table Metadata
	7.3 View Metadata
	7.4 Statistical Metadata
	7.5 Index Metadata
	7.6 Implementing the Metadata Manager
	7.7 Chapter Summary
	7.8 Suggested Reading
	7.9 Exercises

	Chapter 8: Query Processing
	8.1 Relational Algebra
	8.1.1 Select
	8.1.2 Project
	8.1.3 Product

	8.2 Scans
	8.3 Update Scans
	8.4 Implementing Scans
	8.4.1 Select Scans
	8.4.2 Project Scans
	8.4.3 Product Scans

	8.5 Pipelined Query Processing
	8.6 Predicates
	8.7 Chapter Summary
	8.8 Suggested Reading
	8.9 Exercises

	Chapter 9: Parsing
	9.1 Syntax Versus Semantics
	9.2 Lexical Analysis
	9.3 The SimpleDB Lexical Analyzer
	9.4 Grammars
	9.5 Recursive-Descent Parsers
	9.6 Adding Actions to the Parser
	9.6.1 Parsing Predicates and Expressions
	9.6.2 Parsing Queries
	9.6.3 Parsing Updates
	9.6.4 Parsing Insertions
	9.6.5 Parsing Deletions
	9.6.6 Parsing Modifications
	9.6.7 Parsing Table, View, and Index Creation

	9.7 Chapter Summary
	9.8 Suggested Reading
	9.9 Exercises

	Chapter 10: Planning
	10.1 Verification
	10.2 The Cost of Evaluating a Query Tree
	10.2.1 The Cost of a Table Scan
	10.2.2 The Cost of a Select Scan
	10.2.3 The Cost of a Project Scan
	10.2.4 The Cost of a Product Scan
	10.2.5 A Concrete Example

	10.3 Plans
	10.4 Query Planning
	10.4.1 The SimpleDB Query Planning Algorithm
	10.4.2 Implementing the Query Planning Algorithm

	10.5 Update Planning
	10.5.1 Delete and Modify Planning
	10.5.2 Insert Planning
	10.5.3 Planning for Table, View, and Index Creation

	10.6 The SimpleDB Planner
	10.7 Chapter Summary
	10.8 Suggested Reading
	10.9 Exercises

	Chapter 11: JDBC Interfaces
	11.1 The SimpleDB API
	11.2 Embedded JDBC
	11.3 Remote Method Invocation
	11.3.1 Remote Interfaces
	11.3.2 The RMI Registry
	11.3.3 Thread Issues

	11.4 Implementing the Remote Interfaces
	11.5 Implementing the JDBC Interfaces
	11.6 Chapter Summary
	11.7 Suggested Reading
	11.8 Exercises

	Chapter 12: Indexing
	12.1 The Value of Indexing
	12.2 SimpleDB Indexes
	12.3 Static Hash Indexes
	12.3.1 Static Hashing
	12.3.2 Implementing Static Hashing

	12.4 Extendable Hash Indexes
	12.4.1 Sharing Index Blocks
	12.4.2 Compacting the Bucket Directory

	12.5 B-Tree Indexes
	12.5.1 How to Improve a Dictionary
	12.5.2 The B-Tree Directory
	12.5.3 A Directory Tree
	12.5.4 Inserting Records
	12.5.5 Duplicate Datavals
	12.5.6 Implementing B-Tree Pages
	12.5.7 Implementing the B-Tree Index

	12.6 Index-Aware Operator Implementations
	12.6.1 An Indexed Implementation of Select
	12.6.2 An Indexed Implementation of Join

	12.7 Index Update Planning
	12.8 Chapter Summary
	12.9 Suggested Reading
	12.10 Exercises

	Chapter 13: Materialization and Sorting
	13.1 The Value of Materialization
	13.2 Temporary Tables
	13.3 Materialization
	13.3.1 An Example of Materialization
	13.3.2 The Cost of Materialization
	13.3.3 Implementing the Materialize Operator

	13.4 Sorting
	13.4.1 Why Sort Needs to Materialize Its Input
	13.4.2 The Basic Mergesort Algorithm
	13.4.3 Improving the Mergesort Algorithm
	13.4.4 The Cost of Mergesort
	13.4.5 Implementing Mergesort

	13.5 Grouping and Aggregation
	13.6 Merge Joins
	13.6.1 An Example of Mergejoin
	13.6.2 Implementing Mergejoin

	13.7 Chapter Summary
	13.8 Suggested Reading
	13.9 Exercises

	Chapter 14: Effective Buffer Utilization
	14.1 Buffer Usage in Query Plans
	14.2 Multibuffer Sorting
	14.3 Multibuffer Product
	14.4 Determining Buffer Allocation
	14.5 Implementing Multibuffer Sorting
	14.6 Implementing Multibuffer Product
	14.7 Hash Joins
	14.7.1 The Hashjoin Algorithm
	14.7.2 An Example of Hashjoin
	14.7.3 Cost Analysis

	14.8 Comparing the Join Algorithms
	14.9 Chapter Summary
	14.10 Suggested Reading
	14.11 Exercises

	Chapter 15: Query Optimization
	15.1 Equivalent Query Trees
	15.1.1 Rearranging Products
	15.1.2 Splitting Selections
	15.1.3 Moving Selections Within a Tree
	15.1.4 Identifying Join Operators
	15.1.5 Adding Projections

	15.2 The Need for Query Optimization
	15.3 The Structure of a Query Optimizer
	15.4 Finding the Most Promising Query Tree
	15.4.1 The Cost of a Tree
	15.4.2 Pushing Select Nodes Down the Tree
	15.4.3 Replacing Select-Product Nodes by Join
	15.4.4 Using Left-Deep Query Trees
	15.4.5 Choosing a Join Order Heuristically
	15.4.6 Choosing a Join Order by Exhaustive Enumeration

	15.5 Finding the Most Efficient Plan
	15.6 Combining the Two Stages of Optimization
	15.6.1 The Heuristic-Based SimpleDB Optimizer
	15.6.2 Selinger-Style Optimization

	15.7 Merging Query Blocks
	15.8 Chapter Summary
	15.9 Suggested Reading
	15.10 Exercises

	Index

