
SimpleDB: A Simple Java-Based
Multiuser System for Teaching Database Internals

Edward Sciore
Boston College

Computer Science Dept
Chestnut Hill, MA

617-552-3928

sciore@bc.edu

ABSTRACT
In this paper we examine the problem of how to give hands-on
assignments in a database system internals course. We argue that
current approaches are inadequate, either because they are not
sufficiently comprehensive or because they require using software
that has a steep learning curve. We then describe SimpleDB,
which is software written expressly for such a course. SimpleDB
is a database system in the spirit of Minibase. Unlike Minibase,
however, it supports multiple users and transactions via JDBC,
and its code is easy to read and modify. We then describe a course
that we teach using SimpleDB, and discuss the educational
benefits resulting from it.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – relational databases,
query processing.

General Terms
Algorithms, Design, Languages

Keywords
pedagogical database software, database internals, minibase

1. INTRODUCTION
The topics in an undergraduate introductory database course
typically fit into two categories: how to use a database system,
and how a database system works. Topics in the first category
include database design, relational algebra, SQL, and how to
build database applications. Topics in the second category include
concurrency control, recovery, indexing, and query processing.
Historically, these topics were compressed into a single-semester
course. More recently, many schools (including Boston College)
have chosen to teach the material over two courses, with each
course corresponding to one of the two categories. The first

course becomes a user-oriented course, whereas the second course
becomes a system-oriented course.
There are several advantages to this division. The first advantage
is that it is possible to go much deeper into the various topics. The
user-oriented course can cover advanced material such as web-
based development and data mining. The system-oriented course
can cover additional design alternatives, such as locking vs. multi-
version concurrency, top-down vs. bottom-up query processing,
additional forms of indexing, etc.
The second advantage to the split is that each course has different
prerequisites and a different student population. The user-oriented
course requires very little programming experience (if any), and is
appropriate for students looking for a practical, applications-
oriented course. For example at Boston College, this course is
taught in the business school and is a requirement for their
Information Systems concentration. Computer Science majors
tend to find the course very easy, and it counts towards their
major only as a low-level CS elective.
The system-oriented course, on the other hand, is a quintessential
computer science course, on a par with the traditional upper-level
CS courses. It touches on mainstream issues such as data
structures (for indexing), external sorting, operating systems (file
systems and memory management), distributed systems (client-
server, threading, deadlock), language interpreters, and algorithm
design. At Boston College this course has only Data Structures as
a prerequisite, but an interesting alternative would be to teach it as
a senior capstone course.
Another difference between the two courses is the kind of
assignments given to students. The user-oriented course is very
hands-on: Students learn to use a particular database system, and
very often work on a major project in which they build a
sophisticated application from scratch. The system-oriented
course, on the other hand, tends to be theoretical: Students draw
pictures of B-Trees, interpret log files by hand, prove
serializability, and calculate optimal query plans.
A theoretically-based system course is ok, but I think most would
agree that a hands-on course is better, at least for undergraduates.
In my experience, undergraduate students have a relatively easy
time solving problems in a narrow context, but have a very
difficult time grasping how everything fits together. Ideally, a
student would write an entire database system as part of his
coursework, as one would write a compiler in a compiler course.
However, database systems are much more complex than

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'07, March 7–11, 2007, Covington, Kentucky, USA.
Copyright 2007 ACM 1-59593-361-1/07/0003...$5.00.

compilers, and so that approach is not practical. What should an
instructor do?
Several strategies are possible:
• Have students write a “toy” database system from scratch.
• Provide students with the object code to an instructor-written

database system, and have students rewrite specific modules
according to a given API.

• Provide students with the source code to a pedagogically-
written database system, and have students modify specific
modules.

• Give students access to an open-source commercial database
system, and let them add features to it.

Each of these approaches has drawbacks.
Writing a toy system gives students the experience of building a
large system, but this system usually winds up being so simple
that it has no correspondence to how a real database system is
built.
On the other hand, writing individual modules to an otherwise-
unknown system gives students the experience of writing actual
code, but does not give them an overall understanding of the
system and does not allow them to make improvements that
encompass multiple modules.
The last two strategies allow students to see the entire source code
of a system. Studying this source code can provide the sense of
how things fit together, and modifying the code can reinforce this
understanding. The difference between these two strategies is
whether the code is specifically written for student use, or
whether it is commercial-grade.
Commercial open-source software has the cachet of being “real”
code, but is large, complex, and full-featured. Not only will it
have a steep learning curve, but it will be difficult to modify
because all of the simple improvements will have already been
made. Ailamaki and Hellerstein [1] describe a course that uses
PostgreSQL for this purpose. Their students were able to
successfully modify the system, but only two system assignments
were possible during the semester (one that modified the buffer
manager, and one that added an additional query operator).
A pedagogical system has the luxury of being able to include
whatever features seem reasonable, and to omit the rest. It can be
written with an eye towards being a readable presentation of the
essential concepts, instead of just being efficient. However, it runs
the risk of being too simple and therefore irrelevant.
The most widely-available pedagogical system is Minibase [2,
Chapter 30]. Minibase attempts to have the structure and
functionality of a commercial database system, and yet be simple
to understand and extend. By trying to balance both concerns, it
winds up not being very good at either. (This assessment is
echoed in [1].) It has a high learning curve, but without the
advantages of an open-source system. It has no multi-user or
transaction capability. The suggested projects are similar to those
of [1], and apparently no simpler.
Another pedagogical system mentioned in the literature is
MinSQL [3]. This system is designed to have heavyweight
architecture but lightweight code. That is, the components of the
system and their functionality are essentially the same as in a
commercial system, but the actual code implements only a small
fraction of what it could. For example, instead of implementing

all of SQL, the system implements just enough to allow for non-
trivial queries.
The advantage to a system such as MinSQL is that it simplifies
the learning curve – students are not overwhelmed by irrelevant
features and their consequent programming details.
Unfortunately, MinSQL was never made public, and so it is not
possible to build a course around it.
I developed the SimpleDB database system, independent of
MinSQL, but for exactly the same reasons. SimpleDB’s primary
goal is to be readable, usable, and easily modifiable. As with
MinSQL, it has the basic architecture of a commercial database
system, but stripped of all unnecessary functionality and using
only the simplest algorithms. The system is written in Java, and
takes full advantage of Java libraries. For example, it uses Java
RMI to handle the client-server issues, and the Java VM to handle
thread scheduling.
I have been using SimpleDB (in various incarnations) for over
three years in my Database System Internals course. This paper
describes SimpleDB, its architecture, and my experience with
using it in the course.

2. THE SIMPLEDB SYSTEM
The SimpleDB code comes in three parts:
• The client-side code that contains the JDBC interfaces and

implements the JDBC driver.
• The basic server, which provides complete (albeit bare-

bones) functionality but ignores efficiency issues.
• Extensions to the basic server that support efficient query

processing.

The following subsections address each part.

2.1 The Client-Side Code
A SimpleDB client is a Java program that communicates with the
server via JDBC. For example, the code fragment of Figure 1
prints the salary of each employee in the sales department.

String qry = “select sal from EMP ” +
 “where dept = ‘sales’ ”;
Driver d = new SimpleDriver();
Connection c = d.connect(“cs.bc.edu”);
Statement s = c.createStatement();
ResultSet r = s.executeQuery(qry);
while (r.next())
 System.out.println(r.getInt(“sal”));
r.close();
c.commit();

Figure 1: Printing the salary of everyone in the sales dept

The JDBC package java.sql defines the interfaces Driver,
Connection, Statement and ResultSet. The database system is
responsible for providing classes that implement these interfaces;
in SimpleDB, these classes are named SimpleDriver,
SimpleConnection, etc. The client only needs to know about
SimpleDriver, but all classes need to be available to it. In most
commercial systems, these classes are packaged in a jar file that is
added to the client’s classpath. SimpleDB does not come with a
client-side jar file, but it is an easy (and useful) exercise for the
students to create one.

The standard JDBC interfaces have a large number of methods,
most of which are peripheral to the understanding of database
internals. Therefore, SimpleDB comes with its own version of
these interfaces, which contain a small subset of the methods.
The advantages are that the SimpleDB code can be smaller and
more focused, and that the omitted methods can be implemented
as class exercises, if desired.

2.2 The Basic Server
The basic server comprises most of the SimpleDB code. It
consists of ten layered components, where each component uses
the services of the components below it and provides services to
the components above it. These components are displayed in
Figure 2. The remainder of this section discusses these
components briefly, from the bottom up.

Figure 2: The components of the basic SimpleDB server

The file manager supports access to the various data files used by
SimpleDB: a file for each table, the index files, some catalog
files, and a log file. The file manager API contains methods for
random-access reading and writing of blocks. Higher-level

components see the database as a collection of blocks on disk,
where a block contains a fixed number of bytes.

The log manager is responsible for maintaining the log file. Its
API contains methods to write a log record to the file, and to
iterate backwards through the records in the log file.

The buffer manager is responsible for the in-memory storage of
pages, where a page holds the contents of a block. Its API
contains methods to pin a buffer to a block, to flush a buffer to
disk, and to get/set a value at an arbitrary location inside of a
block. Higher-level components see the database as a collection
of in-memory pages of values.

The transaction manager is a wrapper around the buffer manager.
It has essentially the same API as the buffer manager, with some
additional methods to commit and rollback transactions. The job
of the transaction manager is to intercept calls to the buffer
manager in order to handle concurrency control and recovery. It
treats blocks as the unit of lock granularity, obtaining an slock (or
xlock) on the appropriate block whenever a method to get (or set)
a value is called. The transaction manager also supports recovery
by using write-ahead logging of values; when a method to set a
value is called, the transaction manager writes the old value into
the log before telling the buffer manager to write the new value to
the page. Higher-level components still see the database as a
collection of pages of values, but with methods that ensure safety
and serializability.

The record manager is responsible for formatting a block into
fixed-length, unspanned records. Its API contains methods to
iterate through all of the records in a file. The record manager
hides the block structure of the database. Higher-level
components see the database as a collection of files, each
containing a sequence of records.

The metadata manager stores schema information in catalog files.
Its API contains methods to create a new table given a schema,
and to retrieve the schema of an existing table. The metadata
manager hides the physical characteristics of the database.
Higher-level components see the database as a collection of tables
and indexes, each containing a sequence of records.

The query processor implements query trees that can be
composed from the relational algebra operators select, project,
and product. Its API contains methods to create a query tree and
to iterate through it.

The parser recognizes a stripped-down subset of SQL, using
recursive descent. The language corresponds to select-project-join
queries having very simple predicates. There are no Boolean
operators except “and”, no comparisons except “=”, no arithmetic
or built-in functions, no grouping, no renaming, etc.

The planner builds a query plan from the parsed representation of
the query. The plan is the simplest possible: It takes the product of
the mentioned tables (in the order mentioned), followed by a
select operation using the where-clause predicate, followed by a
projection on the output fields.

Finally, the remote interface implements a small subset of the
JDBC API. The key method is Statement.executeQuery, which
calls the parser and planner to construct the query tree and passes
it to the ResultSet object for traversal. All of the network
communication is taken care of by Java RMI.

Remote: Perform JDBC requests received from
clients.

Planner: Create an execution strategy for an SQL
statement, and translate it to a relational algebra plan.

Parse: Extract the tables, fields, and predicate
mentioned in an SQL statement.

Query: Implement queries expressed in relational
algebra.

Metadata: Maintain metadata about the tables in the
database, so that its records and fields are accessible.

Record: Provide methods for storing data records in
pages.

Transaction: Support concurrency by restricting page
access. Enable recovery by logging changes to pages.

Buffer: Maintain a cache of pages in memory to hold
recently-accessed user data.

Log: Append log records to the log file, and scan the
records in the log file.

File: Read and write between file blocks and
memory pages.

2.3 Efficiency Extensions
The basic query processor only knows about three relational
operators. It doesn’t know how to use indexing, nor can it handle
sorting or grouping. Moreover, the iterator implementations are as
simple as possible – most notably, the implementation of product
uses nested loops.

These algorithms are, of course, remarkably inefficient. But they
also have a simplicity that allows students to focus on the flow of
control in the execution of a query tree. Students tend to have
difficulty grasping how a query tree of iterators works, and so
clarity is more important than efficiency at this point.

The basic planner is equally simple. It does not try to perform
joins, or push selections, or optimize join order. The advantage is
again clarity over efficiency. A trivial planner allows students to
focus exclusively on how the translation from SQL to relational
algebra works.

But efficiency, of course, is critical for a database system. Once
students understand the basic server, it can be extended with four
components to improve efficiency:
• Support for indexing.
• Sorting, and operators that rely on sorting (such as

aggregation, duplicate removal, and mergejoin).
• Sophisticated buffer allocation.
• Query optimization.

The indexing component implements both B-tree and static hash
indexes, and provides implementations of the indexselect and
indexjoin operators.

The sorting component provides a sort operator, implemented
using a simple mergesort algorithm. It also uses the sort operator
to implement groupby and mergejoin operators.

The buffer allocation component modifies the sort and product
operators to take maximum advantage of available buffers.

The query optimization component implements an intelligent
planner. The planner uses a greedy optimization algorithm, and
can be configured to use the various efficient operators (e.g.
mergejoin or indexjoin instead of product) when possible.

3. TEACHING THE COURSE
3.1 Topics
The Database System Internals course is geared towards
junior/senior undergraduates. For practical reasons, I do not
require that students take an introductory database course first,
but certainly such a prerequisite would help the class move faster.
Instead, I spend the first week of the course teaching the
fundamentals of table creation in SQL, the relational algebra
operators select, project, product, and join, and the corresponding
queries in SQL. This basic literacy can carry students very far
through the course; advanced topics (such as indexing and
aggregation) can be dealt with on an as-needed basis.
The course is structured into three parts:

1. How to use a database system.
2. The basic architecture of a database system.
3. Efficient query processing.

Part 1 covers the use of relational databases via basic SQL, and
the principles of client-server interaction using JDBC. It also

examines details of client-server communication, showing
students how a database driver can be built using RMI.
Part 2 considers the internals of the basic database server. For
each database component I explain the issues, consider various
designs, and describe the design decisions made by SimpleDB. As
a result, the students can see exactly what services each
component provides, and how it interacts with lower-level
components to get what it needs. By the end of this part, students
have witnessed the gradual development of a simple but
completely functional system.
Part 3 considers efficiency issues. This part studies the
sophisticated techniques and algorithms that can replace the
simple design choices made in Part 2. The topics in this part
parallel the extensions to the basic SimpleDB server, and include
indexing, sort-based techniques, advanced use of buffers, and
query optimization.
This organization introduces topics in a somewhat different order
from a typical database course. For example:

• Transaction processing is treated relatively early. Most
database courses introduce transactions towards the end,
which gives them a sense of being an “add on”. I think it is
better to discuss a transaction as the low-level concept it is,
in order to give the sense that transactions are an integral,
tightly-integrated part of a database system.

• Indexing and sorting are treated relatively late. I think it is
better to wait until part 3, so that these topics can be
introduced as solutions to efficiency problems. At that point,
students will have a firm understanding of what those
problems are, how these new concepts address the problems,
and how they all fit into the overall system architecture.

3.2 Assignments
Because SimpleDB implements only a tiny portion of SQL using
the simplest algorithms, there are numerous opportunities for
students to extend the system with additional features and more
efficient algorithms.
Homework assignments are the focal point of the course. I give
weekly assignments, to be done individually. Each assignment
involves modifying SimpleDB in some way, and may also include
some traditional pencil-and-paper exercises.
In the most recent offering of the course, nine assignments were
given during the 13-week semester, having the following tasks:
1. Write a JDBC program. The program performed some basic

database retrieval from the SimpleDB server, and was a good
warmup assignment.

2. Implement authentication. SimpleDB allows JDBC clients to
connect anonymously. Students had to modify the driver’s
connect method to take a username and password, and
modify the server to perform the authentication.

3. Modify the buffer manager. Students not only implemented a
different page replacement algorithm, they also modified
how the buffer manager organized the buffer pool.

4. Modify deadlock detection. SimpleDB uses a timeout
mechanism to detect deadlocks. Students replaced it with the
wait-die algorithm.

5. Add non-quiescent checkpointing. Students had to define a
new type of checkpoint log record, modify the server to

periodically add the checkpoint record to the log, and modify
the recovery code to use it.

6. Add the ability to scan records backwards. SimpleDB only
implements the recordset methods beforeFirst and next.
Students added the methods afterLast and previous to the
JDBC RecordSet interface, and modified the record manager
to support these methods.

7. Implement new relational algebra operators. Students wrote
code for the union and rename operators. This code included
the iteration methods beforeFirst, next, afterLast, and
previous, as well as methods to estimate block accesses and
output records.

8. Modify SQL. The SimpleDB version of SQL does not
support range variables. Students had to modify the SQL
parser (and grammar) to recognize the AS keyword in the
from-clause, and make corresponding modifications to the
planner.

9. Implement prepared statements. (This was a 2-week
assignment.) Students needed to implement the JDBC
PreparedStatement interface. This involved modifying
numerous portions of the server, and was a challenging and
interesting final project.

The scope of these assignments is remarkable, and is possible
because of the bare-bones nature of SimpleDB. The code is
minimal and easy to read, which makes for an easy learning
curve. Each component of SimpleDB makes heavy use of the
methods defined in its next-lower component, and so a strong
knowledge of the API can lead to very few lines of code. In fact,
many of the assignments could be completed with less than 100
lines of code.

3.3 Pedagogical Observations
A database system is a remarkable piece of software. Its internals
cover diverse topics, such as file systems, multi-user transaction
processing, data structures, language interpreters, and
optimization algorithms. Many of the seniors have encountered
these topics separately in other courses, and are pleased to be able
to study a system in which it all fits together. In this sense, the
course acts as a capstone course for those students.
In order to solve the assignments, the student usually has to first
understand where the affected code is, plan the modification, and
only then write the necessary (and short) code. This approach to
coding comes as a shock to some students, who are used to being
able to grind out reams of code with very little thought or
planning.
The course is exceptionally code-intensive, and the students spend
a lot of time both reading and writing code. The SimpleDB code
attempts to be elegant, and many students commented on how
they learned the value of good programming style from trying to

imitate it. Some of the better students have been motivated to
“out-elegant” the instructor in their solutions to the assignments.
This course is one of the only courses in our curriculum in which
students have the opportunity to work with a large, functional
system. Throughout their coursework, students typically
encounter toy systems or simulators, and never get to see how
everything fits together. Particularly interesting is their approach
to Java packages. The early resistance towards packages
eventually gives way to acceptance (since they have no choice but
to use them), and then to appreciation as they realize that focusing
on a single package is a lot easier than having to wade through all
possible SimpleDB classes.

4. CONCLUSION
The SimpleDB database server was written to help students in a
database systems internals course. It has two purposes:
• to give students an easily-understood example of a real

database system;
• to give students a vehicle for doing meaningful hands-on

programming assignments.

My experience has been that the system has fulfilled these
purposes very well. The system has also turned out to be valuable
in ways unrelated to the study of database systems. It gives
students experience with grappling with a large system, both in
trying to understand it and to modify it. And it provides a
practical, “capstone” example of numerous theoretical concepts
that students have encountered in other courses.

The basic SimpleDB server consists of about 3,500 lines of Java
code (not including the JavaDoc comments), and the efficiency
extensions are about half that size. The URL
www.cs.bc.edu/~sciore/simpledb/intro.html contains instructions
for downloading and configuring the system, as well as a pointer
to the website for my Database Systems Internals course.

5. REFERENCES
[1] Ailamaki, A., and Hellerstein, J. Exposing Undergraduate

Students to Database System Internals. ACM SIGMOD
Record, 32, 3 (September 2003), 18-20.

[2] Ramakrishnan, R. and Gehrke, J. Database Management
Systems (Third Edition). McGraw-Hill, Boston, 2003.

[3] Swart, G. MinSQL: A Simple Componentized Database for
the Classroom. In Proceedings of the 2nd international
conference on Principles and Practice of Programming in
Java (Kilkenny City, Ireland, June 16-18, 2003). ACM
International Conference Proceeding Series Vol. 42, 2003,
129-132.

